[go: up one dir, main page]

login
Search: a170742 -id:a170742
     Sort: relevance | references | number | modified | created      Format: long | short | data
Expansion of g.f. (1+x)/(1-2*x).
+10
212
1, 3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 3.
Number of Hamiltonian cycles in K_3 X P_n.
Number of ternary words of length n avoiding aa, bb, cc.
For n > 0, row sums of A029635. - Paul Barry, Jan 30 2005
Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - Philippe Deléham, Jul 23 2005
Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - Gary W. Adamson, May 23 2009
Equals (n+1)-th row sums of triangle A161175. - Gary W. Adamson, Jun 05 2009
a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - Jaroslav Krizek, Aug 17 2009
INVERTi transform of A003688. - Gary W. Adamson, Aug 05 2010
An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - Johannes W. Meijer, Aug 15 2010
A216022(a(n)) != 2 and A216059(a(n)) != 3. - Reinhard Zumkeller, Sep 01 2012
Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - Joerg Arndt, Oct 11 2012
Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - John Molokach, Sep 26 2013
LINKS
Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173.
Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From N. J. A. Sloane, Sep 25 2012
C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003.
FORMULA
a(0) = 1; for n > 0, a(n) = 3*2^(n-1).
a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3.
More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - Zak Seidov and N. J. A. Sloane, Dec 05 2009
The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - Jaume Oliver Lafont, Dec 05 2009
Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - Paul Barry, Apr 29 2003
a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - Paul Barry, Jan 30 2005
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - Philippe Deléham, Jul 10 2005
Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - Paul Barry, Aug 29 2006
a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - Joerg Arndt, Aug 15 2012
a(n) = 2^n + floor(2^(n-1)). - Martin Grymel, Oct 17 2012
E.g.f.: (3*exp(2*x) - 1)/2. - Stefano Spezia, Jan 31 2023
MAPLE
k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi;
MATHEMATICA
Join[{1}, 3*2^Range[0, 60]] (* Vladimir Joseph Stephan Orlovsky, Jun 09 2011 *)
Table[2^n+Floor[2^(n-1)], {n, 0, 30}] (* Martin Grymel, Oct 17 2012 *)
CoefficientList[Series[(1+x)/(1-2x), {x, 0, 40}], x] (* or *) LinearRecurrence[ {2}, {1, 3}, 40] (* Harvey P. Dale, May 04 2017 *)
PROG
(PARI) a(n)=if(n, 3<<n--, 1) \\ Charles R Greathouse IV, Jan 12 2012
CROSSREFS
Essentially same as A007283 (3*2^n) and A042950.
Generating functions of the form (1+x)/(1-k*x) for k=1 to 12: A040000, A003945, A003946, A003947, A003948, A003949, A003950, A003951, A003952.
Generating functions of the form (1+x)/(1-k*x) for k=13 to 30: A170732, A170733, A170734, A170735, A170736, A170737, A170738, A170739, A170740, A170741, A170742, A170743, A170744, A170745, A170746, A170747, A170748.
Generating functions of the form (1+x)/(1-k*x) for k=31 to 50: A170749, A170750, A170751, A170752, A170753, A170754, A170755, A170756, A170757, A170758, A170759, A170760, A170761, A170762, A170763, A170764, A170765, A170766, A170767, A170768, A170769.
Cf. A003688.
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^12 = I.
+10
7
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460291, 295665060514120836, 6504631331310536193, 143101889288829107868
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^12 - 21*t^11 - 21*t^10 - 21*t^9 -21*t^8 -21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 -21*t + 1).
G.f.: (1+x)*(1-x^12)/(1 -22*x + 252*x^12 - 231*x^13). - G. C. Greubel, Apr 25 2019
MATHEMATICA
coxG[{12, 231, -21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Feb 03 2015 *)
CoefficientList[Series[(1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13), {x, 0, 20}], x] (* G. C. Greubel, May 18 2016, modified Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)) \\ G. C. Greubel, Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^12)/(1-22*x+252*x^12-231*x^13)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^16 = I.
+10
6
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872512
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^16 + 2*t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/( 231*t^16 - 21*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
From G. C. Greubel, Sep 10 2023: (Start)
G.f.: (1+t)*(1-t^16)/(1 - 22*t + 252*t^16 - 231*t^17).
a(n) = 21*Sum_{j=1..15} a(n-j) - 231*a(n-16). (End)
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^16)/(1-22*t+252*t^16-231*t^17), {t, 0, 50}], t] (* G. C. Greubel, Jul 01 2016; Sep 10 2023 *)
coxG[{16, 231, -21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, Dec 27 2016 *)
PROG
(Magma) R<x>:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) )); // G. C. Greubel, Sep 10 2023
(SageMath)
def A167937_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^16)/(1-22*x+252*x^16-231*x^17) ).list()
A167937_list(40) # G. C. Greubel, Sep 10 2023
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^6 = I.
+10
2
1, 23, 506, 11132, 244904, 5387888, 118533283, 2607726660, 57369864321, 1262134326684, 27766896042732, 610870411765152, 13439120433048156, 295660019761129485, 6504506579923898238, 143098839952914095019, 3148167773259336785958, 69259543486514630343864
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
G.f.: (1+x)*(1-x^6)/(1 -22*x +252*x^6 -231*x^7). - G. C. Greubel, Apr 25 2019
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7), {x, 0, 20}], x] (* G. C. Greubel, Aug 24 2017, modified Apr 25 2019 *)
coxG[{6, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, Apr 25 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)) \\ G. C. Greubel, Aug 24 2017, modified Apr 25 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7) )); // G. C. Greubel, Apr 25 2019
(Sage) ((1+x)*(1-x^6)/(1-22*x+252*x^6-231*x^7)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, Apr 25 2019
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^5 = I.
