[go: up one dir, main page]

login
Search: a062395 -id:a062395
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^n + 1.
(Formerly M0717 N0266)
+10
843
2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049, 4097, 8193, 16385, 32769, 65537, 131073, 262145, 524289, 1048577, 2097153, 4194305, 8388609, 16777217, 33554433, 67108865, 134217729, 268435457, 536870913, 1073741825, 2147483649, 4294967297, 8589934593
OFFSET
0,1
COMMENTS
Same as Pisot sequence L(2,3).
Length of the continued fraction for Sum_{k=0..n} 1/3^(2^k). - Benoit Cloitre, Nov 12 2003
See also A004119 for a(n) = 2a(n-1)-1 with first term = 1. - Philippe Deléham, Feb 20 2004
From the second term on (n>=1), in base 2, these numbers present the pattern 1000...0001 (with n-1 zeros), which is the "opposite" of the binary 2^n-2: (0)111...1110 (cf. A000918). - Alexandre Wajnberg, May 31 2005
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=5, (i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=(-1)^(n-1)* charpoly(A,3). - Milan Janjic, Jan 27 2010
First differences of A006127. - Reinhard Zumkeller, Apr 14 2011
The odd prime numbers in this sequence form A019434, the Fermat primes. - David W. Wilson, Nov 16 2011
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... . - R. J. Mathar, Aug 10 2012
Is the mentioned Pisano period lengths (see above) the same as A007733? - Omar E. Pol, Aug 10 2012
Only positive integers that are not 1 mod (2k+1) for any k>1. - Jon Perry, Oct 16 2012
For n >= 1, a(n) is the total length of the segments of the Hilbert curve after n iterations. - Kival Ngaokrajang, Mar 30 2014
Frénicle de Bessy (1657) proved that a(3) = 9 is the only square in this sequence. - Charles R Greathouse IV, May 13 2014
a(n) is the number of distinct possible sums made with at most two elements in {1,...,a(n-1)} for n > 0. - Derek Orr, Dec 13 2014
For n > 0, given any set of a(n) lattice points in R^n, there exist 2 distinct members in this set whose midpoint is also a lattice point. - Melvin Peralta, Jan 28 2017
Also the number of independent vertex sets, irredundant sets, and vertex covers in the (n+1)-star graph. - Eric W. Weisstein, Aug 04 and Sep 21 2017
Also the number of maximum matchings in the 2(n-1)-crossed prism graph. - Eric W. Weisstein, Dec 31 2017
Conjecture: For any integer n >= 0, a(n) is the permanent of the (n+1) X (n+1) matrix with M(j, k) = -floor((j - k - 1)/(n + 1)). This conjecture is inspired by the conjecture of Zhi-Wei Sun in A036968. - Peter Luschny, Sep 07 2021
REFERENCES
Paul Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. R. Berlekamp, A contribution to mathematical psychometrics, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
Massimiliano Fasi and Gian Maria Negri Porzio, Determinants of Normalized Bohemian Upper Hessemberg Matrices, University of Manchester (England, 2019).
Bartomeu Fiol, Jairo Martínez-Montoya, and Alan Rios Fukelman, The planar limit of N=2 superconformal field theories, arXiv:2003.02879 [hep-th], 2020.
Bernard Frénicle de Bessy, Solutio duorum problematum circa numeros cubos et quadratos, (1657). Bibliothèque Nationale de Paris.
Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Eric Weisstein's World of Mathematics, Crossed Prism Graph.
Eric Weisstein's World of Mathematics, Cunningham Number.
Eric Weisstein's World of Mathematics, Fermat-Lucas Number.
Eric Weisstein's World of Mathematics, Hilbert curve.
Eric Weisstein's World of Mathematics, Independent Vertex Set.
Eric Weisstein's World of Mathematics, Irredundant Set.
Eric Weisstein's World of Mathematics, Matching Number.
Eric Weisstein's World of Mathematics, Maximum Independent Edge Set.
