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Preface

0.1 Scientific contributions

The main scientific contributions could be summarized as follows:

1. A rich collection of popular S-boxes is analyzed in great detail.

2. It is shown that the majority of chaos-based S-boxes are vulnerable to linear cryptanal-
ysis. A simple and lightweight algorithm is proposed, which significantly outperforms
all previously published chaos-based S-boxes, in those cryptographic terms, which
they utilize for comparison.

3. By introducing some new definitions like couplings, coordinate decomposition, degree
of descendibility, and CELAT, the S-box nonlinearity optimization problem is projected
to a satisfiability problem, which could be attacked by using SAT solvers.

4. By applying the SAT solver it is shown that 8 � 8 bijective S-boxes with all eight
coordinates having the maximal nonlinearity value of 116 do exist.

5. A strategy of analyzing various spectra channels to detect hidden patterns and anomalies
in S-boxes is proposed.

6. A simple and efficient algorithm based on a heuristic search by shotgun hill climbing
to construct binary sequences with small peak sidelobe levels (PSL) is proposed. The
algorithm successfully revealed binary sequences of lengths between 106 and 300 with
record-breaking PSL values.

7. By using some useful properties, the aforementioned algorithm time and memory
complexities are reduced to O�n�. This allowed us to reach record-breaking PSL
values for less than a second. Moreover, the efficiency range of the algorithm is further
extended to binary sequences of longer lengths.
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8. A detailed comparison and fine-grain analysis of the proposed algorithms is performed.
By using the insights of this analysis, a heuristic algorithm is proposed, which success-
fully reached all the optimal PSL values known in the literature, which was previously
discovered by an exhaustive search. This was achieved by using a low-cost mid-range
computer station, while the time required to reach the optimal PSL value for most of
the lengths is less than a second.

9. A GPU efficient algorithm addressing the well-known computational problem of
finding the lowest possible PSL among the set of a binary sequence B and all binary
sequences generated by rotations of B is proposed. The problem is projected to a
perfectly balanced parallelizable algorithm. By using the algorithm, the search space
of all m-sequences with lengths 2n

� 1, for 18 & n & 20 is successfully exhausted.
Furthermore, a complete list of all PSL-optimal Legendre sequences for lengths up to
432100 is revealed. A conjecture is made, that all PSL-optimal Legendre sequences,
with or without rotations, and with lengths N greater than 235723, are strictly greater
than

Ó
N.

10. Some useful mathematical properties related to the flip operation of the skew-symmetric
binary sequences are discovered, which could be exploited to significantly reduce the
memory complexity of state-of-the-art stochastic Merit Factor (MF) optimization al-
gorithms from O�n2� to O�n�, without degrading their time complexity. As a proof
of concept, a lightweight algorithm was constructed, which could optimize pseudo-
randomly generated skew-symmetric binary sequences with long lengths (up to 105

�1)
to skew-symmetric binary sequences with a MF greater than 5. This contradicts the
Bernasconi conjecture, that a stochastic search procedure will not yield MF higher
than 5 for long binary sequences (sequences with lengths greater than 200).

11. A new class of finite binary sequences with even lengths with alternate autocorrelation
absolute values equal to 1, called pseudo skew-symmetric class, is found. It is shown
that the MF values of the new class are closely related to the MF values of adjacent
classes of Golay’s skew-symmetric sequences.

12. Sub-classes of sequences based on the partition number problem, as well as the notion
of potentials, measured by helper ternary sequences, are proposed. Binary sequences
with MF records for binary sequences with many lengths less than 225, and all lengths
greater than 225, are revealed. Two extremely hard search spaces of lengths 573 and
1009 are also attacked. It was estimated that a state-of-the-art stochastic solver requires
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respectively 32 and 46774481153 years to reach MF values of 6.34, while the required
time from the proposed algorithm to reach such MF values is just several hours.

13. Using aperiodic autocorrelation functions for the S-box reverse engineering problem is
proposed.
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Chapter 1

Introduction

Boolean functions, vector Boolean functions, or S-boxes, and digital sequences are widely
used in various practical fields such as telecommunications, radar technology, navigation,
cryptography, measurement sciences, biology, or industry.

S-boxes are one of the most important primitives to be found in modern block ciphers.
A weak S-box, in a cryptographic perspective, can be exploited by various attacks like
linear cryptanalysis [17], differential cryptanalysis [18] , boomerang attack [147], algebraic
attacks [34] or others like in [59]. Arguably, one of the most important properties of a
given S-box is its nonlinearity. An S-box with high nonlinearity can be achieved by using
the finite field inversion method [113]. However, such S-box is closely related to various
algebraic structures. As a proactive countermeasure to future algebraic attacks, new ways
of generation or optimization of pseudo-random S-boxes are proposed. Some examples of
the aforementioned algorithms are published in [32], [85], [107], [108], and [145]. However,
heuristically optimization of a given S-boxes could be a resource-consuming task.

Given their significance and importance, the design principles of an S-box construction,
especially when implemented in a widely used and critical cryptosystem, should be publicly
available and reproducible. However, in some cases, a given S-box generation method is
not announced, or worse, misleadingly announced as a pseudo-randomly generated one.
The reasons for obfuscating the design of a given S-box are manifold. For example, the
initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by
NSA. The reasons for applying those modifications were not known. However, in [33], D.
Coppersmith announces the motivation behind the S-box modifications. It appears that the
agency knew about the existence of differential attacks about 20 years before the academic
world.

Hiding a given S-box design could be related to some hidden construction, the knowledge
of which could be exploited to gain a significant advantage in terms of hardware implementa-
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tion. For example, as discovered in [21], the S-boxes used in the hash function Streebog and
the 128-bit block cipher Kuznyechik, standardized by the Russian Federation, are designed
with such a hidden structure. A user knowing this decomposition could implement the given
S-box with a significantly smaller hardware footprint, allowing him to reach an up to 8 times
faster S-box look-up.

A practical reason for hiding the design of a given S-box could be related to an encap-
sulated trapdoor as discussed in [128]. Even though the aforementioned trapdoor can be
easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques
should not be underestimated. Moreover, the designers of a given S-box could unintention-
ally create it with a flaw, which further rises the academic attention to the S-box reverse
engineering problem.

Finding binary sequences whose aperiodic autocorrelation characteristics are collectively
small according to some pre-defined criteria is a famous and well-studied problem. Two
such measures are the Peak Sidelobe Level (PSL) and the Merit Factor (MF) value, which
was first introduced by Golay in 1972 [60]. However, before Golay’s definition, Littlewood
[98] studied the norms of polynomials with �1 coefficients on the unit circle of the complex
plane.

One of the desirable characteristics a given binary sequence should possess is a low
peak sidelobe level. Some well-known constructions of such sequences includes the Barker
codes [9], Rudin-Shapiro sequences [129][136], m-sequences [67], Gold codes [66], Kasami
codes [84], Weil sequences [130], Legendre sequences [124]. Nevertheless, none of the
aforementioned constructions guarantees that the generated binary sequence will possess the
lowest possible (optimal) PSL value. Thus, currently, initiating an exhaustive search is the
only way to reveal an optimal PSL value for binary sequences of some fixed length. The
PSL-optimal values of binary sequences with lengths n greater than 84 are still unknown.
This is not surprising, since the cardinality of the search space comprised of all binary
sequences with some fixed length rises exponentially.

Golay’s publications reveal a dedication to the merit factor problem for nearly twenty
years (surveyed in [80]). Since then, a significant number of possible constructions of binary
sequences with high merit factors were published. Near-optimal and optimal candidates are
found by using heuristic search methods for longer lengths or a more direct approach, like
the exhaustive search method, for smaller problem spaces. In [65], the merit factor problem
was referenced by Golay as ...challenging and charming.

The problem of minimizing the merit factor is also known as the "low autocorrelated
binary string problem", or the LABS problem. It has been well studied in theoretical physics
and chemistry. For example, the LABS problem is correlated with the quantum models of
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magnetism. Bernasconi predicted that [14] ... stochastic search procedures will not yield
merit factors higher than about 5 for long sequences. By long sequences, Bernasconi was
referring to binary sequences with lengths greater than 200. Furthermore, in [41] the problem
was described as ... amongst the most difficult optimization problems. Since the merit
factor problem has resisted more than 50 years of theoretical attacks, a significant number of
computational pieces of evidence were collected.

In this thesis, several design strategies for constructing and analyzing Boolean functions,
S-boxes, and digital sequences are proposed. In Chapter 2 the preliminaries are provided.
In Sections 2.1 and 2.2 some important definitions regarding Boolean and vector Boolean
functions are given. Then, in Section 2.3 a rich collection of popular S-boxes is thoroughly
analyzed. In general, the S-box construction methods could be divided into four categories
as shown in Section 2.4. Then, S-boxes generated by using chaotic functions (CF) are
analyzed to measure their actual resistance to linear cryptanalysis. The majority of the
published papers using CFs emphasize the average nonlinearity of the S-box coordinates
only, ignoring the rest of the S-box components in the process. Thus, integrating such
S-boxes in a given cryptosystem should be done with considerable caution. Furthermore,
it appears that in the context of the nonlinearity optimization problem the profit of using
chaos structures is negligible. During our experiments, by using two heuristic methods and
starting from pseudo-random S-boxes, we repeatedly reached S-boxes, which significantly
outperform all previously published CF-based S-boxes, in those cryptographic terms, which
the aforementioned papers utilize for comparison. Then, in Section 2.5, we project the S-box
nonlinearity optimization problem to a satisfiability problem, which could be solved by using
SAT solvers. This is achieved by introducing some new definitions like couplings, coordinate
decomposition, degree of descendibility, S-box coordinate extended linear approximation
table (CELAT), as well as some useful properties and inner connections. The SAT projection
revealed that we could successfully construct bijective 8�8 S-boxes from 8 Boolean functions
as components, each of which possesses the maximum nonlinearity value of 116. The
provided toolbox could serve in cases, where the designer’s goal is to increase (or intentionally
decrease) the nonlinearity of a given S-box by applying as minimum changes as possible.
For example, we demonstrate how the Skipjack S-box, developed by the U.S. National
Security Agency (NSA), and the Kuznyechik S-box, developed by the Russian Federation’s
standardization agency, could be optimized to a higher nonlinearity by tweaking just 4 and
12 bits, respectively (out of 2048).

In Chapter 3, a strategy of analyzing various spectra channels to detect hidden patterns
and anomalies in popular S-boxes is discussed. It could serve as a more fine-grained extension
to the methods discussed in [119]. More specifically, by applying spectral analysis on various
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S-box characteristics, as a linear approximation, difference distribution, and auto-correlation
tables, we can detect visual symmetries or anomalies, which could not only serve as proof
that the S-box was not generated pseudo-randomly but additionally provides some further
information about the inner structure of the S-box, making the complete reverse-engineering
of the hidden construction possible 1.

Chapter 4 addresses the PSL optimization problem. In Section 4.1, a simple and efficient
algorithm based on a heuristic search by shotgun hill climbing to construct binary sequences
with small peak sidelobe levels is suggested. The algorithm is applied for the generation
of binary sequences of lengths between 106 and 300. Improvements are obtained in almost
half of the considered lengths while for the rest of the lengths, binary sequences with the
same PSL values as reported in the state-of-the-art publications are found. Then, in Section
4.2, a method to generate long binary sequences with low PSL value is proposed. Both
the time and memory complexities of the proposed algorithm are reduced to O�n�. During
our experiments, we repeatedly reach better PSL values than the currently known state of
art constructions, such as Legendre sequences, with or without rotations, Rudin-Shapiro
sequences or m-sequences, with or without rotations, by always reaching record-breaking
PSL values strictly less than

Ó
n. Furthermore, the efficiency and simplicity of the proposed

method are particularly beneficial to the lightweightness of the implementation, which
allowed us to reach record-breaking PSL values for less than a second. In Section 4.3
we continue our research with the exploration of hybrid algorithms for achieving binary
sequences with arbitrary lengths and high PSL values. During our experiments, and by using
the aforementioned algorithms, we were able to find PSL-optimal binary sequences for all
those lengths, which were previously found during exhaustive searches by various papers.
Then, by using a general-purpose computer, we further demonstrate the effectiveness of the
proposed algorithms by revealing binary sequences with lengths between 106 and 300, the
majority of which possess record-breaking PSL values. Then, by using some well-known
algebraic constructions, we outline a few strategies for finding highly-competitive binary
sequences, which could be efficiently optimized, in terms of PSL, by the proposed algorithms.
Finally, in Section 4.3.3, a well-known computational problem is finding the lowest possible
PSL among the set of a binary sequence B, and all binary sequences generated by rotations
of B is discussed. Some useful properties of rotated binary sequences are discovered, which
allowed us to project the aforementioned problem to a perfectly balanced parallelizable
algorithm. The proposed algorithm, altogether with its graphics processing unit (GPU)
implementation, is significantly faster than the existing instruments. We were able to exhaust

1Although the demonstrated anomalies are visible on paper, reading the electronic version is greatly
encouraged.
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the search space of all m-sequences with lengths 2n
� 1, for 18 & n & 20, and to reveal a

complete list of all PSL-optimal Legendre sequences, with or without rotations, for lengths
up to 432100 - out of computational reach until now. The numerical experiments suggest
that the PSL value of all PSL-optimal Legendre sequences, with or without rotations, and
with lengths N greater than 235723, are strictly greater than

Ó
N.

