[go: up one dir, main page]

login
Search: a063376 -id:a063376
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^n + 1.
(Formerly M0717 N0266)
+10
842
2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
OFFSET
0,1
COMMENTS
Same as Pisot sequence L(2,3).
Length of the continued fraction for Sum_{k=0..n} 1/3^(2^k). - Benoit Cloitre, Nov 12 2003
See also A004119 for a(n) = 2a(n-1)-1 with first term = 1. - Philippe Deléham, Feb 20 2004
From the second term on (n>=1), in base 2, these numbers present the pattern 1000...0001 (with n-1 zeros), which is the "opposite" of the binary 2^n-2: (0)111...1110 (cf. A000918). - Alexandre Wajnberg, May 31 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)* charpoly(A,3). - Milan Janjic, Jan 27 2010
First differences of A006127. - Reinhard Zumkeller, Apr 14 2011
The odd prime numbers in this sequence form A019434, the Fermat primes. - David W. Wilson, Nov 16 2011
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... . - R. J. Mathar, Aug 10 2012
Is the mentioned Pisano period lengths (see above) the same as A007733? - Omar E. Pol, Aug 10 2012
Only positive integers that are not 1 mod (2k+1) for any k>1. - Jon Perry, Oct 16 2012
For n >= 1, a(n) is the total length of the segments of the Hilbert curve after n iterations. - Kival Ngaokrajang, Mar 30 2014
Frénicle de Bessy (1657) proved that a(3) = 9 is the only square in this sequence. - Charles R Greathouse IV, May 13 2014
a(n) is the number of distinct possible sums made with at most two elements in {1,...,a(n-1)} for n > 0. - Derek Orr, Dec 13 2014
For n > 0, given any set of a(n) lattice points in R^n, there exist 2 distinct members in this set whose midpoint is also a lattice point. - Melvin Peralta, Jan 28 2017
Also the number of independent vertex sets, irredundant sets, and vertex covers in the (n+1)-star graph. - Eric W. Weisstein, Aug 04 and Sep 21 2017
Also the number of maximum matchings in the 2(n-1)-crossed prism graph. - Eric W. Weisstein, Dec 31 2017
Conjecture: For any integer n >= 0, a(n) is the permanent of the (n+1) X (n+1) matrix with M(j, k) = -floor((j - k - 1)/(n + 1)). This conjecture is inspired by the conjecture of Zhi-Wei Sun in A036968. - Peter Luschny, Sep 07 2021
REFERENCES
Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
Bartomeu Fiol, Jairo Martínez-Montoya, and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris.
Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Eric Weisstein's World of Mathematics, Crossed Prism Graph.
Eric Weisstein's World of Mathematics, Cunningham Number.
Eric Weisstein's World of Mathematics, Fermat-Lucas Number.
Eric Weisstein's World of Mathematics, Hilbert curve.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Irredundant Set.
Eric Weisstein's World of Mathematics, Matching Number.
Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence.
Eric Weisstein's World of Mathematics, Star Graph.
Eric Weisstein's World of Mathematics, Vertex Cover.
FORMULA
a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).
G.f.: (2-3*x)/((1-x)*(1-2*x)).
First differences of A052944. - Emeric Deutsch, Mar 04 2004
a(0) = 1, then a(n) = (Sum_{i=0..n-1} a(i)) - (n-2). - Gerald McGarvey, Jul 10 2004
Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A127904(n+1) for n>0. - Reinhard Zumkeller, Feb 05 2007
Equals binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = A000079(n)+1. - Omar E. Pol, May 18 2008
E.g.f.: exp(x) + exp(2*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A024036(n)/A000225(n). - Reinhard Zumkeller, Feb 14 2009
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)
a(n) is the a(n-1)-th odd number for n >= 1. - Jaroslav Krizek, Apr 25 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n)*A000225(n) = A000225(2*n).
