[go: up one dir, main page]

login
A003951
Expansion of g.f.: (1+x)/(1-8*x).
56
1, 9, 72, 576, 4608, 36864, 294912, 2359296, 18874368, 150994944, 1207959552, 9663676416, 77309411328, 618475290624, 4947802324992, 39582418599936, 316659348799488, 2533274790395904, 20266198323167232, 162129586585337856, 1297036692682702848
OFFSET
0,2
COMMENTS
Coordination sequence for infinite tree with valency 9.
Binomial transform is {1, 10, 91, 820, 7381, ...}, see A002452. - Philippe Deléham, Jul 22 2005
a(n) equals the number of words of length n on alphabet {0,1,...,8} with no two adjacent letters identical. - Milan Janjic, Jan 31 2015 [Corrected by David Nacin, May 31 2017]
FORMULA
a(n) = Sum_{k=0..n} A029653(n, k)*x^k for x = 7. - Philippe Deléham, Jul 10 2005
a(0) = 1; for n>0, a(n) = 9*8^(n-1). - Vincenzo Librandi, Nov 18 2010
a(0) = 1, a(1) = 9, a(n) = 8*a(n-1). - Vincenzo Librandi, Dec 10 2012
E.g.f.: (9*exp(8*x) -1)/8. - G. C. Greubel, Sep 24 2019
MAPLE
k:=9; seq(`if`(n=0, 1, k*(k-1)^(n-1)), n = 0..25); # modified by G. C. Greubel, Sep 24 2019
MATHEMATICA
Join[{1}, 9*8^Range[0, 25]] (* Vladimir Joseph Stephan Orlovsky, Jul 11 2011 *)
CoefficientList[Series[(1+x)/(1-8*x), {x, 0, 25}], x] (* Vincenzo Librandi, Dec 10 2012 *)
PROG
(Magma) [1] cat [9*8^(n-1): n in [1..25]]; // Vincenzo Librandi, Dec 11 2012
(PARI) a(n)=if(n, 9*8^n/8, 1) \\ Charles R Greathouse IV, Mar 22 2016
(Sage) k=9; [1]+[k*(k-1)^(n-1) for n in (1..25)] # G. C. Greubel, Sep 24 2019
(GAP) k:=9;; Concatenation([1], List([1..25], n-> k*(k-1)^(n-1) )); # G. C. Greubel, Sep 24 2019
CROSSREFS
Cf. A003945.
Sequence in context: A170594 A170642 A170690 * A252702 A033135 A127053
KEYWORD
nonn,easy
EXTENSIONS
Edited by N. J. A. Sloane, Dec 04 2009
STATUS
approved