Chapter 5 deals with the Merit Factor (MF) problem. It was conjectured that stochas-
tic search procedures will not yield merit factors higher than 5 for long binary sequences
(sequences with lengths greater than 200). Some useful mathematical properties related
to the flip operation of the skew-symmetric binary sequences are presented in Section 5.1.
By exploiting those properties, the memory complexity of state-of-the-art stochastic MF
optimization algorithms could be reduced from O�n2� to O�n�. As a proof of concept, a
lightweight stochastic algorithm was constructed, which can optimize pseudo-randomly gen-
erated skew-symmetric binary sequences with long lengths (up to 105

�1) to skew-symmetric
binary sequences with a merit factor greater than 5. An approximation of the required time is
also provided. Golay introduced one beneficial class of sequences, called skew-symmetric
sequences; finite binary sequences with odd lengths with alternate autocorrelation values
equal to 0. Their special construction greatly reduces the computational efforts of finding
binary sequences with odd lengths and high MF. Having this in mind, the majority of papers
to be found in the literature are focused solely on this class, preferring them over binary
sequences with even lengths. In Section 5.1.2, a new class of finite binary sequences with
even lengths with alternate autocorrelation values equal to �1 is presented (see also [46]).
We show that the MF values of the new class are closely related to the MF values of adjacent
classes of skew-symmetric sequences. We further introduce new sub-classes of sequences
using the partition number problem and the notion of potentials, measured by helper ternary
sequences. Throughout our experiments, MF records for binary sequences with many lengths
less than 225, and all lengths greater than 225, are discovered. Binary sequences of all
lengths, odd or even, less than 28 and with MF % 8, and all lengths, odd or even, less than 29

and with MF % 7, are now revealed. We demonstrate the efficiency of the proposed algorithm
by launching it on two extremely hard search spaces of binary sequences of lengths 573
and 1009. It was estimated that finding solutions with a merit factor of 6.34 for a binary
sequence with length 573 requires around 32 years, while for binary sequences with length
1009, the average runtime prediction to reach the merit factor of 6.34 was 46774481153
years (see [24]). By using the proposed in Section 5.1.2 algorithm, we were able to reach
such binary sequences within several hours. Finally, in Section 5.2, a method addressing
the S-box reverse engineering problem using spectrography on aperiodic autocorrelation
functions is presented.



Chapter 2

Vector Boolean Functions and
Cryptography

2.1 Boolean Functions

Definition 2.1.1 (Boolean Function & Truth Tables). Let us define the set B � r0,1x. A
Boolean function f �x� of n variables x1, ...,xn is a mapping f � Bn

( B from n binary inputs
x � �x1,x2,�,xn� " Bn to one binary output y � f �x� " B. The binary truth table (BTT)
of an n-variable Boolean function f �x� is the vector of all the consecutive outputs of the
Boolean function:

� f �x�� � � f �0,0,�,0�, f �0,0,�,1�,�, f �1,1,�,1��
The polarity truth table (PTT) of an n-variable Boolean function f �x� is derived from the
binary truth table. We define the PTT by � f̂ �x�� � �1�2 f �x��.
Definition 2.1.2 (Algebraic Normal Form). The algebraic normal form of an n-variable
Boolean function f �x�, denoted by ANF f , is given by the following equation: ANF f �

a0h a1x1h a2x2h�h anxnh a1,2x1x2h�h a1,2,�,nx1x2�xn, where the coefficients a
belongs to B.

Definition 2.1.3 (Algebraic Degree). The algebraic degree of a Boolean function f �x�,
denoted by deg� f �, is equal to the number of variables in the longest item of its ANFf .

Definition 2.1.4 (Hamming Distance). The Hamming distance between two n-variable
Boolean functions f �x� and g�x�, denoted by dH� f ,g�, represents the number of differing
elements in the corresponding positions of their truth tables.
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Definition 2.1.5 (Linear Boolean Function). Any n-variable Boolean function of the form:

lw�x� �$ w,x %� w1x1hw2x2h�hwnxn,

where w,x " Bn, is called a linear function.

Definition 2.1.6 (Affine Boolean Function). Any n-variable Boolean function of the form:

lw�x� �$ w,x %� w0hw1x1hw2x2h�hwnxn,

where w0 " B and w,x " Bn, is called an affine function.

Definition 2.1.7 (Walsh-Hadamard Transform). For an n-variable Boolean function f �x�,
represented by its polarity table � f̂ �x��, the Walsh-Hadamard transform, or WHT, F̂f �Bn

� Z,
is defined by:

F̂f �w� � =
x"Bn

f̂ �x���1�$w,x%

Definition 2.1.8 (Absolute Indicator). For an n-variable Boolean function f �x�, we denote
the absolute indicator of f as ∆ f . For all u " Fn

2 , except the zero vector, write

∆ f �u� �=
x
��1� f �x�� f �x�u�

The absolute indicator of f is calculated by

∆ f �max
u

¶ ∆ f �u� ¶ (2.1)

2.2 Vector Boolean Functions (S-boxes)

Definition 2.2.1 (Vectorial Boolean Function – Substitution Table – S-box). An n-binary
input to m-binary output mapping S � Bn

� Bm, which assigns some y� �y1,y2,�,ym�" Bm

by S�x� � y to each x � �x1,x2,�,xn� " Bn, is called an �n,m� substitution table (S-box) and
is denoted by S�n,m�.

Definition 2.2.2 (Bijective S-box). An S-box S�n,m� is said to be bijective, if it maps each
input x " Bn to a distinct output y � S�x� " Bm and all possible 2m outputs are present.

Definition 2.2.3 (S-box Look-up Table – LUT). The look-up table LUT of an S-box S�n,m�
is an (2n x m) binary matrix S, which rows consist of all outputs of S�n,m�, corresponding to
all possible 2n inputs ordered lexicographically.
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Definition 2.2.4 (S-box Coordinates). We define each column of the S�n,m� LUT as a
coordinate of S�n,m�. Each column represents the truth table of some Boolean function fi.
If S�n,m� is bijective vectorial Boolean function it follows that n � m and we have exactly n
coordinates.

Definition 2.2.5 (Polarity Look-up Table – PLUT). The polarity look-up table PLUT of
an S-box S�n,m�, denoted by SPLUT , is an �2n

,m� matrix with elements in r�1,1x, where
each element on row j and column k, denoted by SPLUT � j��k�, for j � 1,2,�,2n and
k � 1,2,�,m, is derived from SLUT � j��k� by

SPLUT � j��k� � ��1�SLUT � j��k�
� 1�2SLUT � j��k�

where f̂i�α� � ��1� fi�α�
� 1�2 fi�α�.

Definition 2.2.6 (S-box Extended WHT Spectrum Matrix – EWHTSM). The extended
Walsh-Hadamard transform spectrum matrix (EWHTSM) of an S-box S�n,m� is a �2n

,2m�
matrix F̂ExtS, which columns are represented by the Walsh-Hadamard transform spectra
�F̂gv�w�� of the Boolean functions gv�x� � v1 f1�x�h v2 f2�x�h�h vm fm�x�, where w and
v are arranged lexicographically respectively in Bn and Bm.

F̂ExtS �

Ẑ̂̂
^̂̂̂̂
^̂̂̂̂
^̂̂̂̂
^̂\

F̂g0�0,0,�,0� � F̂g2m�1�0,0,�,0�
F̂g0�0,0,�,1� � F̂g2m�1�0,0,�,1�

� � �

F̂g0�1,1,�,0� � F̂g2m�1�1,1,�,0�
F̂g0�1,1,�,1� � F̂g2m�1�1,1,�,1�

[____________________]

(2.2)

The importance of the S-box extended Walsh-Hadamard transform matrix is to quantita-
tively describe the distance with a special measure, alike the Hamming distance, between
each linear combination of coordinates in the given S-box and each possible linear function.

Definition 2.2.7 (Linear Approximation Table – LAT). The linear approximation table of
an S-box S�n,m�, denoted by LAT S or SLAT , is a table with 2n rows and 2m columns, which
entries are given by:

SLAT �X��Y� � LAT S�X��Y� � 2n�1
�dH�X ,Y�, (2.3)

where Y is a consequent linear combination of coordinates of the current S-box and X is the
consequent linear function with length n.
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Definition 2.2.8 (S-box Nonlinearity). The nonlinearity of an S-box S�n,m�, denoted by
SNL, is defined as:

SNL � 2n�1
�max�r¶ wi ¶x�, (2.4)

where r¶ wi ¶x is the set of all absolute values of elements in LAT, except the uppermost left
one.

Definition 2.2.9 (S-box ACNV). The average coordinate nonlinearity value, or SACNV , of a
given S-box S, is the average value of all nonlinearities of coordinates of S.

Definition 2.2.10 (S-box Decimal Look-up Table – DLUT). Each S-box is uniquely defined
by its LUT. Translating each row of the LUT as a decimal number uniquely defines the same
S-box as a decimal look-up table (DLUT).

Definition 2.2.11 (XOR Table). The XOR table of an S-box S�n,m� is a (2n
�2m) binary

matrix SXORT , which columns consist of all linear combinations of SLUT columns ordered
lexicographically.

Definition 2.2.12 (S-box Minimal Algebraic Degree). The minimal algebraic degree of an
S-box S�n,m� is the minimum algebraic degree among all component functions of S.

SDEG � min�v"Bm�deg�gv� �
� min��v1,v2,�,vm�"Bm�deg�v1 f1�x�h v2 f2�x�h�h vm fm�x��, (2.5)

where f1, f2,�, fm are the coordinate Boolean functions of S�n,m�.

Definition 2.2.13 (S-box Absolute Indicator). The absolute indicator of a given S-box S,
denoted as SAC, is equal to the maximal absolute indicator among all absolute indicators of
component functions of S.

Definition 2.2.14 (S-box Differential Uniformity). Differential uniformity, or δ -uniformity
of a given S-box S�n,m�, denoted by Sδ , is defined by:

Sδ � max
α"Bn¯r0x

max
β"Bm

·r x " Bn ¶ S�x�hS�xhα� � β�x·

2.3 Cryptographic Properties of Some Popular S-boxes

The cryptographic properties of vector boolean functions are thoroughly examined by intro-
ducing a rich list of desirable parameters an S-box should have to guarantee an acceptable
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resistance to sophisticated cryptographic attacks such as the linear cryptanalysis [103][17],
the differential cryptanalysis [18], boomerang attack [147] or interpolation attack [79]. S-
boxes are widely used in modern cryptographic algorithms like AES [40], Whirlpool [11],
Camellia [7] and many others. For a given S-box S the goal of the designer is to achieve high
values of SNL and SDEG, as well as small values of Sδ and SAC.

The S-boxes, created with the Finite Field Inversion method [114], as the Rijndael S-box
used in AES [40], have the best currently known cryptographic properties among all 8�8
S-boxes. However, some concerns about constructing S-boxes by using a purely algebraic
approach can make them vulnerable to algebraic attacks [34]. Hence, in some applications,
randomly or heuristically generated S-boxes are used. Throughout the dissertation, a col-
lection of well-known and published S-boxes used in popular cryptographic algorithms are
analyzed, and one can see that only 11 S-boxes, out of 47, are AES-alike. For a more detailed
picture, the LAT Spectras of the S-boxes is also provided, i.e. the real-valued vector of all
absolute values of LAT coefficients. The distribution of the SLAT coefficients of a given S-box
S could also provide some more insights into how S is constructed when the construction
method is not announced (intentionally or not) by the designers of S.