a(n) = A173786(n,0). (End)
If p[i]=Fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n+2) = a(n) + a(n+1) + A000225(n). - Ivan N. Ianakiev, Jun 24 2012
a(A006521(n)) mod A006521(n) = 0. - Reinhard Zumkeller, Jul 17 2014
a(n) = 3*A007583((n-1)/2) for n odd. - Eric W. Weisstein, Jul 17 2017
Sum_{n>=0} 1/a(n) = A323482. - Amiram Eldar, Nov 11 2020
MAPLE
A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a := n -> add(binomial(n, k)*bernoulli(n-k, 1)*2^(k+1)/(k+1), k=0..n); # Peter Luschny, Apr 20 2009
MATHEMATICA
Table[2^n + 1, {n, 0, 33}]
2^Range[0, 20] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {2, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
PROG
(PARI) a(n)=2^n+1
(PARI) first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
(Haskell)
a000051 = (+ 1) . a000079
a000051_list = iterate ((subtract 1) . (* 2)) 2
-- Reinhard Zumkeller, May 03 2012
(Python)
def A000051(n): return (1<<n)|1 if n else 2 # Chai Wah Wu, Dec 21 2022
CROSSREFS
Apart from the initial 1, identical to A094373.
See A008776 for definitions of Pisot sequences.
Column 2 of array A103438.
Cf. A007583 (a((n-1)/2)/3 for odd n).
KEYWORD
nonn,easy
STATUS
approved
a(n) = 3^n + 1.
+10
107
2, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050, 177148, 531442, 1594324, 4782970, 14348908, 43046722, 129140164, 387420490, 1162261468, 3486784402, 10460353204, 31381059610, 94143178828, 282429536482, 847288609444, 2541865828330, 7625597484988
OFFSET
0,1
COMMENTS
Companion numbers to A003462.
a(n) = A024101(n)/A024023(n). - Reinhard Zumkeller, Feb 14 2009
Mahler exhibits this sequence with n>=2 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A005836 and x^2 belong to A125293. - Michel Marcus, Nov 12 2012
a(n-1) is the number of n-digit base 3 numbers that have an even number of digits 0. - Yifan Xie, Jul 13 2024
REFERENCES
Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 148 and 220, Problem 191.
P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, pp. 35-36, 53.
LINKS
T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq 5.
Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
Burkard Polster, Special numbers in 3-coloring of Pascal's triangle, Mathologer video (2019).
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
D. Suprijanto and I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217.
Eric Weisstein's World of Mathematics, Lucas Sequence
FORMULA
a(n) = 3*a(n-1) - 2 = 4*a(n-1) - 3*a(n-2). (Lucas sequence, with A003462, associated to the pair (4, 3).)
G.f.: 2*(1-2*x)/((1-x)*(1-3*x)). Inverse binomial transforms yields 2,2,4,8,16,... i.e., A000079 with the first entry changed to 2. Binomial transform yields A063376 without A063376(-1). - R. J. Mathar, Sep 05 2008
E.g.f.: exp(x) + exp(3*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A279396(n+3,3). - Wolfdieter Lang, Jan 10 2017
a(n) = 2*A007051(n). - R. J. Mathar, Apr 07 2022
EXAMPLE
a(3)=28 because 4*a(2)-3*a(1)=4*10-3*4=28 (28 is also 3^3 + 1).
G.f. = 2 + 4*x + 10*x^2 + 28*x^3 + 82*x^4 + 244*x^5 + 730*x^5 + ...
MAPLE
ZL:= [S, {S=Union(Sequence(Z), Sequence(Union(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](ZL, size=n), n=0..25); # Zerinvary Lajos, Jun 19 2008
g:=1/(1-3*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+1, n=0..31); # Zerinvary Lajos, Jan 09 2009
MATHEMATICA
Table[3^n + 1, {n, 0, 24}]
PROG
(PARI) a(n) = 3^n + 1
(PARI) Vec(2*(1-2*x)/((1-x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Nov 15 2015
(Sage) [lucas_number2(n, 4, 3) for n in range(27)] # Zerinvary Lajos, Jul 08 2008
(Sage) [sigma(3, n) for n in range(27)] # Zerinvary Lajos, Jun 04 2009
(Sage) [3^n+1 for n in range(30)] # Bruno Berselli, Jan 11 2017
(Magma) [3^n+1: n in [0..30]]; // Vincenzo Librandi, Jan 11 2017
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Rick L. Shepherd, Feb 13 2002
STATUS
approved
a(n) = 2^n + 3^n.
