[go: up one dir, main page]

login
A170751
Expansion of g.f.: (1+x)/(1-31*x).
50
1, 32, 992, 30752, 953312, 29552672, 916132832, 28400117792, 880403651552, 27292513198112, 846067909141472, 26228105183385632, 813071260684954592, 25205209081233592352, 781361481518241362912, 24222205927065482250272, 750888383739029949758432
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} A097805(n,k)*(-1)^(n-k)*32^k. - Philippe Deléham, Dec 04 2009
a(0) = 1; for n>0, a(n) = 32*31^(n-1). - Vincenzo Librandi, Dec 05 2009
E.g.f.: (1/31)*(32*exp(31*x) - 1). - Stefano Spezia, Oct 09 2019
MAPLE
k:=32; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # G. C. Greubel, Oct 09 2019
MATHEMATICA
With[{k = 32}, Table[If[n==0, 1, k*(k-1)^(n-1)], {n, 0, 25}]] (* G. C. Greubel, Oct 09 2019 *)
PROG
(Python) for i in range(1001):print(i, 32*31**(i-1) if i>0 else 1) # Kenny Lau, Aug 03 2017
(PARI) vector(26, n, k=32; if(n==1, 1, k*(k-1)^(n-2))) \\ G. C. Greubel, Oct 09 2019
(Magma) k:=32; [1] cat [k*(k-1)^(n-1): n in [1..25]]; // G. C. Greubel, Oct 09 2019
(Sage) k=32; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Oct 09 2019
(GAP) k:=32;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Oct 09 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170617 A170665 A170713 * A218734 A065552 A298193
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Dec 04 2009
STATUS
approved