2.4 Design Strategies for Constructing S-boxes

The rich variety of proposed S-boxes constructions can be classified into four categories.
The first category TTT 111 for finding S-boxes with good cryptographic properties uses the
pseudo-random generation method. The highest reported nonlinearity (NL) of an �8,8�
S-box generated by this approach is 100 [110]. We generated over one billion S-boxes
(1,387,914,282) and, for example, find that the probability to randomly construct an �8,8�
S-box with NL 100 is 2�25.978. Thus, the probability to find an S-box of NL 100, or higher,
at random is rather small.

The second category TTT 222 uses a more straightforward (deterministic) approach, like an
algebraic constructions like finite field inversion method, cellular automata based methods
[16], quasi-cyclic codes methods [25][19], affine-power-affine methods [38] or using some
other deterministic approach as Feistel and Misty constructions [29].

The third category TTT 333 is about applying heuristic search methods to optimize pseudo-
randomly generated S-boxes. Members of this category are methods like hill climbing [107],
simulated annealing [32], genetic algorithms [108], special genetic algorithms combined
with total tree searching [145], special immune algorithms [78], and others [142][121].

The fourth category TTT 444 is using hybrid search, i.e starting from an S-box generated by
some T2 construction, and then obtaining a new one by using some T3 algorithm. Such
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methods are suggested in [85][31][76][101][42][77][4]. It should be noted that categories T3

and T4 looks similar. However, the comparison between T3 and T4 methods is not entirely
fair, since the authors of the latest do not start from a pseudo-random state. Instead, they
initialize their algorithm with some highly competitive candidate. The same observation is
made in [121], p.9.

We should also address the S-box chaos-based constructions methods. They could belong
to either of categories T2, T3 or T4. However, in [50], S-boxes generated by using chaotic
functions (CF) are analyzed to measure their actual resistance to linear cryptanalysis. It
appears that most of the aforementioned papers emphasize the average nonlinearity of the
S-box coordinates (ACNV) only, ignoring the rest of the S-box components in the process.
Having this in mind, the majority of those studies should be re-evaluated. Integrating such
S-boxes in a given cryptosystem should be done with considerable caution. Furthermore, we
show that in the context of the nonlinearity optimization problem the profit of using chaos
structures appears to be negligible. By using two heuristic methods and starting from pseudo-
random S-boxes, we repeatedly reached S-boxes, that significantly outperform all previously
published CF-based S-boxes, in those cryptographic terms, that the aforementioned papers
utilize for comparison. Moreover, we have linked the multi-armed bandit problem to the
problem of maximizing an S-box average coordinate nonlinearity value, which further
allowed us to reach near-optimal average coordinate nonlinearity values significantly greater
than those known in the literature.

The methods involved in CF S-box constructions are manifold (see the comparison table
provided in [50]). As defined in Definition 2.2.8, we seek the maximum absolute value v
of all the elements in S-box S�n,n� LAT, to find the nonlinearity of S, i.e. SNL � 2n�1

� v.
In the context of block ciphers, a low nonlinearity S-box value is associated with the
cipher linear cryptanalysis resistance [103][17][74]. As shown in [50], the average value
of the nonlinearities of the coordinates of a given S-box S doesn’t correspond to the actual
nonlinearity of S. However, from the designer’s perspective, when a higher value of ACNV
is desirable, a simple heuristic construction could be used instead.

In general, if we want to improve the nonlinearity of a given bijective S-box S�n,n�, a
strategy of lowering the absolute value of coefficients in SLAT makes sense. Moreover, the
elements of each column of SLAT are entangled by Parceval’s theorem [104]. Let’s denote as
Ci the array composed of the elements of SLAT �i�. Since we want to lower the nonlinearities of
coordinates of S only, an evaluating function E�S� is created, s.t. E�S� �<n�1

p�0<x"C2p ¶x¶M
,

where M denotes a magnitude of our choice. The restriction x "C2p narrows down the set of
possible columns of SLAT to be optimized, in terms of nonlinearity, to the set of coordinates
of S.
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By using stochastic1 hill climbing as a heuristic function, starting from arbitrary pseudo-
random S-box construction and by using E�S�, we could repeatedly optimize pseudo-
randomly generated S-boxes to ACNV of 114.0, the highest reported in the literature. More-
over, by exploiting the techniques discussed in the multi-armed bandit problem [15], we were
able to reach ACNV of 114.5 (see [50]). The algorithm was implemented with the built-in
tools provided by the open-source mathematical software system SageMath [43].

2.5 Nonlinearity Optimization Using SAT Solvers

In this section, an interconnection between the S-box nonlinearity optimization problem and
binary integer programming is shown. A lightweight optimization routine is proposed, which
does not cause any significant computational burden. Moreover, the toolbox could be utilized
as proof of infeasibility.

A major drawback of the state-of-the-art heuristic techniques is their aggressiveness on
the initial S-box. Hence, in most cases, it is difficult to link the resulting S-box with the
initial S-box. It is difficult to prove that such a link exists in the first place. The fine-grained
optimization routine proposed in [51] allows us to optimize the nonlinearity value of a
given S-box with as minimum changes as possible. From the designer’s perspective, this
property is particularly beneficial, since we could focus the optimization routine on the weak
components of a given S-box, without degrading the remaining ones. The effectiveness of
the proposed algorithm is further demonstrated by increasing the nonlinearity of the Skipjack
S-box, developed by NSA, and Kuznyechik S-box, developed by the Russian Federation’s
standardization agency, by tweaking respectively 4 and 12 (out of 2048) bits only.

The currently known maximum nonlinearity value for 8-variable balanced Boolean
functions is 116 [122]. Furthermore, as shown in [133], the nonlinearity value of 8-variable
balanced Boolean functions is upper bounded by 120, which means that the maximum
theoretical ACNV of (8,8) bijective S-boxes is less or equal to 118.0. If a bijective S-box
with ACNV greater than 116.0 is found, at least one of its eight coordinates will possess
a nonlinearity value of 118, which will finally answer the long-standing problem of the
maximum possible nonlinearity value for 8-variable balanced Boolean functions. However,
there is academic skepticism that 8-variable balanced Boolean functions with nonlinearity
value 118 exist. Having this in mind, one open question to be answered is: Does bijective
(8,8) S-box with an ACNV value of 116 exist? By using the SAT solving techniques, we
showed that bijective (8,8) S-boxes with an ACNV value of 116.0 exist. However, despite our

1hill climbing without neighborhood search
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attempts, we were not able to find an 8-variable balanced Boolean function with a nonlinearity
of 118.

We first introduce the concept of couplings, coordinate decomposition, degree of de-
scendibility, S-box coordinate extended linear approximation table (CELAT), as well as some
useful properties and inner relationships. For convenience, let us denote as f �n�i the integer
extracted from n, by flipping its i-th bit of its binary representation. Obviously, f � f �n�i�i

� n.

Lemma 2.5.1 (The Parity Lemma). Tweaking a bijective S-box S by flipping just one bit in
its corresponding Look-up Table (LUT) will convert S to a non-bijective S-box.

Lemma 2.5.2 (Couplings Lemma). The smallest nonzero number of bits from the LUT of a
random bijective S-box that needed to be modified to obtain another bijective S-box is 2.

Definition 2.5.1 (Couplings). Let us take a bijective S-box S�n,n� and its corresponding
DLUT

SDLUT � �d0,d1,�,di,�,d2n
�1�.

We define as a coupling each set rds, f �ds� jx, while the set of all couplings in S as rS �x.

Lemma 2.5.3 (Couplings Set Cardinality). Given a bijective S-box S�n,n�:

¶rS �x¶ � n2n�1
.

Definition 2.5.2 (Couplings Pivot Set). We define the set rS �ix as the maximum subset of
the coupling set of a bijective S-box S(n,n), which holds couplings operating only on column
i of the SLUT , i.e. couplings of the form rdx, f �dx�ix. We call each such maximum subset
rS �ix a couplings pivot set operating on column i of SLUT .

Corollary 2.5.1 (Properties of Couplings Pivot Sets). Considering the definitions of the
Couplings Pivot Sets on bijective S-box S(n,n), the following properties hold:

• ¾i j j,rS �ix=rS � jx �o
• ¾i, ¶rS �ix¶ � 2n�1

• ¶�n
i�1rS �ix¶ � n2n�1

Definition 2.5.3 (Coordinate Decomposition). Let S be an �n,n� bijective S-box. We take a
random element with coordinates �x,y� of its corresponding linear approximation table SLAT .
We denote the binary representation of y as:

y�2� � bn�12n�1
�bn�22n�2

���b121
�b020
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The coordinate decomposition of an element with coordinates �x,y�, denoted by Wx,y, is the
set:

Wx,y �

n�1

�
i�0,bij0

rbi�n� i�1�x

Definition 2.5.4 (Nonlinearity Bottleneck Snapshot – NBS). We define the nonlinearity
bottleneck snapshot SNBS of a bijective S-box S�n,n� as a set of tuples holding all coordinates
of the elements of SLAT , which are holding down the nonlinearity value SNL of S, i.e.

�x,y� " SNBS� ¶LAT S�x��y�¶ � 2n�1
�SNL

Definition 2.5.5 (NBS Coordinate Decomposition – NBSCD). We define the nonlinearity
bottleneck snapshot coordinate decomposition of a bijective S-box S�n,n�, denoted by ∆S, as
a set of all SNBS coordinate decompositions, i.e.:

∆S � �
�x,y�"SNBS

Wx,y

Definition 2.5.6 (Degree of Descendibility – ΛS). For a given bijective S-box S�n,n�, we
define a family of sets ΨS, s.t.:

E "ΨS�¾Q " ∆S ¿q " Q � q " E

The degree of descendibility of S is the minimum cardinality of a set in ΨS, i.e.:

ΛS � min
¾A"ΨS

¶A¶

Corollary 2.5.2 (Basic properties of ΛS). For a given bijective S-box S�n,n�:

• ΛS " N

• ΛS " �1,n�
• ΛS � 1� ¶�s"∆S

¶ ' 1

• ΛS % 1� �s"∆S
�o

Definition 2.5.7 (Descendible Coordinate). For a given bijective S-box S�n,n�, we say that
coordinate j is descendible if the following properties hold:

• ΛS � 1
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• j "�s"∆S

Definition 2.5.8 (Couplings Transformation). For a given bijective S-box S�n,n� and some
coupling ci, we denote as Sci the S-box created by applying coupling ci on S. We define this
transform as coupling transform denoting it with the operator `, i.e.

Sci
� S` ci

When we have a list of couplings rc1,c2,�,cix, which we want to use for transformation of
S in this exact order, we will use the following expression:

Sc1,c2,�,ci
� S` c1 ` c2 `�` ci

Lemma 2.5.4 (Couplings Inverse). For a given bijective S-box S and any coupling c, the
following property holds:

S � S` c` c

Definition 2.5.9 (Coupling Transformation Matrix – CTM). For a given bijective S-box
S�n,n� and some coupling ci, we denote as Sci

LAT the transformed LAT of S caused by ci.
We define the coupling transformation matrix of ci on S, as:

Sci
CT M � Sci

LAT �SLAT

Lemma 2.5.5 (Pivot Couplings Commutativity). For a given bijective S-box S�n,n�, for any
two couplings ca and cb, which belongs to the same couplings pivot set rS �ix, we have the
following property:

S` ca ` cb � S` cb ` ca

Corollary 2.5.3. For a given bijective S-box S�n,n�, for any couplings c j, which belongs to
the same couplings pivot set rS �ix, we have the following properties:

Sca,cb
LAT � Scb,ca

LAT � SLAT �Sca
CT M�Scb

CT M

Sc1,c2,�,ck
LAT � SLAT �

k

=
i�1

Sci
CT M

Lemma 2.5.6 (CTM Values). The value of each element in a CTM is -2, 0, or 2.

