# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a003945 Showing 1-1 of 1 %I A003945 #130 Jun 01 2024 11:56:28 %S A003945 1,3,6,12,24,48,96,192,384,768,1536,3072,6144,12288,24576,49152,98304, %T A003945 196608,393216,786432,1572864,3145728,6291456,12582912,25165824, %U A003945 50331648,100663296,201326592,402653184,805306368,1610612736,3221225472,6442450944,12884901888 %N A003945 Expansion of g.f. (1+x)/(1-2*x). %C A003945 Coordination sequence for infinite tree with valency 3. %C A003945 Number of Hamiltonian cycles in K_3 X P_n. %C A003945 Number of ternary words of length n avoiding aa, bb, cc. %C A003945 For n > 0, row sums of A029635. - _Paul Barry_, Jan 30 2005 %C A003945 Binomial transform is {1, 4, 13, 40, 121, 364, ...}, see A003462. - _Philippe Deléham_, Jul 23 2005 %C A003945 Convolved with the Jacobsthal sequence A001045 = A001786: (1, 4, 12, 32, 80, ...). - _Gary W. Adamson_, May 23 2009 %C A003945 Equals (n+1)-th row sums of triangle A161175. - _Gary W. Adamson_, Jun 05 2009 %C A003945 a(n) written in base 2: a(0) = 1, a(n) for n >= 1: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, (n-1) times 0 (see A003953(n)). - _Jaroslav Krizek_, Aug 17 2009 %C A003945 INVERTi transform of A003688. - _Gary W. Adamson_, Aug 05 2010 %C A003945 An elephant sequence, see A175655. For the central square four A[5] vectors, with decimal values 42, 138, 162 and 168, lead to this sequence. For the corner squares these vectors lead to the companion sequence A083329. - _Johannes W. Meijer_, Aug 15 2010 %C A003945 A216022(a(n)) != 2 and A216059(a(n)) != 3. - _Reinhard Zumkeller_, Sep 01 2012 %C A003945 Number of length-n strings of 3 letters with no two adjacent letters identical. The general case (strings of r letters) is the sequence with g.f. (1+x)/(1-(r-1)*x). - _Joerg Arndt_, Oct 11 2012 %C A003945 Sums of pairs of rows of Pascal's triangle A007318, T(2n,k)+T(2n+1,k); Sum_{n>=1} A000290(n)/a(n) = 4. - _John Molokach_, Sep 26 2013 %H A003945 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A003945 Yasemin Alp and E. Gokcen Kocer, Exponential Almost-Riordan Arrays, Results Math. (2024) Vol. 79, 173. %H A003945 F. Faase, Counting Hamiltonian cycles in product graphs %H A003945 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 151 %H A003945 INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 304 %H A003945 Markus Kuba and Alois Panholzer, Enumeration formulas for pattern restricted Stirling permutations, Discrete Math. 312 (2012), no. 21, 3179--3194. MR2957938. - From _N. J. A. Sloane_, Sep 25 2012 %H A003945 C. Richard and U. Grimm, On the entropy and letter frequencies of ternary squarefree words, arXiv:math/0302302 [math.CO], 2003. %H A003945 Index to divisibility sequences %H A003945 Index entries for linear recurrences with constant coefficients, signature (2). %H A003945 Index entries for sequences related to trees %F A003945 a(0) = 1; for n > 0, a(n) = 3*2^(n-1). %F A003945 a(n) = 2*a(n-1), n > 1; a(0)=1, a(1)=3. %F A003945 More generally, the g.f. (1+x)/(1-k*x) produces the sequence [1, 1 + k, (1 + k)*k, (1 + k)*k^2, ..., (1+k)*k^(n-1), ...], with a(0) = 1, a(n) = (1+k)*k^(n-1) for n >= 1. Also a(n+1) = k*a(n) for n >= 1. - _Zak Seidov_ and _N. J. A. Sloane_, Dec 05 2009 %F A003945 The g.f. (1+x)/(1-k*x) produces the sequence with closed form (in PARI notation) a(n)=(n>=0)*k^n+(n>=1)*k^(n-1). - _Jaume Oliver Lafont_, Dec 05 2009 %F A003945 Binomial transform of A000034. a(n) = (3*2^n - 0^n)/2. - _Paul Barry_, Apr 29 2003 %F A003945 a(n) = Sum_{k=0..n} (n+k)*binomial(n, k)/n. - _Paul Barry_, Jan 30 2005 %F A003945 a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 1. - _Philippe Deléham_, Jul 10 2005 %F A003945 Binomial transform of A000034. Hankel transform is {1,-3,0,0,0,...}. - _Paul Barry_, Aug 29 2006 %F A003945 a(0) = 1, a(n) = 2 + Sum_{k=0..n-1} a(k) for n >= 1. - _Joerg Arndt_, Aug 15 2012 %F A003945 a(n) = 2^n + floor(2^(n-1)). - _Martin Grymel_, Oct 17 2012 %F A003945 E.g.f.: (3*exp(2*x) - 1)/2. - _Stefano Spezia_, Jan 31 2023 %p A003945 k := 3; if n = 0 then 1 else k*(k-1)^(n-1); fi; %t A003945 Join[{1}, 3*2^Range[0, 60]] (* _Vladimir Joseph Stephan Orlovsky_, Jun 09 2011 *) %t A003945 Table[2^n+Floor[2^(n-1)], {n,0,30}] (* _Martin Grymel_, Oct 17 2012 *) %t A003945 CoefficientList[Series[(1+x)/(1-2x),{x,0,40}],x] (* or *) LinearRecurrence[ {2},{1,3},40] (* _Harvey P. Dale_, May 04 2017 *) %o A003945 (PARI) a(n)=if(n,3<