Eric Weisstein's World of Mathematics, Rudin-Shapiro Sequence.
Eric Weisstein's World of Mathematics, Star Graph.
Eric Weisstein's World of Mathematics, Vertex Cover.
FORMULA
a(n) = 2*a(n-1) - 1 = 3*a(n-1) - 2*a(n-2).
G.f.: (2-3*x)/((1-x)*(1-2*x)).
First differences of A052944. - Emeric Deutsch, Mar 04 2004
a(0) = 1, then a(n) = (Sum_{i=0..n-1} a(i)) - (n-2). - Gerald McGarvey, Jul 10 2004
Inverse binomial transform of A007689. Also, V sequence in Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A127904(n+1) for n>0. - Reinhard Zumkeller, Feb 05 2007
Equals binomial transform of [2, 1, 1, 1, ...]. - Gary W. Adamson, Apr 23 2008
a(n) = A000079(n)+1. - Omar E. Pol, May 18 2008
E.g.f.: exp(x) + exp(2*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A024036(n)/A000225(n). - Reinhard Zumkeller, Feb 14 2009
From Peter Luschny, Apr 20 2009: (Start)
A weighted binomial sum of the Bernoulli numbers A027641/A027642 with A027641(1)=1 (which amounts to the definition B_{n} = B_{n}(1)).
a(n) = Sum_{k=0..n} C(n,k)*B_{n-k}*2^(k+1)/(k+1). (See also A052584.) (End)
a(n) is the a(n-1)-th odd number for n >= 1. - Jaroslav Krizek, Apr 25 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n)*A000225(n) = A000225(2*n).
a(n) = A173786(n,0). (End)
If p[i]=Fibonacci(i-4) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise, then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n+2) = a(n) + a(n+1) + A000225(n). - Ivan N. Ianakiev, Jun 24 2012
a(A006521(n)) mod A006521(n) = 0. - Reinhard Zumkeller, Jul 17 2014
a(n) = 3*A007583((n-1)/2) for n odd. - Eric W. Weisstein, Jul 17 2017
Sum_{n>=0} 1/a(n) = A323482. - Amiram Eldar, Nov 11 2020
MAPLE
A000051:=-(-2+3*z)/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation
a := n -> add(binomial(n, k)*bernoulli(n-k, 1)*2^(k+1)/(k+1), k=0..n); # Peter Luschny, Apr 20 2009
MATHEMATICA
Table[2^n + 1, {n, 0, 33}]
2^Range[0, 20] + 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {2, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
PROG
(PARI) a(n)=2^n+1
(PARI) first(n) = Vec((2 - 3*x)/((1 - x)*(1 - 2*x)) + O(x^n)) \\ Iain Fox, Dec 31 2017
(Haskell)
a000051 = (+ 1) . a000079
a000051_list = iterate ((subtract 1) . (* 2)) 2
-- Reinhard Zumkeller, May 03 2012
(Python)
def A000051(n): return (1<<n)|1 if n else 2 # Chai Wah Wu, Dec 21 2022
CROSSREFS
Apart from the initial 1, identical to A094373.
See A008776 for definitions of Pisot sequences.
Column 2 of array A103438.
Cf. A007583 (a((n-1)/2)/3 for odd n).
KEYWORD
nonn,easy
STATUS
approved
a(n) = 3^n + 1.
+10
107
2, 4, 10, 28, 82, 244, 730, 2188, 6562, 19684, 59050, 177148, 531442, 1594324, 4782970, 14348908, 43046722, 129140164, 387420490, 1162261468, 3486784402, 10460353204, 31381059610, 94143178828, 282429536482, 847288609444, 2541865828330, 7625597484988
OFFSET
0,1
COMMENTS
Companion numbers to A003462.
a(n) = A024101(n)/A024023(n). - Reinhard Zumkeller, Feb 14 2009
Mahler exhibits this sequence with n>=2 as a proof that there exists an infinite number of x coprime to 3, such that x belongs to A005836 and x^2 belong to A125293. - Michel Marcus, Nov 12 2012
a(n-1) is the number of n-digit base 3 numbers that have an even number of digits 0. - Yifan Xie, Jul 13 2024
REFERENCES
Knuth, Donald E., Satisfiability, Fascicle 6, volume 4 of The Art of Computer Programming. Addison-Wesley, 2015, pages 148 and 220, Problem 191.