Corollary 2.5.4. For a given bijective S-box S�n,n�, let us apply transformations of couplings
c1,c2,�,ck, which belongs to the same couplings pivot set rS �ix. The elements of the
resulting CTM are numbers in the interval ��2k,�2�k�1�,�,�2,0,2,�,2�k�1�,2k�.
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Definition 2.5.10 (S-box Coordinate Extended LAT – CELAT). For a given bijective S-box
S�n,n�, and a given coordinate i, we can define the one-dimensional linear approximation
table of S as:

SLAT 1D�x� � SLAT �x © 2n��x % 2n�
Furthermore, we denote all the couplings in the couplings pivot set rS �ix as c1,c2,�,c2n�1 .
We have:

Sc1
CT M � Sc1

LAT �SLAT

Sc2
CT M � Sc2

LAT �SLAT

�

S
c2n�1

CT M � S
c2n�1

LAT �SLAT

(2.6)

Following the same concept used in the construction of one-dimensional LAT of S, we can
define one-dimensional CTM, i.e.:

Sc1
CT M1D

� Sc1
LAT1D

�SLAT1D

Sc2
CT M1D

� Sc2
LAT1D

�SLAT1D

�

S
c2n�1

CT M1D
� S

c2n�1

LAT1D
�SLAT1D

(2.7)

Finally, we define S-box i-th Coordinate Extended LAT Si
CELAT as the following table:

Si
CELAT �

Ẑ̂̂
^̂̂̂̂
^̂̂̂̂
^̂̂̂̂
^̂\

SLAT1D

Sc1
CT M1D

Sc2
CT M1D

�

S
c2n�1

CT M1D

[____________________]
Si

CELAT has 2n�1
�1 rows and 22n columns.

Definition 2.5.11 (Binary Integer Programming – Feasibility or SAT Problem). A feasibility
binary integer program is a problem of the form:

subject to Ax & b
x ' 0 binary
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where the data consists of �m,n�-matrix A and column vectors b and x with respective sizes
of m and n. The column vector x contains the binary variables to be optimized. We say that
the set S is the set of feasible solutions, i.e.:

S �� sx " Bn
� Ax & by

In the context of the feasibility problem we are looking for just one element in the set S, not
the optimal one.

For an �n,n� S-box S, we denote 2n�1 by r and 22n by m. Let us construct its CELAT
using coordinate i i.e:

Si
CELAT �

Ẑ̂̂
^̂̂̂̂
^̂̂̂̂
^̂̂̂̂
^̂\

SLAT1D

Sc1
CT M1D

Sc2
CT M1D

�

S
c2n�1

CT M1D

[____________________]

�

Ẑ̂̂
^̂̂̂̂
^̂̂̂̂
^̂̂̂̂
^̂\

l1 l2 � lm
c11 c12 � c1m

c21 c22 � c2m

� � � �

cr1 cr2 � crm

[____________________]
We want to apply some coupling transformations subset P � p1, p2,�, pk which belongs

to the pivot coupling set rS �ix. From corollary 2.5.3 it follows that:

Sp1,p2,�,pk
LAT � SLAT �

k

=
i�1

Spi
CT M

We denote
Sp1,p2,�,pk

LAT1D
� �q1,q2,�,qm�

Then, we can construct the following system of equations:

q1 � l1� c11x1� c21x2��� cr1xr

q2 � l2� c12x1� c22x2��� cr2xr

�

qm � lm� c1mx1� c2mx2��� crmxr

(2.8)

where x � �x1,x2,�,xr� " Br, and xt � 1 iff pt " P. We have SNL � 2n�1
�maxm

j�1 abs�l j�.
If coordinate i is descendable, we can construct the following binary integer programming
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feasibility problem:

subject to $ Si
CELAT

T
,x % & A

subject to $ Si
CELAT

T
,x % ' B

x ' 0 binary

where A is a column vector with 2n�1
�1 elements, each equal to 2n�1

�SNL�2, while B is
a column vector with 2n�1

�1 elements, each equal to SNL�2n�1
�2. Let us denote the SAT

problem descending on coordinate i in equation 2.5 as ΩS,i. This is NP-hard 2 problem with
a total of 2n�1 binary variables and 2n

�2 restrictions. However, we can further divide the
problem to an union of subproblems, i.e.:

ΩS,i �

n�1

�
d�1

Ω
d
S,i

where each subproblem Ω
d
S,i is modelled using the following restrictions:

subject to $ Si
CELAT

T
,x % & A

subject to $ Si
CELAT

T
,x % ' B

subject to <r
j�1 x j � d
x ' 0 binary

Solving any of the subproblems will yield a solution to the original problem.
For subproblems Ω

d
S,i of a binary integer programming feasibility problem ΩS,i, the

following property holds:
n�1

�
d�1

Ω
d
S,i �o

It is easy to show that the search space of the subproblem Ω
d
S,i for the bijective S-box

S�n,n� is �2n�1

d �.

Theorem 2.5.1. For a subproblem Ω
d
S,i, all restrictions with the participation of some l j for

which the following inequalities hold:

l j & 2n�1
�SNL�2d�2

l j ' SNL�2n�1
�2d�2

(2.9)

2The complexity class of decision problems that are intrinsically harder than those that can be solved by a
nondeterministic Turing machine in polynomial time.
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are always satisfied.

Definition 2.5.12 (CELAT with radius R). For a given bijective S-box S�n,n�, and a given
coordinate i, we have:

Si
CELAT �

Ẑ̂̂
^̂̂̂̂
^̂̂̂̂
^̂̂̂̂
^̂\

l1 l2 � lm
c11 c12 � c1m

c21 c22 � c2m

� � � �

cr1 cr2 � crm

[____________________]
We define as Si,R

CELAT a matrix constructed of those columns of Si
CELAT with first element

ρ , for which the following inequalities hold:

ρ % 2n�1
�SNL�2R�2

ρ $ SNL�2n�1
�2R�2

(2.10)

Hence, a given suproblem Ω
d
S,i could be further reduced and launched on Si,d

CELAT , instead
of its corresponding full (unreduced) version Si

CELAT .
We have implemented the algorithm by using Python and the Gurobi SAT Solver [71]. We

analyzed two famous S-boxes: the Skipjack S-box, developed by the U.S. National Security
Agency (NSA) [138], which we will denote as Sk, and the Kuznyechik S-box, standardized
by the Russian Federation’s standardization agency [53], which we will denote as Kk. We
have shown how Sk and Kk could be optimized to S-boxes with higher nonlinearities by
tweaking respectively just 4 and 12 bits (out of 2048).

2.5.1 The ACNV problem

The ACNV optimization problem could be represented as a special, and significantly lighter,
in terms of computational burden, case of Si,R

CELAT , where S denotes the initial S-box and i
denotes the coordinate of S to be optimized.

We have initiated the optimization routine on a bijective S-box from [50], possessing the
highest, currently known, ACNV of 114.5. It is composed of 6 coordinates with a nonlinearity
value of 114 and 2 coordinates with a nonlinearity value of 116. The algorithm was able
to optimize it to an S-box with ACNV 116 with overall nonlinearity of 92. Significant
efforts were made to reach higher ACNV - reaching higher ACNV would reveal a balanced
Boolean function having a nonlinearity of 118. Unfortunately, all tried instances were proofed
infeasible.



Chapter 3

On the S-box Reverse Engineering

3.1 Introduction and motivation

The reasons for obfuscating the design of a given S-box are manifold. For example, the
initial S-boxes used in the Data Encryption Standard (DES) [55] were originally modified by
NSA. The reasons for applying those modifications were not known. However, in [33], D.
Coppersmith announces the motivation behind the S-box modifications. It appears that the
agency knew about the existence of differential attacks about 20 years before the academic
world. However, they kept that in secrecy. D. Coppersmith further commented on this secrecy
decision by saying:

... that was because [differential cryptanalysis] can be a very powerful tool,
used against many schemes, and there was concern that such information in the
public domain could adversely affect national security.

Another reason for hiding a given S-box design could be related to some hidden structure,
the knowledge of which could be exploited to gain a significant advantage in terms of
hardware implementation. For example, as discovered in [21], the S-boxes used in the hash
function Streebog and the 128-bit block cipher Kuznyechik, standardized by the Russian
Federation, are designed with such a hidden structure. A user knowing the not published
decomposition could implement the given S-box with a significantly smaller hardware
footprint, allowing him to reach an up to 8 times faster S-box look-up.

Another practical reason for hiding the design of a given S-box could be related to an
encapsulated trapdoor as discussed in [128]. Although the aforementioned trapdoor can be
easily detected, as shown in [151], the motivation for finding other trapdoor S-box techniques
should not be underestimated.
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There are various tools and techniques, which could help us to initiate some S-box reverse
engineering (see [119][20][120]). In the next section, the concept of S-box spectrography is
presented. A good example of using spectrography for S-box reverse engineering purposes is
the Pollock representation (see [21]).

3.2 S-box spectrography

We can isolate the coordinates, in terms of row and column indexes, of those elements
of the LAT of a given S-box S�n,m�, which are equal to some fixed value or, in the more
unrestricted case, belong to some set of values of our choice. We define each distinct isolation
as a spectra channel. For convenience, we denote as §E

S the spectra channel isolated from
an S-box S, by using restriction set E. We can further visualize the channel as a �2n

�2m�
matrix plot – those elements, which belong to the restriction set are colored in red, while the
remaining elements are left colorless.

During our experiments, we repeatedly generated random bijective �8,8� S-boxes and
thoroughly analyzed their spectra channels. However, we didn’t find any anomalies, symme-
tries, or visual patterns. It is really difficult to distinguish visually their spectra channel plots
from plots populated with randomly scattered points.

In [132] a rich database of popular S-boxes is published. The rest of this section presents
our results in applying spectra channel analysis on the aforementioned S-box collection.

Anubis is a block cipher, which was submitted to the NESSIE project [127]. The Anubis
S-box is constructed by using involutions. It appears that such constructions are easily
detected by using some spectra channel plot of the form §�x,x.

CLEFIA is a 128-bit block cipher supporting key lengths of 128, 192 and 256 bits [137].
We analyzed its S-boxes to find anomalies in their plots. There are respectively vertical and
horizontal red lines immediately next to the x and y axis, while a complete red square is
visible in the upper-left of the matrix plot.

The Cellular Message Encryption Algorithm (CMEA) is a US block cipher that was used
for securing mobile phone communications [126]. By analyzing the §0

CMEA plot we found
anomalies immediately next to the y-axis horizontal red lines.

Crypton is a new 128-bit block cipher algorithm proposal for AES. The S-box in the first
version (S0) [93] was further revised and replaced by four S-boxes (S1,S2,S3 and S4) [94].
Anomalies are found in S0 by the restriction r�8,8x. All revised Crypton S-boxes possess
anomalies in their spectra channel plots as well.

Another NESSIE project block cipher submission is the CS-cipher [144]. By using
spectra channel §0

CS a picturesque plot was discovered.
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The content scrambling system (CSS) [13] is used to encode DVDs. We analyzed
the implemented S-box to find sections with anomalies. We further analyzed the S-boxes
published in Enocoro [148], Fantomas [69], FLY [83], Fox [82] and Iceberg [143]. Enocoro
anomalies are clearly visible in spectra channel with restriction E � r0x. White rectangular
covering the lower values on x-axis of Fantomas is detected on spectra channel §�4,4

Fantomas,
while smaller almost perfect rectangulars are visible on the x-axis of FLY spectra channel
§�8,8

FLY . Analyzing Fox by applying spectra channel §�4,4
Fox reveals a grid-alike structure. The

Iceberg S-box is involution.
Anomalies are found in Iraqi [150], iScream [70], Khazad [10], Lilliput [3] and Picaro

[123]. The spectra channel for §�1,1
Iraqi is distinguishable from pseudo-randomly generated

S-box by the striped-alike structure. Furthermore, we can deduce from §�1,1
Iraqi that the Iraqi

S-box is not bijective. Fractal-alike structure is revealed in plot §�4,4
iScream, while involution

is observed in §0
Khazad . Analyzing the Lilliput S-box a Tetris-alike structure is revealed on

spectra channel §�4,4
Lilliput , while fence-alike structure is clearly visible in Picaro S-box on

spectra channel §�8,8
Picaro.

By applying the same method we were able to detect anomalies in Safer [102], Scream
[30], SKINNY [5], SNOW 3G [117] and Twofish [134]. §�4,4

Scream revealed a very curious
pattern in Scream S-box. §�4,4

SKINNY is heavily partitioned, while §�2,2
SNOW3G is completely blank,

which, for example, is completely unusual for a pseudo-randomly generated S-box. In
Twofish, two S-boxes π0 and π1 are used. Both of them are very similar in terms of their
spectra channels. Furthermore, they are distinguishable from pseudo-randomly generated
S-boxes as well (lines on the y-axis are visible).

