Displaying 1-10 of 49 results found.
Expansion of g.f. (1+x)/(1-2*x).
+10
212
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
COMMENTS
Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
FORMULA
a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
MAPLE
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
Table[2^n+Floor[2^(n-1)], {n, 0, 30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x), {x, 0, 40}], x] (* or *) LinearRecurrence[ {2}, {1, 3}, 40] (* Harvey P. Dale, May 04 2017 *)
CROSSREFS
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
+10
7
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460291, 295665060514120836, 6504631331310536193, 143101889288829107868
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^12 - 21*t^11 - 21*t^10 - 21*t^9 -21*t^8 -21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 -21*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -22*x + 252*x^12 - 231*x^13). - G. C. Greubel, Apr 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)) \\ G. C. Greubel, Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
+10
6
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 231*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
G.f.: (1+t)*(1-t^16)/(1 - 22*t + 252*t^16 - 231*t^17).
a(n) = 21*Sum_{j=1..15} a(n-j) - 231*a(n-16). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-22*t+252*t^16-231*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) )); // G. C. Greubel, Sep 10 2023
(SageMath)
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) ).list()
CROSSREFS
Cf. A167881, A167882, A167896 - A167900, A167908, A167914, A167916, A167919, A167922, A167923, A167924, A167926, A167927, A167929, A167931, A167933, A167935, A167938, A167940 - A167947, A167949 - A167962, A167978, A167980, A167988, A167989.
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
+10
2
1, 23, 506, 11132, 244904, 5387888, 118533283, 2607726660, 57369864321, 1262134326684, 27766896042732, 610870411765152, 13439120433048156, 295660019761129485, 6504506579923898238, 143098839952914095019, 3148167773259336785958, 69259543486514630343864
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -22*x +252*x^6 -231*x^7). - G. C. Greubel, Apr 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7), {x, 0, 20}], x] (* G. C. Greubel, Aug 24 2017, modified Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
+10
1
1, 23, 506, 11132, 244904, 5387635, 118522404, 2607370689, 57359466780, 1261849124844, 27759379635372, 610677728876061, 13434280356535038, 295540315560771435, 6501582206394337062, 143028104664155140584
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
a(n) = 21*a(n-1)+21*a(n-2)+21*a(n-3)+21*a(n-4)-231*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)) \\ G. C. Greubel, Jul 27 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6) )); // G. C. Greubel, May 16 2019
(Sage) ((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963, 610878224191620, 13439320932093441, 295665060503367324, 6504631331014936812, 143101889281027434912
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 18 2016 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)) \\ G. C. Greubel, Sep 25 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11) )); // G. C. Greubel, Sep 25 2019
(Sage)
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)).list()
(GAP) a:=[23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963];; for n in [11..30] do a[n]:=21*Sum([1..9], j-> a[n-j]) -231*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202499, 13439320932449412, 295665060513764865, 6504631331300138652, 143101889288543906028
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
a(n) = 21*Sum_{j=1..10} a(n-j) - 231*a(n-11).
G.f.: (1+x)*(1 - x^11)/(1 - 22*x + 252*x^11 - 231*x^12). (End)
MATHEMATICA
With[{p=231, q=21}, CoefficientList[Series[(1+t)*(1-t^11)/(1- (q+1)*t + (p+q)*t^11 -p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 13 2016; Jul 23 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) )); // G. C. Greubel, Jul 23 2024
(SageMath)
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) ).list()
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131715, 6504631331310892164, 143101889288839505409
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 31 2016 *)
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903043, 143101889288839861380
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (231*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 04 2016 *)
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872259
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 20 2016 *)
Search completed in 0.022 seconds
|