(Formerly M1444)
+10
91
2, 5, 13, 35, 97, 275, 793, 2315, 6817, 20195, 60073, 179195, 535537, 1602515, 4799353, 14381675, 43112257, 129271235, 387682633, 1162785755, 3487832977, 10462450355, 31385253913, 94151567435, 282446313697, 847322163875
OFFSET
0,1
REFERENCES
L. B. W. Jolley, Summation of Series, Dover Publications, 1961, p. 14.
D. E. Knuth, The Art of Computer Programming. Addison-Wesley, Reading, MA, Vol. 1, p. 92.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
I. Amburg, K. Dasaratha, L. Flapan, T. Garrity, C. Lee, C. Mihailak, N. Neumann-Chun, S. Peluse, and M. Stoffregen, Stern Sequences for a Family of Multidimensional Continued Fractions: TRIP-Stern Sequences, arXiv:1509.05239 [math.CO], 2015-2017.
FORMULA
E.g.f.: exp(2*x)*(1+exp(x)).
G.f.: (2-5*x)/((1-2*x)*(1-3*x)).
a(n) = 5*a(n-1) - 6*a(n-2).
Sum_{j=0..n-1} a(j) = (1/2)*(3^n - 1) + (2^n - 1). [Jolley] - Gary W. Adamson, Dec 20 2006
Equals double binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
If p[i] = Fibonacci(2i-5) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n) = 2*a(n-1) + 3^(n-1), with a(0)=2. - Vincenzo Librandi, Nov 18 2010
a(n) = A001550(n) - 1 = A000079(n) + A000244(n). - Reinhard Zumkeller, Mar 01 2012
MAPLE
A007689:=n->2^n + 3^n: seq(A007689(n), n=0..50); # Wesley Ivan Hurt, Jan 24 2017
MATHEMATICA
Table[2^n + 3^n, {n, 0, 25}]
a=2; Numerator[Table[a=2*a-((a+1)/2), {n, 0, 7!}]] (*10 times (or more) faster for large numbers.*) (* Vladimir Joseph Stephan Orlovsky, Apr 19 2010 *)
LinearRecurrence[{5, -6}, {2, 5}, 30] (* nearly 20 times faster than the above program for large numbers. *) (* Harvey P. Dale, Oct 20 2013 *)
PROG
(Sage) [lucas_number2(n, 5, 6)for n in range(0, 27)] # Zerinvary Lajos, Jul 08 2008
(PARI) a(n)=2^n+3^n \\ Charles R Greathouse IV, Jun 15 2011
(Haskell)
a007689 n = a000079 n + a000244 n -- Reinhard Zumkeller, Apr 28 2013
(Magma) [2^n+3^n: n in [0..30]]; // G. C. Greubel, Mar 11 2023
CROSSREFS
For odd-indexed members divided by 5 see A096951.
Binomial transform of A000051.
Cf. A074600 - A074624, A082101 (primes).
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Michael Somos, Jun 10 2000
STATUS
approved
a(n) = 4^n + 1.
+10
87
2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
OFFSET
0,1
COMMENTS
The sequence is a Lucas sequence V(P,Q) with P = 5 and Q = 4, so if n is a prime number, then V_n(5,4) - 5 is divisible by n. The smallest pseudoprime q which divides V_q(5,4) - 5 is 15.
Also the edge cover number of the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 20 2017
First bisection of A000051, A049332, A052531 and A014551. - Klaus Purath, Sep 23 2020
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences 8(10) (2019).
Eric Weisstein's World of Mathematics, Edge Cover Number.
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
FORMULA
a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)
MAPLE
spec := [S, {S=Union(Sequence(Union(Z, Z, Z, Z)), Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30);
A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
MATHEMATICA
Table[4^n + 1, {n, 0, 30}]
(* From Eric W. Weisstein, Sep 20 2017 *)
4^Range[0, 30] + 1
LinearRecurrence[{5, -4}, {2, 5}, 30]
CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
PROG
(Magma) [4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
(Sage) [4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
(GAP) List([0..30], n-> 4^n+1) # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved
Number of (n-1)-bead black-white reversible strings; also binary grids; also row sums of Losanitsch's triangle A034851; also number of caterpillar graphs on n+2 vertices.