P. Ribenboim, The Little Book of Big Primes, Springer-Verlag, NY, 1991, pp. 35-36, 53.
LINKS
T. A. Gulliver, Divisibility of sums of powers of odd integers, Int. Math. For. 5 (2010) 3059-3066, eq 5.
Kurt Mahler, The representation of squares to the base 3, Acta Arith. Vol. 53, Issue 1 (1989), p. 99-106.
Burkard Polster, Special numbers in 3-coloring of Pascal's triangle, Mathologer video (2019).
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
D. Suprijanto and I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2211 - 2217.
Eric Weisstein's World of Mathematics, Lucas Sequence
FORMULA
a(n) = 3*a(n-1) - 2 = 4*a(n-1) - 3*a(n-2). (Lucas sequence, with A003462, associated to the pair (4, 3).)
G.f.: 2*(1-2*x)/((1-x)*(1-3*x)). Inverse binomial transforms yields 2,2,4,8,16,... i.e., A000079 with the first entry changed to 2. Binomial transform yields A063376 without A063376(-1). - R. J. Mathar, Sep 05 2008
E.g.f.: exp(x) + exp(3*x). - Mohammad K. Azarian, Jan 02 2009
a(n) = A279396(n+3,3). - Wolfdieter Lang, Jan 10 2017
a(n) = 2*A007051(n). - R. J. Mathar, Apr 07 2022
EXAMPLE
a(3)=28 because 4*a(2)-3*a(1)=4*10-3*4=28 (28 is also 3^3 + 1).
G.f. = 2 + 4*x + 10*x^2 + 28*x^3 + 82*x^4 + 244*x^5 + 730*x^5 + ...
MAPLE
ZL:= [S, {S=Union(Sequence(Z), Sequence(Union(Z, Z, Z)))}, unlabeled]: seq(combstruct[count](ZL, size=n), n=0..25); # Zerinvary Lajos, Jun 19 2008
g:=1/(1-3*z): gser:=series(g, z=0, 43): seq(coeff(gser, z, n)+1, n=0..31); # Zerinvary Lajos, Jan 09 2009
MATHEMATICA
Table[3^n + 1, {n, 0, 24}]
PROG
(PARI) a(n) = 3^n + 1
(PARI) Vec(2*(1-2*x)/((1-x)*(1-3*x)) + O(x^50)) \\ Altug Alkan, Nov 15 2015
(Sage) [lucas_number2(n, 4, 3) for n in range(27)] # Zerinvary Lajos, Jul 08 2008
(Sage) [sigma(3, n) for n in range(27)] # Zerinvary Lajos, Jun 04 2009
(Sage) [3^n+1 for n in range(30)] # Bruno Berselli, Jan 11 2017
(Magma) [3^n+1: n in [0..30]]; // Vincenzo Librandi, Jan 11 2017
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
Additional comments from Rick L. Shepherd, Feb 13 2002
STATUS
approved
a(n) = 4^n + 1.
+10
87
2, 5, 17, 65, 257, 1025, 4097, 16385, 65537, 262145, 1048577, 4194305, 16777217, 67108865, 268435457, 1073741825, 4294967297, 17179869185, 68719476737, 274877906945, 1099511627777, 4398046511105, 17592186044417
OFFSET
0,1
COMMENTS
The sequence is a Lucas sequence V(P,Q) with P = 5 and Q = 4, so if n is a prime number, then V_n(5,4) - 5 is divisible by n. The smallest pseudoprime q which divides V_q(5,4) - 5 is 15.
