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Abstract. Formulas for the nwnbers of fibonacenes (ronbranched catafusenes

1984

having no more than two linearly condensed benzenoid rings) have been found,

according to the symmetry of the catafusene.

* preceding part : ref. 21.



Introduction

The enumeration of polycyclic benzencia hydrocarbons (denoted for
brevity benzenoids or polyheres) and of their Kekulé structures continues

to be a problem of general interest, and the number of books,1_7 reviewss'll

and paperslz"é

dedicated to this area increases at a rapid pace.

This report will concentrate upon a restricted aspect, connected with
both enumerations mentioned above. In a recent paper,17 vie proposed the name
"isoarithmic" for those benzenoids which have the same number of Kekulé
structures or perfect matchings. The topology of the benzencid determines
this number. In the present paper only catacondensed benzenoids (catafusenes)
will be considered : in such systems no internal vertex exists. A1l catafu-
senes with the same number h of hexagons are isomeric. Two catafusenes with
identical sequences of linearly annelated rings are isoarithmic, irrespective
of the direction of kinks ; such catafusenes have the same L-transform of
their 3-digit codes in our coding system18 employing symbols O and 1 {which
is read as digit one for the purpose of ordering lexicographically catafu-
senes) ; Gutman®? proposed for the same purpose an equivalent LA sequence.
Thus all zigzag catafusenes are isoarithmic and isomeric with helicenes hav-
ing the same number h of hexagons.

Many recent papers rule out from the enumeration of benzenoids the non-
planar helicenic systems because such polyhexes are not a part of the
graphite lattice : in them, some of the carbon atoms appear several times
"on top of one another". However, in the present discussion we shall include
them among the benzenoids because formulas for their enumeration are much
simpler than for the strictly planar benzenoids.

The first enumeration of nonbranched catafusenes was proposed in 1968

by Balaban and harary.12 In the same paper, a new definition for catafusenes



was given on the basis of their dualist graph. This araph has the centers of
hexagons as vertices ; the edges of this araph connect vertices corresponding
to condersed hexagons, i.e. to rings sharing two carbon atems. If the dualist
graph is acyclic, the polyhex is catacondensed ; if it has 3-membered rings,
it is pericondensed ; if, in addition to 3-membered rings and acyclic bran-
ches it possesses larger rings, it is corona-condensed (coronoid).
Interestingly, we found out recently that dualist graphs had been des-
cribed in 1961,20 but no further application for them was proposed till 1967.

After that date, dualist graphs served for many other purposes, as described

in several re\aiew.-s.]o'21

Dualist graphs are a special type cf graphs because
their geometry is important ; this fact makes them different from normal

graphs or from dual graphs defined analogous]y.zz

Fibonacenes : unbranched catafusenes, iscarithmic with helicenes

A special interest is attached to unbranched catafusenes which are iso-

arithmic with zigzag catafusenes or with helicenes because the number of

their Kekulé structures are Fibonacci numbters.n'26

Such systems have no 1i-
nearly condensed sequence with more than two condensed hexagons. Among all
isomeric catafusenes, they possess thus the maximal number of Kekulé struc-
tures, hence the highest stability. We propose for such systems the name

*
fibonacenes.

12,27

In earlier and more recent paper‘s.11 the symmetry of catafusenes

* e are aware that fibonaccenes would be etymologically more suitable but we
suppressed one ¢ for simplicity and for similarity with the established name

"acenes” .



served for classifying them into four classes : a, acenes (e.g. naphthalene
1, anthracene, tetracene, etc.) with linearly condensed rings ; ¢, centrosym-
metric systems (e.g. chrysene 2) ; s, mirror-symmetric systems (phenanthrene
&, picene ¢) ; and w, unsymmetrical catafusenes (e.g. tetraphene &).

Figure 1 nresents examples of nonbranched catafusenes together with
their dualist graphs. There exists a bijection (one-to-one correspondence)
between these catafusenes and the corresponding dualist graphs. Catafuseres
7-4 are fibonacenes, but & is not because it has three linearly condensed

hexagons.
Figure 1. Catafusenes and their dualist graphs.

Enumeration of fibonacenes

We shall present the dualist graphs of fibonacenes with with 2 = 3 to 8
condensed hexagons, and the modes of their formation by annelation at a mar-
ginal vertex. The symmetry of the system is indicated by letters ¢, &, and u,
with the significance indicated above. Asterisks denote nonplanar fibonacenes.

Figure 2 presents the derivation of fitonacenes on increasing the number
of hexagons by one (annelation). It is evident that for obtaining distinct
and nonisomorphic fibcnacenes by this procedure, each centrosymmetric or
mirror-symmetric has two “successcrs" and one “predecessor" ; each unsymmetric

fibonacene has four "successors" and two "predecessors"”.