(Formerly M0771)
+10
81
1, 2, 3, 6, 10, 20, 36, 72, 136, 272, 528, 1056, 2080, 4160, 8256, 16512, 32896, 65792, 131328, 262656, 524800, 1049600, 2098176, 4196352, 8390656, 16781312, 33558528, 67117056, 134225920, 268451840, 536887296, 1073774592, 2147516416, 4295032832
OFFSET
1,2
COMMENTS
Equivalently, walks on triangle, visiting n+2 vertices, so length n+1, n "corners"; the symmetry group is S3, reversing a walk does not count as different. Walks are not self-avoiding. - Colin Mallows
Slavik V. Jablan observes that this is also the number of rational knots and links with n+2 crossings (cf. A018240). See reference. [Corrected by Andrey Zabolotskiy, Jun 18 2020]
Number of bit strings of length (n-1), not counting strings which are the end-for-end reversal or the 0-for-1 reversal of each other as different. - Carl Witty (cwitty(AT)newtonlabs.com), Oct 27 2001
The formula given in page 1095 of the Balasubramanian reference can be used to derive this sequence. - Parthasarathy Nambi, May 14 2007
Also number of compositions of n up to direction, where a composition is considered equivalent to its reversal, see example. - Franklin T. Adams-Watters, Oct 24 2009
Number of normally non-isomorphic realizations of the associahedron of type I starting with dimension 2 in Ceballos et al. - Tom Copeland, Oct 19 2011
Number of fibonacenes with n+2 hexagons. See the Balaban and the Dobrynin references. - Emeric Deutsch, Apr 21 2013
From the point of view of binary grids, it is a (1,n)-rectangular grid. A225826 to A225834 are the numbers of binary pattern classes in the (m,n)-rectangular grid, 1 < m < 11. - Yosu Yurramendi, May 19 2013
Number of n-vertex difference graphs (bipartite 2K_2-free graphs) [Peled & Sun, Thm. 9]. - Falk Hüffner, Jan 10 2016
The offset should be 0, since the first row of A034851 is row 0. The name would then be: "Number of n bead...". - Daniel Forgues, Jul 26 2018
a(n) is the number of non-isomorphic generalized rigid ladders with n cells. A generalized rigid ladder with n cells is a graph with vertex set is the union of {u_0, u_1, ..., u_n} and {v_0, v_1, ..., v_n}, and for every 0 <= i <= n-1, the edges are of the form {u_i,u_i+1}, {v_i, v_i+1}, {u_i,v_i} and either {u_i,v_i+1} or {u_i+1,v_i}. - Christian Barrientos, Jul 29 2018
Also number of non-isomorphic stairs with n+1 cells. A stair is a snake polyomino allowing only two directions for adjacent cells: east and north. - Christian Barrientos and Sarah Minion, Jul 29 2018
From Robert A. Russell, Oct 28 2018: (Start)
There are two different unoriented row colorings using two colors that give us very similar results here, a difference of one in the offset. In an unoriented row, chiral pairs are counted as one.
a(n) is the number of color patterns (set partitions) of an unoriented row of length n using two or fewer colors (subsets). Two color patterns are equivalent if the colors are permutable.
a(n+1) is the number of ways to color an unoriented row of length n using two noninterchangeable colors (one need not use both colors).