Also the edge cover number of the (n+1)-Sierpinski tetrahedron graph. - Eric W. Weisstein, Sep 20 2017
First bisection of A000051, A049332, A052531 and A014551. - Klaus Purath, Sep 23 2020
LINKS
Guo-Niu Han, Enumeration of Standard Puzzles, 2011. [Cached copy]
Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences 8(10) (2019).
Eric Weisstein's World of Mathematics, Edge Cover Number.
Eric Weisstein's World of Mathematics, Sierpinski Tetrahedron Graph.
FORMULA
a(n) = 4^n + 1.
a(n) = 4*a(n-1) - 3 = 5*a(n-1) - 4*a(n-2).
G.f.: (2 - 5*x)/((1 - 4*x)*(1 - x)).
E.g.f.: exp(x) + exp(4*x). - Mohammad K. Azarian, Jan 02 2009
From Klaus Purath, Sep 23 2020: (Start)
a(n) = 3*4^(n-1) + a(n-1).
a(n) = (a(n-1)^2 + 9*4^(n-2))/a(n-2).
a(n) = A178675(n) - 3. (End)
MAPLE
spec := [S, {S=Union(Sequence(Union(Z, Z, Z, Z)), Sequence(Z))}, unlabeled]: seq(combstruct[count](spec, size=n), n=0..30);
A052539:=n->4^n + 1; seq(A052539(n), n=0..30); # Wesley Ivan Hurt, Jun 12 2014
MATHEMATICA
Table[4^n + 1, {n, 0, 30}]
(* From Eric W. Weisstein, Sep 20 2017 *)
4^Range[0, 30] + 1
LinearRecurrence[{5, -4}, {2, 5}, 30]
CoefficientList[Series[(2-5x)/(1-5x+4x^2), {x, 0, 30}], x] (* End *)
PROG
(Magma) [4^n+1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=4^n+1 \\ Charles R Greathouse IV, Nov 20 2011
(Sage) [4^n+1 for n in (0..30)] # G. C. Greubel, May 09 2019
(GAP) List([0..30], n-> 4^n+1) # G. C. Greubel, May 09 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
STATUS
approved
a(-1) = 1; for n >= 0, a(n) = 2^n + 4^n = 2^n*(1 + 2^n).
+10
61
1, 2, 6, 20, 72, 272, 1056, 4160, 16512, 65792, 262656, 1049600, 4196352, 16781312, 67117056, 268451840, 1073774592, 4295032832, 17180000256, 68719738880, 274878431232, 1099512676352, 4398048608256, 17592190238720, 70368752566272
OFFSET
-1,2
COMMENTS
Counts closed walks of length 2n+2 at a vertex of the cyclic graph on 8 nodes C_8.
The count of closed walks of odd length is zero. See the array w(N,L) and triangle a(K,N) given in A199571 for the general case. - Wolfdieter Lang, Nov 08 2011
Number of monic irreducible polynomials of degree 1 in GF(2^n)[x,y]. - Max Alekseyev, Jan 23 2006
a(n) written in base 2: a(-1) = 1, a(0) = 10, a(n) for n >= 1: 110, 10100, 1001000, 100010000, ..., i.e., number 1, (n-1) times 0, number 1, n times 0 (see A163664). a(n) for n >= 0 is duplicate of A161168. a(n) for n >= 0 is a bisection of A005418. - Jaroslav Krizek, Aug 14 2009
With offset 0 = binomial transform of A122983. - Gary W. Adamson, Apr 18 2011
REFERENCES
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, Match, No. 34 (Oct 1996), pp. 109-121. See Table 4.
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
Georgia Benkart, Dongho Moon, Walks on Graphs and Their Connections with Tensor Invariants and Centralizer Algebras, arXiv preprint arXiv:1610.07837 [math.RT], 2016-2017.
J. Brunvoll, S. J. Cyvin and B. N. Cyvin, Isomer enumeration of some polygonal systems representing polycyclic conjugated hydrocarbons, J. Molec. Struct. (Theochem), 364 (1996), 1-13. (See Table 11.)