+10
1
1, 23, 506, 11132, 244904, 5387635, 118522404, 2607370689, 57359466780, 1261849124844, 27759379635372, 610677728876061, 13434280356535038, 295540315560771435, 6501582206394337062, 143028104664155140584
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
FORMULA
G.f.: (t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
a(n) = 21*a(n-1)+21*a(n-2)+21*a(n-3)+21*a(n-4)-231*a(n-5). - Wesley Ivan Hurt, May 10 2021
MATHEMATICA
CoefficientList[Series[(1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6), {x, 0, 20}], x] (* G. C. Greubel, Jul 27 2017 *)
coxG[{5, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, May 16 2019 *)
PROG
(PARI) my(x='x+O('x^20)); Vec((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)) \\ G. C. Greubel, Jul 27 2017
(Magma) R<x>:=PowerSeriesRing(Integers(), 20); Coefficients(R!( (1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6) )); // G. C. Greubel, May 16 2019
(Sage) ((1+x)*(1-x^5)/(1-22*x+252*x^5-231*x^6)).series(x, 20).coefficients(x, sparse=False) # G. C. Greubel, May 16 2019
KEYWORD
nonn,easy
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^10 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963, 610878224191620, 13439320932093441, 295665060503367324, 6504631331014936812, 143101889281027434912
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MAPLE
seq(coeff(series((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), t, n+1), t, n), n = 0..30); # G. C. Greubel, Sep 25 2019
MATHEMATICA
CoefficientList[Series[(1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11), {t, 0, 25}], t] (* G. C. Greubel, Apr 18 2016 *)
coxG[{10, 231, -21}] (* The coxG program is at A169452 *) (* G. C. Greubel, Sep 25 2019 *)
PROG
(PARI) my(t='t+O('t^30)); Vec((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)) \\ G. C. Greubel, Sep 25 2019
(Magma) R<t>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11) )); // G. C. Greubel, Sep 25 2019
(Sage)
def A165939_list(prec):
P.<t> = PowerSeriesRing(ZZ, prec)
return P((1+t)*(1-t^10)/(1-22*t+252*t^10-231*t^11)).list()
A165939_list(30) # G. C. Greubel, Sep 25 2019
(GAP) a:=[23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192008963];; for n in [11..30] do a[n]:=21*Sum([1..9], j-> a[n-j]) -231*a[n-10]; od; Concatenation([1], a); # G. C. Greubel, Sep 25 2019
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^11 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202499, 13439320932449412, 295665060513764865, 6504631331300138652, 143101889288543906028
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21,21,21,21,21,21,21,21,21,21,-231).
FORMULA
G.f.: (t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
From G. C. Greubel, Jul 23 2024: (Start)
a(n) = 21*Sum_{j=1..10} a(n-j) - 231*a(n-11).
G.f.: (1+x)*(1 - x^11)/(1 - 22*x + 252*x^11 - 231*x^12). (End)
MATHEMATICA
With[{p=231, q=21}, CoefficientList[Series[(1+t)*(1-t^11)/(1- (q+1)*t + (p+q)*t^11 -p*t^12), {t, 0, 40}], t]] (* G. C. Greubel, May 13 2016; Jul 23 2024 *)
coxG[{11, 231, -21, 30}] (* The coxG program is at A169452 *) (* G. C. Greubel, Jul 23 2024 *)
PROG
(Magma)
R<x>:=PowerSeriesRing(Integers(), 30);
Coefficients(R!( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) )); // G. C. Greubel, Jul 23 2024
(SageMath)
def A166417_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1+x)*(1-x^11)/(1-22*x+252*x^11-231*x^12) ).list()
A166417_list(30) # G. C. Greubel, Jul 23 2024
CROSSREFS
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^13 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131715, 6504631331310892164, 143101889288839505409
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, May 31 2016 *)
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^14 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903043, 143101889288839861380
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/ (231*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 04 2016 *)
coxG[{14, 231, -21}] (* The coxG program is at A169452 *) (* Harvey P. Dale, May 19 2018 *)
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved
Number of reduced words of length n in Coxeter group on 23 generators S_i with relations (S_i)^2 = (S_i S_j)^15 = I.
+10
1
1, 23, 506, 11132, 244904, 5387888, 118533536, 2607737792, 57370231424, 1262145091328, 27767192009216, 610878224202752, 13439320932460544, 295665060514131968, 6504631331310903296, 143101889288839872259
OFFSET
0,2
COMMENTS
The initial terms coincide with those of A170742, although the two sequences are eventually different.
Computed with MAGMA using commands similar to those used to compute A154638.
LINKS
Index entries for linear recurrences with constant coefficients, signature (21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, 21, -231).
FORMULA
G.f.: (t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1).
MATHEMATICA
CoefficientList[Series[(t^15 + 2*t^14 + 2*t^13 + 2*t^12 + 2*t^11 + 2*t^10 + 2*t^9 + 2*t^8 + 2*t^7 + 2*t^6 + 2*t^5 + 2*t^4 + 2*t^3 + 2*t^2 + 2*t + 1)/(231*t^15 - 21*t^14 - 21*t^13 - 21*t^12 - 21*t^11 - 21*t^10 - 21*t^9 - 21*t^8 - 21*t^7 - 21*t^6 - 21*t^5 - 21*t^4 - 21*t^3 - 21*t^2 - 21*t + 1), {t, 0, 50}], t] (* G. C. Greubel, Jun 20 2016 *)
KEYWORD
nonn
AUTHOR
John Cannon and N. J. A. Sloane, Dec 03 2009
STATUS
approved

Search completed in 0.022 seconds