See the examples below of these two different colorings. (End)
Also arises from the enumeration of types of based polyhedra with exactly two triangular faces [Rademacher]. - N. J. A. Sloane, Apr 24 2020
a(n) is the number of (unlabeled) 2-paths with n+4 vertices. (A 2-path with order n at least 4 can be constructed from a 3-clique by iteratively adding a new 2-leaf (vertex of degree 2) adjacent to an existing 2-clique containing an existing 2-leaf.) - Allan Bickle, Apr 05 2022
a(n) is the number of caterpillars with a perfect matching and order 2n+2. - Christian Barrientos, Sep 12 2023
a(n) is also the number of distinct planar embeddings of the (n+2)-centipede graph (up to at least n=8 and likely for all larger n). - Eric W. Weisstein, May 21 2024
a(n) is also the number of distinct planar embeddings of the 2 X (n+2) grid graph i.e., the (n+2)-ladder graph. - Eric W. Weisstein, May 21 2024
REFERENCES
K. Balasubramanian, "Combinatorial Enumeration of Chemical Isomers", Indian J. Chem., (1978) vol. 16B, pp. 1094-1096. See page 1095.
Wayne M. Dymacek, Steinhaus graphs. Proceedings of the Tenth Southeastern Conference on Combinatorics, Graph Theory and Computing (Florida Atlantic Univ., Boca Raton, Fla., 1979), pp. 399--412, Congress. Numer., XXIII-XXIV, Utilitas Math., Winnipeg, Man., 1979. MR0561065 (81f:05120)
Jablan S. and Sazdanovic R., LinKnot: Knot Theory by Computer, World Scientific Press, 2007.
Joseph S. Madachy: Madachy's Mathematical Recreations. New York: Dover Publications, Inc., 1979, p. 46 (first publ. by Charles Scribner's Sons, New York, 1966, under the title: Mathematics on Vacation)
M. R. Nester (1999). Mathematical investigations of some plant interaction designs. PhD Thesis. University of Queensland, Brisbane, Australia. [See A056391 for pdf file of Chap. 2.]
C. A. Pickover, Keys to Infinity, Wiley 1995, p. 75.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Joerg Arndt, Matters Computational (The Fxtbook), pp. 151 and 733.
Andrei Asinowski and Alon Regev, Triangulations with Few Ears: Symmetry Classes and Disjointness, Integers 16 (2016), #A5.
Allan Bickle, How to Count k-Paths, J. Integer Sequences, 25 (2022) Article 22.5.6.
Allan Bickle, A Survey of Maximal k-degenerate Graphs and k-Trees, Theory and Applications of Graphs 0 1 (2024) Article 5.
A. P. Burger, M. Van Der Merwe, and J. H. Van Vuuren, An asymptotic analysis of the evolutionary spatial prisoner’s dilemma on a path, Discrete Appl. Math. 160, No. 15, 2075-2088 (2012), Table 3.1.
C. Ceballos, F. Santos, and G. Ziegler, Many Non-equivalent Realizations of the Associahedron, arXiv:1109.5544 [math.MG], 2011-2013; pp. 15 and 26.
Jacob Crabtree, Another Enumeration of Caterpillar Trees, arXiv:1810.11744 [math.CO], 2018.
S. J. Cyvin, B. N. Cyvin, J. Brunvoll, E. Brendsdal, Zhang Fuji, Guo Xiaofeng, and R. Tosic, Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
Miroslav Marinov Dimitrov, Designing Boolean Functions and Digital Sequences for Cryptology and Communications, Ph. D. Dissertation, Bulgarian Acad. Sci. (Sofia, Bulgaria 2023).
A. A. Dobrynin, On the Wiener index of fibonacenes, MATCH: Commun. Math. Comput. Chem, 64 (2010), 707-726.
J. Eckhoff, Extremal interval graphs, J. Graph Theory 17 1 (1993), 117-127.
Sahir Gill, Bounds for Region Containing All Zeros of a Complex Polynomial, International Journal of Mathematical Analysis (2018), Vol. 12, No. 7, 325-333.
T. A. Gittings, Minimum braids: a complete invariant of knots and links, arXiv:math/0401051 [math.GT], 2004. - N. J. A. Sloane, Jan 18 2013
Frank Harary and Allen J. Schwenk, The number of caterpillars, Discrete Mathematics, Volume 6, Issue 4, 1973, 359-365.