Finally, we analyzed the S-boxes used in Whirlpool [12], Zorro [58] and ZUC [152]. All
of them are easily distinguishable from pseudo-randomly generated S-boxes by using spectra
channels §0

Whirl pool , §�2,2
Zorro and §�8,8

ZUCS0
.

3.3 Automatic spectral analysis of S-box LAT, DDT, XORT,
ACT spectras

We could automate the process of anomaly discovery in a given S-box S LAT spectra.
Moreover, it could be easily generalized for other spectras of S like the DDT, ACT, and
XORT.

SLAT has 2n columns. We denote as ST
LAT �i� the i-th column of SLAT . We further denote

as σ�S, i,e� the total number of occurrences of e and �e in ST
LAT �i�, while σind�S,e� denotes
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the set of indexes of columns of SLAT , s.t:

¾i1ji2,i1,i2"σind�S,e� � σ�S, i1,e� � σ�S, i2,e�.
For some reasonable threshold value t and two different values e1 and e2, in respect

of pseudo-randomly generated S-box, σind�S,e1� � σind�S,e2�, where σ�S, i,e1� ' t and
σ�S, i,e2� ' t, is highly unlikely. During our experiments, we generated more than 105

pseudo-random S-boxes. Only in 0.3% of all generated S-boxes a collision was found and
always with length 8. Let’s denote such collision as Γ�S, t,e1,e2, I�, where I is a set of
indexes of columns of SLAT .

We have found a collision in the Russian Federation’s standardization agency Kuznyechik
S-box [68], which was not visible during our spectra channel analysis. The indexes of the
collision confirm the observations made in [21]. We can apply the same strategy on LAT rows
(instead of columns). Collisions are found in the state standard of Republic of Belarus (BelT)
[131]. We further analyzed various S-box DDT spectra. We find a collision in π3 S-box of
the new encryption standard of Ukraine Kalyna [116]. By applying the same method to the
transformed DDT, more collisions are found in Kalyna and BelT. We found collisions in
various S-boxes by using the ACT spectra as well.

We further analyzed the XORT of various S-boxes. A visual interpretation of some XORT
relies on the order in which the columns of XORT are populated. In the original definition,
the columns are populated in lexicographical order. However, we can tweak that order and
populate the XORT by first plotting the n coordinates of a given S-box S�n,n�, then all linear
combinations of S coordinates with two terms, three terms, and so on, until the last column,
which is the XOR of all n coordinates. Such rearrangement makes sense since we group the
XORs of the main building blocks of the S-box (the coordinates) into the most significant
columns of XORT (the left ones). We analyzed the XORT and rearranged XORT plot of
BelT S-box. The lexicographically sorted XOR reveals some vertical lines, which is not
unusual for XOR tables of pseudo-randomly generated S-boxes. However, the rearranged
XORT reveals some interesting leafs-alike patterns in the upper left section. Furthermore,
each consequent column is similar to the previous column when upward-slide.



Chapter 4

Binary Sequences and Their
Autocorrelation

Sequences with low autocorrelation functions are necessary for a variety of signal and
information-processing applications. For example, in pulse codes-based compression for
radars and sonars, such sequences are used to obtain high resolution. The shifts of sequences
with low autocorrelation can be also used for better synchronization purposes or to identify
users in multi-user systems. Due to their big practical importance, these sequences have
been widely studied and various methods for constructing sequences with small values of
autocorrelation are developed.

Let B � �b0,b1,�,bn�1� be a binary sequence of length n % 1, where bi " r�1,1x,0 &
i & n�1. The aperiodic autocorrelation function (AACF) of B is given by

Cu�B� �
n�u�1

=
j�0

b jb j�u, f or u " r0,1,�,n�1x.

We will note that the AACF is originally defined in the interval

r�n�1,�n�2,�,�2,�1,0,1,2,�,n�1x.
As the AACF is an even function with Cu�B� � �Cu�B�, we will consider it for the interval
r0,1,�,n�1x only. The C0�B� is called mainlobe and the rest Cu�B� for u " r1,�,n�1x
are called sidelobe levels. We define the peak sidelobe level (PSL) [146] of B as

PSL�B� � max
0$u$n

¶Cu�B�¶.
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The value of the PSL can also be represented in decibels

PSLdb�B� � 20log�PSL�B�
n 
 .

Another important measure of an AACF is the merit factor (MF), which gives the ratio
of the energy of the mainlobe level to the energy of sidelobe levels, i.e.

MF�B� � C0�B�
2<n�1

u�1¶Cu�B�¶2
.

The binary sequences of low autocorrelation are of special interest and some of the
well known such sequences are the Barker codes [9], M-sequences [67], Gold codes [66],
Kasami codes [84], Weil sequences [130], Legendre sets [124] and others (see [92][139]).
Barker sequences are known to have the best autocorrelation properties, but the longest
such sequence is of length 13. M-sequences, Gold codes, and Kasami sequences have ideal
periodic autocorrelation functions but have no constraints on the sidelobes of their aperiodic
autocorrelation functions. As summarized in [111], during the years a variety of analytical
constructions and computer search methods are developed to construct binary sequences
with relatively minimal PSL. By an exhaustive search the minimum values of the PSL for
n& 40[96], n& 48[8], n� 64[35], n& 68[88], n& 74[90], n& 80 [91], n& 82 [89] and n& 84
[87] are obtained. The best currently known values for PSL for 85 & n & 105 are published
in [112], and for n ' 106 in [54].

4.1 Efficient Generation of Low Autocorrelation Binary
Sequences

In this section an efficient and easy-to-implement heuristic algorithm is suggested and, as an
illustration of its effectiveness, it was further utilized for the generation of binary sequences
with lengths between 106 and 300. The generated sequences are better, in terms of PSL
values than a significant part of those obtained in [54] ones. The algorithm can also be used
for the generation of sequences with lengths greater than 300.

Since our goal is to lower the PSL of a given binary sequence, i.e. to lower the value
of PSL(B), it makes sense to simultaneously lower the values of each Cu�B�, for u "
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r1,�,n�1x. By making this observation, we define the following fitness function:

F�B� �
n�1

=
u�1

¶Cu�B�¶P
�

n�1

=
u�1

���¶
n�u�1

=
j�0

b jb j�u¶
��
P

,

where P is the magnitude of the fitness function, i.e. the higher the magnitude is the higher the
fitness function intolerance to large absolute values of Cu�B�’s will be. We made experiments
with various values of P and the best results were obtained for values in the interval �3,5�.
Lower values of P make the fitness function too tolerant to higher absolute values of the
PSLs Cu�B�, while higher values of P are heavily populating the heuristic topology with
local minimums. We have fixed the magnitude P of the fitness function to 4.

Let’s denote the i-th position of a binary sequence B of length n as bi. Flipping the i-th
position of B is to interchange bi with �bi. By the neighborhood of the binary sequence B,
denoted by N�B�, we define the set of all binary sequences constructed from B by making a
single flip in B.

The optimization process takes as input the length of the binary sequence n, the fitness
function F , the threshold value t, the two integers hmin and hmax defining the flipping
allowance interval, and the goal G which is the desired final PSL value to be reached.

In the beginning, we generate a random binary sequence B of length n. Then, by searching
the neighborhood of B, we look for a better binary sequence, i.e. a binary sequence with
a smaller fitness value. If some X out of the neighbors of B has PSL equal to G we output
X and quit. If during the search of the neighborhood no better binary sequence is found,
we are stuck in some local minimum B¬. In order to escape the local minimum we flip h
randomly chosen elements of B¬, where h " �hmin,hmax�. We will call such try a quake.
In the case when t consecutive quakes are not sufficient to escape the local minimum, we
start the process from the beginning by randomly generating a new binary sequence, i.e.
the shotgun hill-climbing approach. The algorithm stops when a binary sequence with the
searched value of the PSL is found or when the preliminary defined number of restarts is
reached.

We improve the PSL values for 95 from the launched 195 lengths. The remaining
100 binary sequences have the same values of the PSL as the currently known best ones.
Furthermore, all of them are unique and unpublished before.

The suggested in this section algorithm is highly parallelizable so that a multicore
architecture can be fully utilized. It is implemented in Python on a single mid-range computer
with an octa-core CPU. During our experiments, the time required to reach a given PSL
goal was between a few minutes to several hours. Furthermore, with each instance of the
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algorithm, we repeatedly reached binary sequences with lower or the same PSL than the
state-of-the-art algorithms.

4.2 On the Generation of Long Binary Sequences with
Record-Breaking PSL Values

M-sequences, Gold codes, and Kasami sequences have ideal periodic autocorrelation func-
tions but have no constraints on the sidelobes of their aperiodic autocorrelation functions, i.e.
their PSL value is not pre-determined. The same is true for Legendre sets and Rudin-Shapiro
sequences. Furthermore, it is difficult to calculate the growth of the PSL of the aforemen-
tioned families of binary sequences. It is conjectured that the PSL values of m-sequences
grow like O�Ón�, making them one of the best methods to straightforwardly construct a
binary sequence with near-optimal PSL value. However, as stated in [81]:

The claim that the PSL of m-sequences grows like O�Ón�, which appears fre-
quently in the radar literature, is concluded to be unproven and not currently
supported by data.

As summarized in [111], during the years a variety of analytical constructions and
computer search methods are developed to construct binary sequences with relatively minimal
PSL. It appears that the current state of art computer search methods, like CAN [73], ITROX
[140], MWISL-Diag, MM-PSL [141] or DPM [86], could yield better, or at least not worse
PSL values, than the algebraic constructions. However, when the length of the generated
by a given heuristic algorithm binary sequences rises, so is the overall time and memory
complexity of the routine. As concluded in [109]:

As an indication of the runtime complexity of our EA1, the computing time is
58009 s or 16.1136 h for L=1019. For lengths up to 4096, the computing time
required empirically shows a seemingly quadratic growth with L.

Thus, the main motivation of this section is to create an efficient and lightweight algorithm,
in terms of time and memory complexity, to address the heuristic generation of very long
binary sequences with near-optimal PSL values.

Let us denote Cn�i�1�B� by Ĉi�B�. Since this is just a rearrangement of the sidelobes of
B, it follows that:

BPSL � max
0$u$n

¶Cu�B�¶ � max
0&u$n�1

¶Ĉu�B�¶.
1EA stands for Evolutionary Algorithm
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We denote as ΩΨ the array of all the consequent sidelobes of Ψ. The calculation of ΩΨ,
corresponding to some random binary sequence Ψ, is not linear. The time complexity of
the trivial computational approach is O�n2� (two nested for cycles). However, as shown
in Wiener–Khinchin–Einstein theorem [149], the autocorrelation function of a wide-sense-
stationary random process has a spectral decomposition given by the power spectrum of that
process, we can use one regular and one inverse Fast Fourier Transform (FFT), to achieve
a faster way of calculating ΩΨ. Despite its time complexity of O�n logn�, its memory
requirement is significantly higher than the trivial computational approach.

By exploiting the observations made in this section, we present an algorithm that can
calculate the array ΩΨ f (Ψ f corresponds to Ψ with flipped element f ), if we hold the array
ΩΨ in memory, with time and memory complexity of O�n�.

We have implemented the algorithm by using the C language and a mid-range computer
station. Given the linear time and memory complexity of the algorithm, we were able to
repeatedly generate binary sequences with record-breaking PSL values for less than a second.
As stated in [109], the time required to reach a PSL value 26, for a binary sequence with
length 1019, is 58009 seconds or 16.1136 hours. For comparison, we reach this value for
less than a second.

We present the results achieved by the algorithm, for binary sequences with lengths x2

for x " �18,44�, compared with the currently known state of art algorithms found in the
literature, like CAN [73], ITROX [140], MWISL-Diag, MM-PSL [141], DPM [86], 1bCAN
[95]. We will refer to this collection of algorithms as collection A. We want to emphasize,
that the differences between the proposed algorithm with algorithms from collection A are
manifold. For example, we do not use converging functions, mini regular or quadratic
optimization problems, or floating-based arithmetic. Furthermore, the provided algorithm
does not suffer from a unique navigation trace through the sequence search space. The
experiments were based on 12 instances of each algorithm (each ran to a distinct thread
of the processor). Furthermore, the lifetime of our algorithm is restricted to 1 minute. We
significantly outperform the best results achieved by state-of-the-art algorithms. In fact, for
some of the lengths, less than a second was needed to reach a record-breaking PSL.