S. Capparelli, A. Del Fra, Dyck Paths, Motzkin Paths, and the Binomial Transform, Journal of Integer Sequences, 18 (2015), #15.8.5.
B. N. Cyvin et al., Isomer enumeration of unbranched catacondensed polygonal systems with pentagons and heptagons, 1996 [Annotated scanned copy of pages 118, 119 only].
T. A. Gulliver, Sums of Powers of Integers Divisible by Three, Int. J. Contemp. Math. Sciences, Vol. 7, 2012, no. 38, 1895 - 1901.
D. Suprijanto and Rusliansyah, Observation on Sums of Powers of Integers Divisible by Four, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, 2219 - 2226.
FORMULA
a(n) = Sum_{k=0..n} if((n-k) mod 4 = 0, binomial(n, 2*k), 0)}. - Paul Barry, Sep 19 2005
a(n) = 4*a(n-1) - 2^n = 6*a(n-1) - 8*a(n-2) = A001576(n) - 1 = 2*A007582(n) = A005418(2*n+2) = A002378(A000079(n)).
G.f.: 1/x + (2-6*x)/((1-2*x)*(1-4*x)).
a(n) = ceiling(2^n*(2^n + 1)), n >= -1. - Zerinvary Lajos, Jan 07 2008
E.g.f.: exp(2*x)*cosh(x)^2. - Paul D. Hanna, Oct 25 2012
E.g.f.: (1+Q(0))/4, where Q(k) = 1 + 2/( 2^k - 2*x*4^k/( 2*x*2^k + (k+1)/Q(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Dec 16 2013
EXAMPLE
a(1)=6 counts six round trips from, say, vertex no 1: 12121, 18181, 12181, 18121, 12321 and 18781. - Wolfdieter Lang, Nov 08 2011
MAPLE
seq(ceil(2^n*(2^n + 1)), n=-1..23); # Zerinvary Lajos, Jan 07 2008
MATHEMATICA
Table[2^n + 4^n, {n, 0, 25}]
PROG
(PARI) a(n)={if(n>=0, 2^n*(1 + 2^n), 1)} \\ Harry J. Smith, Aug 20 2009
(PARI) {a(n)=n!*polcoeff((1 + exp(2*x +x*O(x^n)))^2/4, n)} \\ Paul D. Hanna, Oct 25 2012
(Magma) [1] cat [2^n + 4^n : n in [0..30]]; // Wesley Ivan Hurt, Jul 03 2020
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jul 14 2001
EXTENSIONS
Entry rewritten by N. J. A. Sloane Jan 23 2006
Definition corrected to a(-1) = 1 by Harry J. Smith, Aug 20 2009
STATUS
approved
a(n) = 5^n + 1.
+10
58
2, 6, 26, 126, 626, 3126, 15626, 78126, 390626, 1953126, 9765626, 48828126, 244140626, 1220703126, 6103515626, 30517578126, 152587890626, 762939453126, 3814697265626, 19073486328126, 95367431640626, 476837158203126
OFFSET
0,1
COMMENTS
a(n) is the deficiency of 3*5^n (see A033879). - Patrick J. McNab, May 28 2017
LINKS
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
FORMULA
a(n) = 5*a(n-1) - 4 with a(0) = 2.
a(n) = 6*a(n-1) - 5*a(n-2) for n > 1.
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-5*x) = (2-6*x)/((1-x)*(1-5*x)).
E.g.f.: exp(x) + exp(5*x). (End)
a(n) = A279396(n+5,5). - Wolfdieter Lang, Jan 10 2017
From Elmo R. Oliveira, Dec 06 2023: (Start)
a(n) = A000351(n) + 1.
a(n) = 2*A034478(n). (End)
EXAMPLE
G.f. = 2 + 6*x + 26*x^2 + 126*x^3 + 626*x^4 + 3126*x^5 + 15626*x^6 + ...