N. Hoffman, Binary grids and a related counting problem, Two-Year College Math. J. 9 (1978), 267-272.
S. V. Jablan, Geometry of Links, XII Yugoslav Geometric Seminar (Novi Sad, 1998), Novi Sad J. Math. 29 (1999), no. 3, 121-139.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
Isaac B. Michael and M. R. Sepanski, Net regular signed trees, Australasian Journal of Combinatorics, Volume 66(2) (2016), 192-204.
U. N. Peled and F. Sun, Enumeration of difference graphs, Discrete Appl. Math., 60 (1995), 311-318.
Paulo Renato da Costa Pereira, Lilian Markenzon and Oswaldo Vernet, A clique-difference encoding scheme for labelled k-path graphs, Discrete Appl. Math. 156 (2008), 3216-3222.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Hans Rademacher, On the number of certain types of polyhedra, Illinois Journal of Mathematics 9.3 (1965): 361-380. Reprinted in Coll. Papers, Vol II, MIT Press, 1974, pp. 544-564. See Theorem 8, Eq. 14.3.
A. Regev, Remarks on two-eared triangulations, arXiv preprint arXiv:1309.0743 [math.CO], 2013-2014.
Suthee Ruangwises, The Landscape of Computing Symmetric n-Variable Functions with 2n Cards, arXiv:2306.13551 [cs.CR], 2023.
N. J. A. Sloane, Classic Sequences
R. A. Sulanke, Moments of generalized Motzkin paths, J. Integer Sequences, Vol. 3 (2000), Article #00.1.1.
Eric Weisstein's World of Mathematics, Barker Code.
Eric Weisstein's World of Mathematics, Bishops Problem.
Eric Weisstein's World of Mathematics, Caterpillar Graph.
Eric Weisstein's World of Mathematics, Centipede Graph.
Eric Weisstein's World of Mathematics, Grid Graph.
Eric Weisstein's World of Mathematics, Ladder Graph.
Eric Weisstein's World of Mathematics, Losanitsch's Triangle.
Eric Weisstein's World of Mathematics, Planar Embedding.
A. Yajima, How to calculate the number of stereoisomers of inositol-homologs, Bull. Chem. Soc. Jpn. 87 (2014), 1260-1264; see Tables 1 and 2 (and text). - N. J. A. Sloane, Mar 26 2015
FORMULA
a(n) = 2^(n-2) + 2^(floor(n/2) - 1).
G.f.: -x*(-1 + 3*x^2) / ( (2*x - 1)*(2*x^2 - 1) ). - Simon Plouffe in his 1992 dissertation
G.f.: x*(1+2*x)*(1-3*x^2)/((1-4*x^2)*(1-2*x^2)), not reduced. - Wolfdieter Lang, May 08 2001
a(n) = 6*a(n - 2) - 8*a(n - 4). a(2*n) = A063376(n - 1) = 2*a(2*n - 1); a(2*n + 1) = A007582(n). - Henry Bottomley, Jul 14 2001
a(n+2) = 2*a(n+1) - A077957(n) with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Oct 24 2008
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Jaume Oliver Lafont, Dec 05 2008
Union of A007582 and A161168. Union of A007582 and A063376. - Jaroslav Krizek, Aug 14 2009
G.f.: G(0); G(k) = 1 + 2*x/(1 - x*(1+2^(k+1))/(x*(1+2^(k+1)) + (1+2^k)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2011
a(2*n) = 2*a(2*n-1) and a(2*n+1) = a(2*n) + 4^(n-1) with a(1) = 1. - Johannes W. Meijer, Aug 26 2013
From Robert A. Russell, Oct 28 2018: (Start)
a(n) = (A131577(n) + A016116(n)) / 2 = A131577(n) - A122746(n-3) = A122746(n-3) + A016116(n), for set partitions with up to two subsets.
a(n+1) = (A000079(n) + A060546(n)) / 2 = A000079(n) - A122746(n-2) = A122746(n-2) + A060546(n), for two colors that do not permute.
a(n) = Sum_{j=0..k} (S2(n,j) + Ach(n,j)) / 2, where k=2 is the maximum number of colors, S2(n,k) is the Stirling subset number A008277, and Ach(n,k) = [n>=0 & n<2 & n==k] + [n>1]*(k*Ach(n-2,k) + Ach(n-2,k-1) + Ach(n-2,k-2)).