This follows naturally from the facts that (i) the two endpoints are
topologically equivalent in o and s-type fibonacenes and nonequivalent in
u-type fibonacenes and (i1i) at a given endpoint anrelations can occur in
two and only two kinked directions in order to afford a fibonacene with one
more hexagon.

On this basis, it is possible to find formulas for the numbers <(h),
S(h) and U(h) of fibonacenes belonging to symmetry classes e, s, u with &

hexagons, as well as for their total,

T¢h) = U(h) + S(h) + C(h}
One can obtain easily explicit formulas for C and S :

C(2k+1) = O
C(2k) = S5(2k) = 22
s(2k+l) = 2871

The following recurrence can be found on the basis of the above predeces-

sor-successor relationships :
U(k+1) = 3 [2C(h) + 25(h) + 4U(h) - C(k+1) - S(h+l)]

On substituting the above values we obtain the recurrence relationships

forUand T :

U(2k) = 20(2k-1)

U(2k+1) = 2u(2k) + 2572
T(2k) = 2U(2k-1) + 2K7!
T(2k+1) = 20(2k) + %72 4 k!

T(2k) = 2T(2k-1)



Finally, one ottains explicit formulas for U and T :

2k=4 k=2

= KR Ly

K2 L gke2kel

U(2k) = 2 -2

U(2k+1) = 2273 -
Har= 2 2 2 2 gy

Te2kel) = 252 » 2 =2 s 1)

Table 1 presents numerical data for numbers C, S, U and T as functions
¢f the number h of hexagens. The values in brackets indicate how many of the
corresponding systems are nonpianar. It is easy to see the regular trend for

numbers of nonplanar centrosymmetric and mirror-symmetric fibonacenes.

TABLE 1. Numbers of all fibonacenes with h = 3 to 10 according to their

symmetry. Brackted numbers denote nonplanar systems.

Centrosymm. [ Mirror-symm. | Unsymm. | Total
" c(h) s{h) U(h) T(h)
3 0 1 C 1
4 1 1 0 2
5 G 2 1 3
6 2 2(1) 2 6(1)
7 0 4(1) 6(1) 10(2)
8 4 4(2) 12(3) 20(5)
9 0 8(2) 28(9) | 36(11)
10 8(1) 3(4) 56(21) | 72(26)

The numbers found in TABLE 1 and with the above formulas agree with

those found from computer simulations of benzenoid structures (these, how-

ever, do not include nonplanar systemsz'a).
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Appendix

An alternative approach for finding the explicit formulas for U and T
consists in using the 3-digit notation'? of catafusenes : on starting at one end
one assigns digit 1 for a 120° kinked annelation, digit 2 for a 240° kink, and
digit 0 for a 180° straight-on annelation (in the case of fibonacenes, the nota-
tion cannot contain digit 0). Among all possible notations involving either end
of the unbranched fibonnacene or either convention for the 120°/240° kink, one
chooses as canonical the notation which corresponds to the smallest number when
the digits are read sequentially.

Figure 3 presents the notation of all fibonacenes with 3 to 6 hexagons,

arranged in the same order as in the upper part of Fig. 2.
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h=3: o
1(2)
ha=4a 'S ol b
12 (21) ‘/“Q‘
" Aot > {2
121 (212) 112 (122) 111 (222)

h=6: "™ V‘. l—m m {:' {}
1212 1121 (1211, 1221 1122 1112 (1222, 1111
(2121) 212z, 2212) (2112) (2211) 2111, 2221) (2222)

Fig. 3. The fibonacenes with h = 3 to 6 arranged as in Fig. 2. The correct nota-
tion 1s without brackets ; in brackets is the alternative notation to be discarded.

It will be seen that the mirror-symmetrical and the centrosymmetrical
fibonacenes have one correct and one alternative notation, whereas the unsym-
metrical fibonacenes have one correct and three alternative codes.

Taking into account that the notation of a fibonacene with h hexagons
consists of a string with h-2 digits, that the number of binary numbers having
h-2 digits 1s 2"“2. and that the numbers of symmetrical fibonacenes obey the
simple relationships indicated by the explicit formulas for C and S (see also
TABLE 1), one obtains the explicit formulas for U and T.

Finally, mention should be made that in a forthcoming paper by
A.T. Balaban and C. Artemi, the explicit formulas for the number of fibonacenes
result as a particular case (s = 2) for the nonbranched catafusenes with h

hexagons whose longest linearly condensed portion consists of s benzenoid rings.