MATHEMATICA
Table[5^n + 1, {n, 0, 25}]
LinearRecurrence[{6, -5}, {2, 6}, 30] (* Harvey P. Dale, Jul 29 2015 *)
PROG
(Sage) [lucas_number2(n, 6, 5) for n in range(25)] # Zerinvary Lajos, Jul 08 2008
(Sage) [sigma(5, n) for n in range(25)] # Zerinvary Lajos, Jun 04 2009
(Sage) [5^n+1 for n in range(30)] # Bruno Berselli, Jan 11 2017
(PARI) a(n)=5^n+1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [5^n+1: n in [0..30]]; // Vincenzo Librandi, Jan 11 2017
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(n) = 2^n + 5^n.
+10
57
2, 7, 29, 133, 641, 3157, 15689, 78253, 390881, 1953637, 9766649, 48830173, 244144721, 1220711317, 6103532009, 30517610893, 152587956161, 762939584197, 3814697527769, 19073486852413, 95367432689201, 476837160300277
OFFSET
0,1
COMMENTS
Digital root of a(n) is A010697(n). - Peter M. Chema, Oct 24 2016
REFERENCES
Miller, Steven J., ed. Benford's Law: Theory and Applications. Princeton University Press, 2015. See page 14.
LINKS
D. Suprijanto, I. W. Suwarno, Observation on Sums of Powers of Integers Divisible by 3k-1, Applied Mathematical Sciences, Vol. 8, 2014, no. 45, pp. 2211-2217.
FORMULA
a(n) = 5*a(n-1)-3*2^(n-1) = 7*a(n-1)- 10*a(n-2). [Corrected by Zak Seidov, Oct 24 2009]
G.f.: 1/(1-2*x)+1/(1-5*x). E.g.f.: e^(2*x)+e^(5*x). - Mohammad K. Azarian, Jan 02 2009
MATHEMATICA
Table[2^n + 5^n, {n, 0, 25}]
LinearRecurrence[{7, -10}, {2, 7}, 30] (* Harvey P. Dale, May 09 2019 *)
PROG
(Magma) [2^n + 5^n: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=2^n+5^n \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Robert G. Wilson v, Aug 25 2002
STATUS
approved
a(n) = 6^n + 1.
+10
50
2, 7, 37, 217, 1297, 7777, 46657, 279937, 1679617, 10077697, 60466177, 362797057, 2176782337, 13060694017, 78364164097, 470184984577, 2821109907457, 16926659444737, 101559956668417, 609359740010497, 3656158440062977
OFFSET
0,1
LINKS
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
FORMULA
a(n) = 6*a(n-1) - 5.
a(n) = A000400(n) + 1.
a(n) = 7*a(n-1) - 6*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-6*x).
E.g.f.: exp(x) + exp(6*x). (End)
MATHEMATICA
6^Range[0, 30] +1
LinearRecurrence[{7, -6}, {2, 7}, 30] (* Harvey P. Dale, Aug 11 2015 *)
PROG
(Magma) [6^n + 1: n in [0..30] ]; // Vincenzo Librandi, Apr 30 2011
(PARI) vector(20, n, n--; 6^n + 1) \\ Michel Marcus, Jun 11 2015
(SageMath) [6^n+1 for n in range(31)] # G. C. Greubel, Mar 11 2023
CROSSREFS
Sequences of the form m^n + 1: A000012 (m=0), A007395 (m=1), A000051 (m=2), A034472 (m=3), A052539 (m=4), A034474 (m=5), this sequence (m=6), A034491 (m=7), A062395 (m=8), A062396 (m=9), A062397 (m=10), A034524 (m=11), A178248 (m=12), A141012 (m=13), A228081 (m=64).
Cf. A000400.
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 22 2001
STATUS
approved
a(n) = 7^n + 1.
+10
49
2, 8, 50, 344, 2402, 16808, 117650, 823544, 5764802, 40353608, 282475250, 1977326744, 13841287202, 96889010408, 678223072850, 4747561509944, 33232930569602, 232630513987208, 1628413597910450, 11398895185373144
OFFSET
0,1
FORMULA
a(n) = 7*a(n-1) - 6.
a(n) = 8*a(n-1) - 7*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-7*x).