a(n+1) = (k^n + k^ceiling(n/2)) / 2, where k=2 is number of colors we can use. (End)
E.g.f.: (cosh(2*x) + 2*cosh(sqrt(2)*x) + sinh(2*x) + sqrt(2)*sinh(sqrt(2)*x) - 3)/4. - Stefano Spezia, Jun 01 2022
EXAMPLE
a(5) = 10 because there are 16 compositions of 5 (shown as <vectors>) but only 10 equivalence classes (shown as {sets}): {<5>}, {<4,1>,<1,4>}, {<3,2>,<2,3>}, {<3,1,1>,<1,1,3>}, {<1,3,1>},{<2,2,1>,<1,2,2>}, {<2,1,2>}, {<2,1,1,1>,<1,1,1,2>}, {<1,2,1,1>,<1,1,2,1>}, {<1,1,1,1,1>}. - Geoffrey Critzer, Nov 02 2012
G.f. = x + 2*x^2 + 3*x^3 + 6*x^4 + 10*x^5 + 20*x^6 + 36*x^7 + 72*x^8 + ... - Michael Somos, Jun 24 2018
From Robert A. Russell, Oct 28 2018: (Start)
For a(5)=10, the 4 achiral patterns (set partitions) are AAAAA, AABAA, ABABA, and ABBBA. The 6 chiral pairs are AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The colors are permutable.
For n=4 and a(n+1)=10, the 4 achiral colorings are AAAA, ABBA, BAAB, and BBBB. The 6 achiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. The colors are not permutable. (End)
MAPLE
A005418 := n->2^(n-2)+2^(floor(n/2)-1): seq(A005418(n), n=1..34);
MATHEMATICA
LinearRecurrence[{2, 2, -4}, {1, 2, 3}, 40] (* or *) Table[2^(n-2)+2^(Floor[n/2]-1), {n, 40}] (* Harvey P. Dale, Jan 18 2012 *)
PROG
(Haskell)
a005418 n = sum $ a034851_row (n - 1) -- Reinhard Zumkeller, Jan 14 2012
(PARI) A005418(n)= 2^(n-2) + 2^(n\2-1); \\ Joerg Arndt, Sep 16 2013
(Python)
def A005418(n): return 1 if n == 1 else 2**((m:= n//2)-1)*(2**(n-m-1)+1) # Chai Wah Wu, Feb 03 2022
CROSSREFS
Column 2 of A320750 (set partitions).
Cf. A131577 (oriented), A122746(n-3) (chiral), A016116 (achiral), for set partitions with up to two subsets.
Column 2 of A277504, offset by one (colors not permutable).
Cf. A000079 (oriented), A122746(n-2) (chiral), and A060546 (achiral), for a(n+1).
KEYWORD
nonn,easy,nice,changed
STATUS
approved
a(n) = 5^n + 1.
+10
58
2, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
OFFSET
0,1
COMMENTS
a(n) is the deficiency of 3*5^n (see A033879). - Patrick J. McNab, May 28 2017
LINKS
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
FORMULA
a(n) = 5*a(n-1) - 4 with a(0) = 2.
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-5*x) = (2-6*x)/((1-x)*(1-5*x)).
E.g.f.: exp(x) + exp(5*x). (End)
a(n) = A279396(n+5,5). - Wolfdieter Lang, Jan 10 2017
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = A000351(n) + 1.
a(n) = 2*A034478(n). (End)
EXAMPLE
G.f. = 2 + 6*x + 26*x^2 + 126*x^3 + 626*x^4 + 3126*x^5 + 15626*x^6 + ...
MATHEMATICA
Table[5^n + 1, {n, 0, 25}]
LinearRecurrence[{6, -5}, {2, 6}, 30] (* Harvey P. Dale, Jul 29 2015 *)
PROG
(Sage) [lucas_number2(n, 6, 5) for n in range(25)] # Zerinvary Lajos, Jul 08 2008
(Sage) [sigma(5, n) for n in range(25)] # Zerinvary Lajos, Jun 04 2009
(Sage) [5^n+1 for n in range(30)] # Bruno Berselli, Jan 11 2017
(PARI) a(n)=5^n+1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [5^n+1: n in [0..30]]; // Vincenzo Librandi, Jan 11 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(n) = 2^n + 5^n.