In contrast to some other state-of-the-art algorithms, the computing complexity of the
algorithm presented in this work does not grow quadratically. Maybe this is the reason for
the lack of published results for binary sequences of lengths greater than 212. Nevertheless,
the results with which we can further compare are m-sequences. However, such sequences
exists only for lengths 2n

� 1, n ' 1,n " N. Our results significantly outperform the best
results achieved by m-sequences.
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4.3 Hybrid Constructions of Binary Sequences with Low
Autocorrelation Sidelobes

An m-sequence M � �x0,x1,�,x2m
�2� of length 2m

�1 is defined by:

xi � ��1�Tr�βα
i
�
, for 0 & i $ 2m

�1,

where α is a primitive element of the field F2m , β " F2m , and Tr is denoting the trace function
from F2m to F2.

Given an odd prime p, a Legendre sequence L with length p is defined by:

Li �

~��������
1, if i is a quadratic residue mod p

�1, otherwise.

We denote as B� ρ the binary sequence obtained from B, by left-rotating it ρ times. By
definition, B� ¶B¶ � B. Furthermore, if bi is the element of B on position i, we will denote
as b

�ρ

i the element of B� ρ on position i.
A comparison, in terms of algorithm efficiency (the ratio of the beneficial work performed

by the algorithm to the total energy invested) and actual effectiveness (the quality of the
achieved results), was made. The best results were achieved by the SHC (Shotgun Hill
Climbing) algorithm, regarding the binary sequences with lengths less than 300, and HC
(Hill Climbing), for all the remaining lengths. However, the approximated binary sequence’s
length, from which HC starts outperforming SHC, is fuzzy.

As observed in Section 4.2 of this thesis, or [49], the PSL-optimization process of very
long binary sequences is a time-consuming routine, despite the algorithm’s linear time and
memory complexities. Thus, HC avoids restarts, i.e. re-initializing the starting state with
a pseudo-random binary sequence. However, re-initialization appears to be significantly
beneficial when dealing with PSL optimization of binary sequences with relatively small
lengths, such as the SHC algorithm.

By considering the observations made above, we have revisited the SHC algorithm.
Considering the significant changes made in the SHC algorithm, the fitness function

parameters are carefully analyzed, re-evaluated, and updated. Given a binary sequence Ψ,
both algorithms (SHC and HC) are sharing the same fitness function F , s.t:

F�Ψ� � =
x"ΩΨ

¶x¶4
� =

x"ΩΨ

x4
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During our experiments, we used a single general-purpose computer with a 6-cored
central processing unit architecture, capable of running 12 threads simultaneously. By using
the SHC revisited kernel, we were able to reach binary sequences with optimal PSL values
for each length in �1,82�. Given the linear time and memory complexities of the algorithm,
for the majority of those lengths, the PSL-optimal binary sequences were reached for less
than a minute.

We have further launched the algorithm on binary sequences with lengths up to 300.
Almost all of the results known in the literature were improved. More precisely, we have
improved 179 out of 195 cases. Curiously, for some lengths, we have even revealed binary
sequences with record-breaking PSL values, having a distance of 2 to the previously known
PSL record value.

In [36], the best results achieved by the D-Wave 2 quantum computer for binary sequences
with length 128 is PSL 8, while our algorithm could reach PSL 6. For longer lengths, for
example, binary sequences with lengths 256, the best PSL achieved by the D-Wave 2
quantum computer was 12, while during our experiments we reached PSL values of 10.
We reached PSL values of 10 for binary sequences up to 271. For completeness, since the
D-Wave 2 quantum computer is tested on binary sequences with length 426, we have further
launched the algorithm on the same length. Surprisingly, the algorithm was able to find
binary sequences with PSL values of 17 (the best value achieved by the quantum computer)
for less than a second. It reached PSL values of 16, and even 15, for less than a second as
well. However, PSL value of 14 was noticeable harder to reach (199 seconds).

Recently, in [37] a multi-thread evolutionary search algorithm was proposed. We were
able to improve almost all of the best PSL values from the aforementioned paper - usually
for less than a second. For example, the best PSL value for binary sequences with length
3000 achieved in [37] is 51. We have launched the algorithm on binary sequences with the
same length. Record-breaking PSL values of 44 and 43 were reached for respectively 111
and 371 seconds.

The reasoning behind announcing one binary sequence as long, or short, is ambiguous.
Measuring the largeness of a given binary sequence is probably more related to the capabilities
of the used algorithm than the actual length itself. From a practical point of view, some
algorithms, or their implementations, would not even start the optimization (or construction)
process, since their computational capabilities (or hardware restrictions) would not be able
to process the desired length. For example, as discussed in [36], the usage of a 512-qubit
D-Wave 2 quantum computer limits the code length that can be handled, to at most 426,
due to a combination of overhead operations and qubits unavailability. Moreover, it was
estimated that a 2048-qubit D-Wave computer could handle binary sequences with lengths
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up to 2000. Hence, the exact fixed value differentiating short from long binary sequences is
still unclear.

From now on, we denote the algorithm in this section as A with fixed power of the fitness
function to 4 if not specified otherwise.

4.3.1 Using A as an m-sequences extension

The following procedure is proposed:

• Choose a primitive polynomial f over F2m

• Fix an initial element a over F2m

• Convert f to a linear-feedback shift register L

• Expand the L to a binary sequence L, ¶L¶ � 2m
�1.

• Launch A with L as an input

The primitive polynomials over F2m could be calculated in advance. Furthermore, the
PSL of L, where L is seeded by some initial element a over F2m , could be specially chosen to
have the minimum possible value. This is easily achievable by using the theorems discussed
later in this chapter (see Subsection 4.3.3):

We were able to repeatedly reach record-breaking binary sequences of length 131071
having PSL equal to 359. The time required was less than 2 minutes, which was a signifi-
cant improvement over the time required for A (starting from pseudo-randomly generated
sequences) to reach binary sequences with PSL close to 359: approximately 3 days. Leaving
A to work for another 46 minutes it even reached binary sequences of length 131071 with
PSL 356.

The proposed procedure, as demonstrated, is highly efficient and is capable to reach
binary sequences with A -long lengths and record-breaking PSL values for a few minutes.
Unfortunately, it is applicable on binary sequences with lengths of the form 2n

� 1 only.
However, throughout the next section, we provide another procedure that can generate binary
sequences with length p and record-breaking PSL values, where p is a prime number.

4.3.2 Using A as an Legendre-sequences extension

The following procedure is proposed:

• Choose a prime number p
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• Generate the sequence L � �t1, t2,�, tp�
• For i, s.t. i " N, 1 & i & p, and in case i is a quadratic residue mod p, replace ti with 1.

Otherwise, replace ti with -1.

• Launch A with L as an input

As the numerical experiments suggested in [44], it is highly unlikely that a Legendre
sequence with length p, for p % 235723, or any rotation of it, would yield a PSL value less
than

Ó
p. Having this in mind, experiments with initializing A (α=8) with a rotation of

Legendre sequence with length 235747 were made (the next prime number after 235723).
Again, by using SIMD-capable devices, we have extracted the PSL-optimal rotation among
all possible rotations of a Legendre sequence with length 235747. More precisely, on rotation
60547, a binary sequence with PSL equal to 508 was yielded. A was able to significantly
optimize this binary sequence. For less than 25 minutes, using only 1 thread of a Xeon-2640
CPU with a base frequency of 2.50 GHz, a binary sequence with PSL equal to 408 was
found.

Since
Ó

235747 � 485.54, it follows that 408 is significantly smaller than the expected
value of 485.54. In fact, by leaving A for a total of 2.21 hours, a binary sequence with length
235747 and PSL 400 was reached. More details could be found in [47].

4.3.3 On the Aperiodic Autocorrelations of Rotated Binary Sequences

The maximal length shift register sequences, or m-sequences, is a well-known algebraic
design [67]. Unfortunately, they are defined for lengths 2n

�1 only (n " N). Nevertheless, as
shown in [52], their extensive study could provide valuable insights into understanding the
world of binary sequences possessing low aperiodic autocorrelation characteristics. However,
finding the PSL-optimal m-sequences is a rigid and tedious task - during each iteration, the
PSL value of a given binary sequence B, altogether with all possible rotations of B, should
be calculated. In [81], an exhaustive search of PSL-optimal m-sequence with lengths up
to 215

� 1 is given. Later, in [52], the exhaustive search study was extended with results
regarding m-sequences with lengths 216

�1 and 217
�1. Since then, no progress was made.

Similar to the problem of finding PSL-optimal m-sequences, finding PSL-optimal Legen-
dre sequences involves a significant computational burden - during each iteration, the PSL
value of the binary sequence, altogether with all possible rotations of B, should be calculated.
This explains why the numerical results regarding the PSL-optimal Legendre sequences are
scarce. For example, in [135], Fig.4, a list of all PSL-optimal Legendre sequences, up to
length 3500 only, is given.
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The routine of finding the minimum PSL among all the possible rotations of a given
binary sequence plays an important role in the overall computational burden. By making
some observations of the behavior of the sidelobes array in a rotated sequence, we were
able to project the routine to a perfectly balanced parallelizable algorithm. This allows us to
efficiently utilize the computational possibilities of modern GPUs. Hence, we were able to
exhaustive search all m-sequences with lengths 218

�1, 219
�1 and 220

�1, as well as finding
all optimal Legendre sequences with lengths up to 432100 - something out of reasonable
computational reach until now.

We denote as B� ρ the binary sequence obtained from B, by left-rotating it ρ times. By
definition, B� ¶B¶ � B. Furthermore, if bi is the element of B on position i, we will denote
as b

�ρ

i the element of B� ρ on position i.

Theorem 4.3.1. Given a binary sequence B � b0b1�bn�1 with length n, the following
property holds:

Ĉi�B� 1��Ĉi�B� � b0 �bi�1�bn�i�1�
Theorem 4.3.2. Given a binary sequence B � b0b1�bn�1 with length n, the difference
Ĉi�B� ρ��Ĉi�B� �ρ �1�� is equal to b�ρ�1� mod n�b�i�ρ� mod n�b�n�i�ρ�2� mod n�.

Let us denote as ΩB the array of all the sidelobes of a some binary sequence B with
length n, or more formally: ΩB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B��. By using Theorem 4.3.2 and
the inherited relationship between elements of ΩB�ρ and ΩB��ρ�1�, we can calculate ΩB�ρ ,
given ΩB��ρ�1�, by using n� 1 distinct parallel threads. Two very beneficial properties
should be emphasized:

• The threads are independent of each other.

• The pool of the threads is perfectly balanced in terms of synchronization, i.e. if we
have two distinct threads ti and t j, the arithmetic operations involved throughout the
calculation process of ti and t j are the same.

This scenario suits well in the context of the single instruction, multiple data (SIMD)
model [56]. We could dedicate the calculation of Ĉi�B� ρ� to a thread ti only since the
aforementioned calculation is independent of other threads’ results. Moreover, to optimize
the routine further, we could just in-memory replace the values of Ĉi�B�, i.e. ΩB, with the
consequent values of Ĉi�B� ρ�, i.e. ΩB�ρ , for ρ " �1,n�1�.

The observations made in the previous section allow us to design a fast routine for
finding the minimum PSL among all the possible rotations of a given binary sequence. Our
first practical application was an exhaustive search of all m-sequences with fixed lengths.
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Following the same approach, the proposed algorithm could be also successfully utilized in
finding optimal Legendre sequences.

We have implemented the m-sequence exhaustive search algorithm by using an amalgam
of programming languages2 and GPUs as SIMD-capable devices.

To analyze the efficiency of our implementation, we have further compared it to the
popular scientific computing library NumPy [115].

During the comparison, a mid-range GPU with approximately 1200 CUDA cores and
a mid-range CPU with 6 cores (12 threads) were used. For example, by using a single
mid-range GPU, altogether with the aforementioned algorithm, the time required to find the
PSL-optimal binary sequence, among the set comprised of a binary sequence B of length
220
�1 and all the possible rotations of B, would be 191 seconds. For completing the same

calculation on a mid-range CPU, and by using a single thread, the required time would be
approximately 36 years. This results in an approximate speed-up factor of 222.5.

