[go: up one dir, main page]

login
A357852
Replace prime(k) with prime(k+2) in the prime factorization of n.
14
1, 5, 7, 25, 11, 35, 13, 125, 49, 55, 17, 175, 19, 65, 77, 625, 23, 245, 29, 275, 91, 85, 31, 875, 121, 95, 343, 325, 37, 385, 41, 3125, 119, 115, 143, 1225, 43, 145, 133, 1375, 47, 455, 53, 425, 539, 155, 59, 4375, 169, 605, 161, 475, 61, 1715, 187, 1625, 203
OFFSET
1,2
COMMENTS
This is the same as A045966 except the first term is 1 instead of 3.
FORMULA
a(n) = A003961(A003961(n)).
EXAMPLE
The terms together with their prime indices begin:
1: {}
5: {3}
7: {4}
25: {3,3}
11: {5}
35: {3,4}
13: {6}
125: {3,3,3}
49: {4,4}
55: {3,5}
17: {7}
175: {3,3,4}
19: {8}
65: {3,6}
77: {4,5}
625: {3,3,3,3}
MATHEMATICA
primeMS[n_]:=If[n==1, {}, Flatten[Cases[FactorInteger[n], {p_, k_}:>Table[PrimePi[p], {k}]]]];
Table[Product[Prime[i+2], {i, primeMS[n]}], {n, 30}]
PROG
(PARI) a(n) = my(f=factor(n)); for (k=1, #f~, f[k, 1] = nextprime(nextprime(f[k, 1]+1)+1)); factorback(f); \\ Michel Marcus, Oct 28 2022
(Python)
from math import prod
from sympy import nextprime, factorint
def A357852(n): return prod(nextprime(p, ith=2)**e for p, e in factorint(n).items()) # Chai Wah Wu, Oct 29 2022
CROSSREFS
Applying the transformation only once gives A003961.
A permutation of A007310.
Other multiplicative sequences: A064988, A064989, A357977, A357980, A357983.
A000040 lists the primes.
A056239 adds up prime indices, row-sums of A112798.
Sequence in context: A024864 A025108 A298900 * A166660 A354202 A037374
KEYWORD
nonn,mult
AUTHOR
Gus Wiseman, Oct 28 2022
STATUS
approved