+10
57
2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
OFFSET
0,1
COMMENTS
Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016
REFERENCES
Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.
LINKS
D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, pp. 2211-2217.
FORMULA
a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009
MATHEMATICA
Table[2^n + 5^n, {n, 0, 25}]
LinearRecurrence[{7, -10}, {2, 7}, 30] (* Harvey P. Dale, May 09 2019 *)
PROG
(Magma) [2^n + 5^n: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=2^n+5^n \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Aug 25 2002
STATUS
approved
a(n) = 7^n + 1.
+10
49
2, 8, 50, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 282475250, 1977326744, 13841287202, 96889010408, 678223072850, 4747561509944, 33232930569602, 232630513987208, 1628413597910450, 11398895185373144
OFFSET
0,1
FORMULA
a(n) = 7*a(n-1) - 6.
a(n) = 8*a(n-1) - 7*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-7*x).
E.g.f.: exp(x) + exp(7*x). (End)
a(n) = 2*A034494(n). - G. C. Greubel, Mar 11 2023
MATHEMATICA
7^Range[0, 30] +1
LinearRecurrence[{8, -7}, {2, 8}, 20] (* Harvey P. Dale, Aug 18 2018 *)
PROG
(Sage) [sigma(7, n) for n in range(0, 20)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=7^n+1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [7^n +1: n in [0..30]]; // G. C. Greubel, Mar 11 2023
KEYWORD
easy,nonn
STATUS
approved
a(n) = 8^n + 1.
+10
49
2, 9, 65, 513, 4097, 32769, 262145, 2097153, 16777217, 134217729, 1073741825, 8589934593, 68719476737, 549755813889, 4398046511105, 35184372088833, 281474976710657, 2251799813685249, 18014398509481985, 144115188075855873
OFFSET
0,1
COMMENTS
Any number of the form b^k+1 is composite for b>2 and k odd since b+1 algebraically divides b^k+1. - Robert G. Wilson v, Aug 25 2002
REFERENCES
D. M. Burton, Elementary Number Theory, Allyn and Bacon, Boston, MA, 1976, pp. 51.
G. Everest, A. van der Poorten, I. Shparlinski and T. Ward, Recurrence Sequences, Amer. Math. Soc., 2003; see esp. p. 255.
FORMULA
a(n) = 8a(n-1)-7 = A001018(n)+1 = 9a(n-1) - 8a(n-2).
G.f.: -(-2+9*x)/(-1+x)/(-1+8*x). - R. J. Mathar, Nov 16 2007
E.g.f.: e^x+e^(8*x). - Mohammad K. Azarian, Jan 02 2009
MATHEMATICA
Table[8^n + 1, {n, 0, 20}]
LinearRecurrence[{9, -8}, {2, 9}, 20] (* Harvey P. Dale, Jan 24 2019 *)
PROG
(PARI) for(n=0, 22, print(8^n+1)).
(Magma) [8^n + 1: n in [0..40] ]; // Vincenzo Librandi, Apr 30 2011
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 22 2001
STATUS
approved
a(n) = 9^n + 1.
+10
46
2, 10, 82, 730, 6562, 59050, 531442, 4782970, 43046722, 387420490, 3486784402, 31381059610, 282429536482, 2541865828330, 22876792454962, 205891132094650, 1853020188851842, 16677181699666570, 150094635296999122
OFFSET
0,1
FORMULA
a(n) = 9*a(n-1) - 8 = A001019(n) + 1 = 10*a(n-1) - 9*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-9*x).
E.g.f.: e^x + e^(9*x). (End)
MATHEMATICA
Table[9^n + 1, {n, 0, 20}]
LinearRecurrence[{10, -9}, {2, 10}, 20] (* Harvey P. Dale, May 30 2013 *)
PROG
(Magma) [9^n + 1: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=9^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 22 2001
STATUS
approved

Search completed in 0.032 seconds