The proposed algorithm allowed us to successfully exhaust search all possible m-
sequences with lengths 218

� 1, 219
� 1 and 220

� 1. We were aslo able to successfully
reveal all the optimal PSL values for Legendre sequences up to length 432100. The numer-
ical experiments suggest that all Legendre sequences, with or without rotation, and with
lengths n % 235723, could not reach a PSL value less or equal to

Ó
n.

2C, Python, SageMath, CUDA



Chapter 5

Binary Sequences and the Merit Factor
Problem

The merit factor problem is of practical importance to manifold domains, such as digital
communications engineering, radars, system modulation, system testing, information theory,
physics, and chemistry. However, the merit factor problem is referenced as one of the most
difficult optimization problems and it was further conjectured that stochastic search proce-
dures will not yield merit factors higher than 5 for long binary sequences (sequences with
lengths greater than 200). Some useful mathematical properties related to the flip operation
of the skew-symmetric binary sequences are presented in this chapter. By exploiting those
properties, the memory requirement of state-of-the-art stochastic merit factor optimization
algorithms could be reduced from O�n2� to O�n�. As a proof of concept, a lightweight
stochastic algorithm was constructed, which can optimize pseudo-randomly generated skew-
symmetric binary sequences with long lengths (up to 105

� 1) to skew-symmetric binary
sequences with a merit factor greater than 5. An approximation of the required time is also
provided. The numerical experiments suggest that the algorithm is universal and could be
applied to skew-symmetric binary sequences with arbitrary lengths.

5.1 On the Skew-Symmetric Binary Sequences and the
Merit Factor Problem

If Fn denotes the optimal (greatest) value of the merit factor among all sequences of length
n, then the merit factor problem could be described as finding the value of limsupn��Fn.
Several conjectures regarding the limsupn��Fn value should be mentioned. The first
conjecture published in [75] assumes that limsupn��Fn � 6. A more extreme conjec-
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ture that limsupn��Fn �� is given by Littlewood [97]. In [28], it was conjectured that
limsupn��Fn � 5. Golay [63] assumed that the expected value of limsupn��Fn is very
close to 12.32. However, in [64] he added that "...no systematic synthesis will ever be found
which will yield higher merit factors [than 6]...". Nevertheless, in [22] it was conjectured that
limsupn��Fn % 6.34. The latest assumption is based on the specially constructed infinite
family of sequences.

Since the merit factor problem has resisted more than 50 years of theoretical attacks,
a significant number of computational pieces of evidence were collected. They could be
divided into exhaustive search methods and heuristic methods.

Regarding the exhaustive search methods, the optimal merit factors for all binary se-
quences with lengths n & 60 are given in [105]. Twenty years later, the list of optimal merit
factors was extended to n & 66 [118]. The two largest known values of Fn are 14.1 and
12.1 for n equals respectively 13 and 11. It should be mentioned that both of those binary
sequences are comprised of the Barker sequences [9]. In fact, in [80] the author published
a personal selection of challenges concerning the merit factor problem, arranged in order
of increasing significance. The first suggested challenge is to find a binary sequence X of
length n % 13 for which F�X� ' 10.

A reasonable strategy for finding binary sequences with near-optimal merit factors is
to introduce some restriction on the sequences’ structure. A well-studied restriction on the
structure of the sequence has been defined by the skew-symmetric binary sequences, which
were introduced by Golay [60]. Having a binary sequence �b0,b1,�,b2l� of odd length
n � 2l�1, the restriction is defined by bl�i � ��1�ibl�i for i � 1,2,�, l.

Golay observed that odd-length Barker sequences are skew-symmetric. Therefore, an
idea of binary sequences’ sieving was proposed [62]. Furthermore, as shown in [60], all
aperiodic autocorrelations of a skew-symmetric sequence with even indexes are equal to 0.

The optimal merit factors for all skew-symmetric sequences of odd length n & 59 were
given by Golay himself [62]. Later, the optimal merit factors for skew-symmetric sequences
with lengths n & 69 and n & 71 were revealed respectively in [65] and [41], while the optimal
skew-symmetric solutions for n & 89 and n & 119 were given in respectively [125] and [118].

It should be noted, that the problem of minimizing Fn is also known as the "low autocor-
related binary string problem", or the LABS problem. It has been well studied in theoretical
physics and chemistry. For example, the LABS problem is correlated with the quantum
models of magnetism. Having this in mind, the merit factor problem was attacked by various
search algorithms, such as the branch and bound algorithm proposed in [118], as well as
stochastic search algorithms like tabu search [72], memetic algorithm combined with tabu
search [57], as well as evolutionary and genetic algorithms [41][106]. However, since the
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search space grows like 2n, the difficulty of finding long binary sequences with near-optimal
Fn significantly increases. Bernasconi predicted that [14] " ... stochastic search procedures
will not yield merit factors higher than about Fn � 5 for long sequences". By long sequences,
Bernasconi was referring to binary sequences with lengths greater than 200. Furthermore, in
[41] the problem was described as " ... amongst the most difficult optimization problems".

The principle behind basic search methods could be summarized as moving through
the search space by doing tiny changes inside the current binary sequence. In the case of
skew-symmetric binary sequences, Golay suggested [61] that only one or two elements
should be changed at a given optimization step. In case the new candidate has a better merit
factor, the search method accepts it as a new current state and continues the optimization
process. Having this in mind, a strategy of how to choose a new sequence when no acceptable
neighbor sequence exists should be considered as well.

The best results regarding skew-symmetric binary sequences with high merit factors are
achieved by [57][24][26][27]. In [57], the authors introduced a memetic algorithm with an
efficient method to recompute the characteristics of a given binary sequence L¬, such that
L¬ is one flip away from L, and assuming that some products of elements from L have been
already stored in memory. More precisely, a square �n�1,n�1� tau table τ�S�, such that
τ�S�i j � s jsi� j for j & n� i was introduced. Later, in [24] the principle of self-avoiding walk
[100] was considered. By using Hasse graphs the authors demonstrated that considering the
LABS problem, a basic stochastic search method could be easily trapped in a cycle. To avoid
this scenario, the authors suggested the usage of a self-avoiding walk strategy accompanied
by a hash table for efficient memory storage of the pivot coordinates. Then, in [26] an
algorithm called xLastovka was presented. The concept of a priority queue was introduced.
In summary, during the optimization process, a queue of pivot coordinates altogether with
their energy values is maintained. Recently, some skew-symmetric binary sequences with
record-breaking merit factors for lengths from 301 to 401 were revealed [27].

The aforementioned state-of-the-art algorithms are benefiting from the tau table τ�S�
previously discussed. It significantly increases the speed of evaluating a given one-flip-
away neighbor, reaching a time complexity of O�n�. However, the memory requirement of
maintaining τ�S� is O�n2�. Having this in mind, the state-of-the-art algorithms could be
inapplicable to very long binary sequences due to hardware restrictions.

In this section, by using some mathematical insights, an alternative to the τ�S� table is
suggested, the usage of which significantly reduces the memory requirement of the discussed
state-of-the-art algorithms from O�n2� to O�n�. This enhancement could be easily integrated.
For example, in an online repository [23] a collection of currently known best merit factors
for skew-symmetric sequences with lengths from 5 to 449 is given. The longest binary
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sequence is of length 449, having a merit factor of 6.5218. As a proof of concept, by using
just a single budget processor Xeon-2640 CPU with a base frequency of 2.50 GHz, the price
of which at the time of writing this work is about 15 dollars, and our tweaked implementation
of the lssOrel algorithm introduced in [23], we were able to find a skew-symmetric binary
sequence with better merit factor of 6.5319. The time required was approximately one day.
As a comparison, the currently known optimal results were acquired by using the Slovenian
Initiative for National Grid (SLING) infrastructure (100 processors) and a 4-day threshold
limitation per length.

It should be noted, that despite the significant memory complexity optimization intro-
duced, the state-of-the-art algorithms could still suffer from memory and speed issues. As
previously discussed, additional memory-requiring structures were needed, such as, for ex-
ample, a set of all previously visited pivots [24] or a priority queue with 640 000 coordinates
and a total size of 512MB [26].

Another issue is the "greedy" approach of collecting all the neighbors to determine the
best one. This could dramatically decrease the optimization process, especially when very
long binary sequences are involved. This side-effect was already discussed in Section 4.2.

Having those observations in mind, an almost memory-free optimization algorithm is
suggested. More precisely, both the time and memory complexities of the algorithm are linear.
This could be particularly beneficial for multi-thread architectures or graphical processing
units. During our experiments, and by using the aforementioned algorithm, we were able to
find skew-symmetric sequences with merit factors strictly greater than Fn � 5 for all the tested
lengths up to 105

�1. Thus, Bernasconi’s prediction that no stochastic search procedure will
yield merit factors higher than Fn � 5 for binary sequences with lengths greater than 200 was
very pessimistic.

Let us consider a skew-symmetric binary sequence defined by an array L� �b0,b1,�,bn�1�
with an odd length n � 2l�1. If the corresponding to L sidelobes’ array is denoted by an
array W , we have:

W � �Cn�1�L�,Cn�2�L�,�,C1�L�,C0�L�� ,
where

Cu�L� �
n�u�1

=
j�0

b jb j�u, f or u " r0,1,�,n�1x.
In this section, for convenience, we will use the reversed version of W , denoted by S, s.t:

S � �Ĉ0�L�,Ĉ1�L�,�,Ĉn�2�L�,Ĉn�1�L�� ,
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where Ĉn�i�1�L� �Ci�L�, for i " r0,1,�,n�1x. Thus,

Ĉi�L� �Cn�i�1�L� �
n��n�i�1��1

=
j�0

b jb j��n�i�1�.

Hence,

Ĉi�L� �
i

=
j�0

b jb j�n�i�1, f or i " r0,1,�,n�1x.
Furthermore, we will denote the i-th element of a given array A as A�i�. It should be noted
that the first index of an array is 0, not 1. For example,

W�n�1� � S�0� � Ĉ0�L� �Cn�1�L�.
Since L is a skew-symmetric binary sequence, the following properties hold:

• S�i� � 0, for odd values of i.

• L�l� i� � ��1�iL�l� i�.
Having this in mind, the array of sidelobes S could be represented as follows:

S � �Ĉ0�L�,0,Ĉ2�L�,0,�,0,Ĉn�3�L�,0,Ĉn�1�L�� .
For convenience, we will use the notation Si which represents the �i�1�-th element of a

given array S, or more formally Si � S�i�1�.
Thus, for every odd value r, we have

Sr � Ĉr�1�L� �
r�1

=
j�0

b jb j�n�r�1�1 �

r�1

=
j�0

b jb j�n�r �

r

=
j�1

b j�1b j�1�n�r.

In terms of L, the previous relationship could be written down as follows:

Sr �

r

=
j�1

b j�1b j�1�n�r �

r

=
i�1

L�i�1�L�n� i� r�1�.

Given a skew-symmetric sequence L with length n � 2l�1, if we flip both the elements
on positions q and n�q�1, for some fixed q " r0,1,�, lx, the resulted binary sequence Lq

will be skew-symmetric as well. Let’s denote the array of sidelobes of Lq as Sq:

Sq
� �Ĉ0�Lq�,0,Ĉ2�Lq�,0,�,0,Ĉn�3�Lq�,0,Ĉn�1�Lq�� .
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Theorem 5.1.1. Given two skew-symmetric sequences L and Lq with length n � 2l�1, and
with sidelobes arrays respectively S and Sq, where q $ l, the following properties hold:

I For ¾e, s.t. e is an even number, Sq
e �Se � 0.

II If r is an odd number and r & q, Sq
r �Sr � 0.

III If r is an odd number and r % q, and r $ n�q, and q j r�q�1, then:

Sq
r �Sr � �2�L�q�L�n�q� r��L�r�q�1�L�n�q�1�� .

IV If r is an odd number and r % q, and r $ n�q, and q � r�q�1, then Sq
r �Sr � 0.

V If r is an odd number and r ' n�q, and q j r�q�1, then:

Sq
r �Sr � �2L�n�q�1�L�2n�q� r�1��2L�q� r�n�L�q��

�2L�q�L�n�q� r��2L�r�q�1�L�n�q�1�.
VI If r is an odd number and r ' n�q, and q � r�q�1, then:

Sq
r �Sr � �2L�n�q�1�L�2n�q� r�1��2L�q� r�n�L�q�.

We should emphasize, that Theorem 5.1.1 covers all the possible sidelobes positions and
all the possible flip bit choices.