E.g.f.: exp(x) + exp(7*x). (End)
a(n) = 2*A034494(n). - G. C. Greubel, Mar 11 2023
MATHEMATICA
7^Range[0, 30] +1
LinearRecurrence[{8, -7}, {2, 8}, 20] (* Harvey P. Dale, Aug 18 2018 *)
PROG
(Sage) [sigma(7, n) for n in range(0, 20)] # Zerinvary Lajos, Jun 04 2009
(PARI) a(n)=7^n+1 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [7^n +1: n in [0..30]]; // G. C. Greubel, Mar 11 2023
KEYWORD
easy,nonn
STATUS
approved
a(n) = 9^n + 1.
+10
46
2, 10, 82, 730, 6562, 59050, 531442, 4782970, 43046722, 387420490, 3486784402, 31381059610, 282429536482, 2541865828330, 22876792454962, 205891132094650, 1853020188851842, 16677181699666570, 150094635296999122
OFFSET
0,1
FORMULA
a(n) = 9*a(n-1) - 8 = A001019(n) + 1 = 10*a(n-1) - 9*a(n-2).
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-9*x).
E.g.f.: e^x + e^(9*x). (End)
MATHEMATICA
Table[9^n + 1, {n, 0, 20}]
LinearRecurrence[{10, -9}, {2, 10}, 20] (* Harvey P. Dale, May 30 2013 *)
PROG
(Magma) [9^n + 1: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=9^n+1 \\ Charles R Greathouse IV, Sep 24 2015
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 22 2001
STATUS
approved
a(n) = 10^n + 1.
+10
41
2, 11, 101, 1001, 10001, 100001, 1000001, 10000001, 100000001, 1000000001, 10000000001, 100000000001, 1000000000001, 10000000000001, 100000000000001, 1000000000000001, 10000000000000001, 100000000000000001
OFFSET
0,1
COMMENTS
The first three terms (indices 0, 1 and 2) are the only known primes. Moreover, the terms not of the form a(2^k) are all composite, except for a(0). Indeed, for all n >= 0, a(2n+1) is divisible by 11, a(4n+2) is divisible by 101, a(8n+4) is divisible by 73, a(16n+8) is divisible by 17, a(32n+16) is divisible by 353, a(64n+32) is divisible by 19841, etc. - M. F. Hasler, Nov 03 2018 [Edited based on the comment by Jeppe Stig Nielsen, Oct 17 2019]
This sequence also results when each term is generated by converting the previous term into a Roman numeral, then replacing each letter with its corresponding decimal value, provided that the vinculum is used and numerals are written in a specific way for integers greater than 3999, e.g., IV with a vinculum over the I and V for 4000. - Jamie Robert Creasey, Apr 14 2021
FORMULA
a(n) = 10*a(n-1) - 9 = A011557(n) + 1 = A002283(n) + 2.
From Mohammad K. Azarian, Jan 02 2009: (Start)
G.f.: 1/(1-x) + 1/(1-10*x).
E.g.f.: exp(x) + exp(10*x). (End)
MATHEMATICA
LinearRecurrence[{11, -10}, {2, 11}, 18] (* Ray Chandler, Aug 26 2015 *)
10^Range[0, 20]+1 (* Harvey P. Dale, Jan 21 2020 *)
PROG
(Magma) [10^n + 1: n in [0..35]]; // Vincenzo Librandi, Apr 30 2011
(PARI) a(n)=10^n+1 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Except for the initial term, essentially the same as A000533. Cf. A054977, A007395, A000051, A034472, A052539, A034474, A062394, A034491, A062395, A062396, A007689, A063376, A063481, A074600-A074624, A034524, A178248, A228081 for numbers one more than powers, i.e., this sequence translated from base n (> 2) to base 10.
Cf. A038371 (smallest prime factor), A185121.
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 22 2001
STATUS
approved

Search completed in 0.022 seconds