Theorem 5.1.2. Given two skew-symmetric sequences L and Lq with length n � 2l � 1,
where Lq corresponds to L with q-th and n�q�1-th bit flipped for some fixed q $ l, and
with sidelobes arrays denoted respectively as S and Sq, the following property holds:

E�Lq� � E�L��
n�q�1

=
r�q�1,rj2q�1

�16�σκε1��
n�1

=
r�n�q,rj2q�1

�κ�ε2�σε1��32�32σε1ε2��
� =

r'n�q,r&n�1,r�2q�1

�16�κε2�,
(5.1)

where σ � ��1�l�q, κ � �8SrL�q�, ε1�r� � L�r�q�1�, ε2�r� � L�q� r�n�.
The last property allows us to reduce the memory requirement of some state-of-the-art

algorithms from O�n2� to O�n�. For example, by using just one thread of the processors, the
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tau table corresponding to binary sequences with length 5000 would require approximately
95.37 Megabytes to be allocated for the tau table expansion routine, while the sidelobe array
presented in this work would require the allocation of approximately 19.53 Kilobytes. It
should be emphasized, that interchanging the tau table used by the state-of-the-art algorithms
with the proposed sidelobe array structure would not impact the time complexity of the
tweaked algorithm. However, from a practical point of view, the significant memory reduction
could greatly enhance the overall time performance of a tweaked algorithm, since the size
of the sidelobe array could be usually saved inside the CPU cache layers, instead of saving
it to the slower memory banks. Furthermore, interchanging the tau table with the proposed
sidelobe array could allow the multithreading capabilities of modern CPUs, and even GPUs,
to be fully utilized.

The algorithm was implemented (C++) on a general-purpose computer equipped with a
budget processor Xeon-2640 CPU, having a base frequency of 2.50 GHz. A skew-symmetric
binary sequence with length 449 and a record-breaking merit factor of 6.5319 was found
after approximately one day. It should be noted that all 12 threads of the CPU were launched
in parallel. As a comparison, the currently known optimal results (a merit factor of 6.5218)
were acquired by using the Slovenian Initiative for National Grid (SLING) infrastructure
(100 processors) and 4-day threshold limitation [23].

5.1.1 On the Bernasconi Conjecture

As previously discussed, in [14] Bernasconi conjectured that stochastic search procedures
will not yield merit factors higher than 5 for long sequences (greater than 200). It should be
mentioned that this prediction was made in 1987. Since then, many years have passed and
pieces of evidence that stochastic search procedures could perform better than the prediction’s
expectations were found. Indeed, heuristic algorithms that could find odd binary sequences
with lengths up to about 500 and merit factors greater than 5 were discovered. However,
the Bernasconi conjecture appears valid when the threshold of the binary sequence’s length
is updated and lifted. Since during the last 35 years the computational capabilities of
modern CPUs are rising almost exponentially such actualization would be fair. However, if
a stochastic search procedure is found, a procedure that could reach extremely long binary
sequences with merit factors greater than 5, by using a mid-range general-purpose computer,
then the barriers predicted by Bernasconi could be very pessimistic.

During our experiments, by using a modification of the algorithm discussed in the
previous section, we were able to reach skew-symmetric binary sequences with lengths up to
100 001 and merit factors greater than 5.
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5.1.2 New Classes of Binary Sequences with High Merit Factor

Despite the rich results regarding the skew-symmetric binary sequences, the search for binary
sequences with even lengths and high MF was scarcely researched. This is not surprising,
since the sieving proposed by Golay applies to odd-length sequences only.

In this section, motivated by the absence of computationally efficient sieving for binary
sequences with even lengths and high merit factor values, several new classes of binary
sequences are proposed. We start with the definition of a class of finite binary sequences,
called pseudo-skew-symmetric, with alternate auto-correlation absolute values equal to one.
The class is defined by using sieving suitable for even-length binary sequences. Then, by
using some mathematical observations, we show how state-of-the-art algorithms for searching
skew-symmetric binary sequences with high merit factor and length 2n�1 could be easily
converted to algorithms searching pseudo-skew-symmetric binary sequences with high merit
factor and lengths 2n or 2n� 2. More importantly, this conversion does not degrade the
performance of the modified algorithm.

Then, by using number partitions [6], an additional sieving strategy for both skew-
symmetric and pseudo-skew-symmetric sequences is proposed. A method of finding sub-
classes of binary sequences with high MF is further discussed. The experiments revealed
that the classes defined in this section are highly promising. By using a single mid-range
computer, we were able to improve all records for skew-symmetric binary sequences with
lengths above 225, which were recently reached by various algorithms and a supercomputer
grid. We further revealed that binary sequences with even or odd length n, for n & 28, and
with merit factor strictly greater than 8, and binary sequences with even or odd length n, for
n & 29 and with a merit factor strictly greater than 7 do exist.

Definition 5.1.1 (Pseudo-Skew-Symmetric Binary Sequence). We call a given sequence
P � a¶¶X � Y ¶¶b a pseudo-skew-symmetric binary sequence, if either X or Y are skew-
symmetric binary sequences, for some a " r�1,1x or b " r�1,1x.

Proposition 5.1.1. The sidelobes array of pseudo-skew-symmetric binary sequences consists
of alternating � ones.

Proposition 5.1.2. Given a skew-symmetric binary sequence B � �b0,b1,�,bn�1� with
sidelobes array

SB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B�,Ĉn�1�B�� ,
the following property holds:

E�P� � E�B��n�2bnδ ,
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where P is the pseudo-skew-symmetric sequence B¶¶bn and δ �<n�2
u�0,ueven

Ĉu�B�bu�1.

The last property is of significant importance when converting an algorithm searching
for skew-symmetric binary sequences, denoted as A , to an algorithm searching for pseudo-
skew-symmetric binary sequences B and a high merit factor. Indeed, despite the complexity
of algorithm A we can decompose it to a tape �¶¶L1¶¶�¶¶L2¶¶�¶¶Ln¶¶�, where Li are
stages of A , where better candidates could be announced. They are known as local optimums
in heuristic search literature. We could easily replace Li with Li¶¶Ti, where Ti is a simple
routine with memory and time complexity of O�n�, which calculates the pseudo-skew-
symmetric sequences Li¶¶1 and Li¶¶�1 merit factors, where Li is the current best candidate.
It should be noted that B ��¶¶L1¶¶T1¶¶�¶¶L2¶¶T2¶¶�¶¶Ln¶¶Tn¶¶� does not interfere
with the normal work of A by design. Furthermore, since those linear time complexity
checkups are initiated on local optimums only, the delay of B compared to A caused by the
additional instructions Ti is negligible.

We could further extend the search of highly-competitive pseudo-skew-symmetric se-
quences by the following observations:

Proposition 5.1.3. Given a skew-symmetric binary sequence B � b0¶¶B¬¶¶bn�1 both binary
sequences b0¶¶B¬ and B¬¶¶bn�1 are pseudo-skew-symmetric.

Proposition 5.1.4. Given a skew-symmetric binary sequence B� �b0,b1,�,bn�1�� b0¶¶B¬¶¶bn�1

with sidelobes array

SB � �Ĉ0�B�,Ĉ1�B�,�,Ĉn�2�B�,Ĉn�1�B�� ,
the following property holds:

E�P� � E�B��n�3�2bn�1δ ,

where P is the pseudo-skew-symmetric sequence b0¶¶B¬ and δ �<n�2
u�1,ueven

�Ĉu�B�bu.

The last property further enhances the power of the algorithm. Thus now we can modify
each algorithm A , searching for skew-symmetric binary sequences with odd length n and
high merit factor, to an algorithm B, searching simultaneously skew-symmetric binary
sequences with odd length n and pseudo-skew-symmetric binary sequences with even lengths
n�1 and n�1.

Definition 5.1.2 (Restriction Class of Binary Sequence). We will call the class of binary
sequences of length n, with the first k elements fixed, a restriction class of order k on
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binary sequences with length n. We will denote this set as Rk
n. If the binary sequence is

skew-symmetric we will use the notation R
k
n .

A well-studied area in number theory and combinatorics is the number partition problem
- distinct ways of writing a given integer number n as a sum of positive integers. We define
the number of possible partitions of a non-negative integer n as the partition function p�n�.
No closed-form expression for p�n� is known. However, the partition functions for some
different values of n could be found in the online encyclopedia of integer numbers (OEIS),
sequence A000041 [1].

Theoretically, searching for skew-symmetric binary sequences of length n with high merit
factors could be parallelized to ¶ R

k
n ¶ instances. To minimize the total number of instances

needed, we should consider several actions to a given skew-symmetric binary sequence
B � �b0,b1,�,bn�1�:

• Reversing B defined as operator δ1: δ1�B� � �bn�1,�,b1,b0�
• Complementing B defined as operator δ2: δ2�B� � �b0,b1,�,bn�1�, where bi � �bi

• Alt. complementing of B defined as operator δ3 : δ3�B� �
� ��,bi�2,bi�1,bi,bi�1,bi�2,��

All three operators leave the energy of B intact. If we further add the identity operator
δ0 we construct a group G of order 8. By using some group theory [118], we could derive a

closed formula of the exact number of symmetry classes with length k: 2k�3
�2� k

2 $�2��k mod 2�.
The same formula arises from the row sums of the Losanitsch’s triangle (OEIS, sequence
A005418 [2]) - named after the S. Lozanić, in his work related to the symmetries exhibited
by rows of paraffins [99]. This fact could be used to partition the search space from p�k�
covering subsets to 2k�3

�2� k
2 $�2��k mod 2� non-covering subsets.

Definition 5.1.3 (Potential of a Restriction Subclass). For a skew-symmetric binary sequence
B � �b0,b1,�,bn�1�, we fix a partitioning with length k: t0, t1,�, tg, s.t. <g

i�0 ti � k. The
partitioning could be projected to a skew-symmetric binary sequence with the following
procedure:

R� a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t0

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t1

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t2

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t3

���1�ga���1�gaÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tg

u1u2u3�un�2k�2un�2k�1un�2kÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
non-fixed (free) elements

f1 f2 f3� fk�2 fk�1 fkÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
last elements are fixed

The last k elements fi are fixed due to the first k elements of the sequence and its skew-
symmetric property. Please note that all elements a,a,��1�ga,ui, fi " r�1,1x. We define
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the potential of the binary skew-symmetric sequence R as the energy of the ternary sequence
Rz, where:

Rz
� a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ

t0

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t1

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t2

a�aÍ ÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÏ
t3

���1�ga���1�gaÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÏ
tg

000�000Í ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
n�2k zeroed elements

f1 f2 f3� fk�2 fk�1 fkÍ ÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÑÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒÒ Ï
last elements are fixed

5.1.3 Algorithm for Finding Binary Sequences with Arbitrary Length
and High Merit Factor

The algorithm was implemented (C++) on a general-purpose computer equipped with a
central processing unit with 8 cores and 16 threads. Despite using just a single low-budget
personal computer, we were able to improve all the results, for all skew-symmetric lengths
in the range 225-451, announced in literature and reached by using a supercomputer grid.
Furthermore, by using classes of pseudo-skew-symmetric sequences, we were able to simul-
taneously reach binary sequences of even lengths between 225 and 512, and beyond, with
merit factors greater than 7. We demonstrate the efficiency of our approach by publishing a
complete list of binary sequences, for both even and odd lengths up to 28, and merit factors
greater than 8. The list is further accompanied by a complete list of binary sequences, for
both even and odd lengths up to 29, and merit factors greater than 7.

We further demonstrate the power and efficiency of the proposed algorithm by launching
it on binary sequences of lengths 573 and 1009. As mentioned earlier, it was estimated that
finding solutions with a merit factor of 6.34 for a binary sequence with length 573 requires
around 32 years, while for binary sequences with length 1009, the average runtime prediction
to reach the merit factor of 6.34 is 46774481153 years. By using the proposed algorithm, we
were able to reach such candidates within several hours.

5.2 Using Aperiodic Autocorrelation functions for an S-box
reverse engineering

We can treat all �n
2� columns of two-term linear combinations of coordinates of an S-box

S�n,n� as binary sequences and analyze their sidelobe levels. Such a strategy makes sense
since sidelobe levels can reveal hidden inner relationships between the coordinates of S.

Anomalies in S-boxes of BelT, CSS, Safer, and SKINNY are discovered.
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