[go: up one dir, main page]

login
Search: a020522 -id:a020522
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)
(Formerly M2655 N1059)
+10
1292
0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
OFFSET
0,3
COMMENTS
This is the Gaussian binomial coefficient [n,1] for q=2.
Number of rank-1 matroids over S_n.
Numbers k such that the k-th central binomial coefficient is odd: A001405(k) mod 2 = 1. - Labos Elemer, Mar 12 2003
This gives the (zero-based) positions of odd terms in the following convolution sequences: A000108, A007460, A007461, A007463, A007464, A061922.
Also solutions (with minimum number of moves) for the problem of Benares Temple, i.e., three diamond needles with n discs ordered by decreasing size on the first needle to place in the same order on the third one, without ever moving more than one disc at a time and without ever placing one disc at the top of a smaller one. - Xavier Acloque, Oct 18 2003
a(0) = 0, a(1) = 1; a(n) = smallest number such that a(n)-a(m) == 0 (mod (n-m+1)), for all m. - Amarnath Murthy, Oct 23 2003
Binomial transform of [1, 1/2, 1/3, ...] = [1/1, 3/2, 7/3, ...]; (2^n - 1)/n, n=1,2,3, ... - Gary W. Adamson, Apr 28 2005
Numbers whose binary representation is 111...1. E.g., the 7th term is (2^7) - 1 = 127 = 1111111 (in base 2). - Alexandre Wajnberg, Jun 08 2005
Number of nonempty subsets of a set with n elements. - Michael Somos, Sep 03 2006
For n >= 2, a(n) is the least Fibonacci n-step number that is not a power of 2. - Rick L. Shepherd, Nov 19 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are disjoint and for which either x is a subset of y or y is a subset of x. - Ross La Haye, Jan 10 2008
A simpler way to state this is that it is the number of pairs (x,y) where at least one of x and y is the empty set. - Franklin T. Adams-Watters, Oct 28 2011
2^n-1 is the sum of the elements in a Pascal triangle of depth n. - Brian Lewis (bsl04(AT)uark.edu), Feb 26 2008
Sequence generalized: a(n) = (A^n -1)/(A-1), n >= 1, A integer >= 2. This sequence has A=2; A003462 has A=3; A002450 has A=4; A003463 has A=5; A003464 has A=6; A023000 has A=7; A023001 has A=8; A002452 has A=9; A002275 has A=10; A016123 has A=11; A016125 has A=12; A091030 has A=13; A135519 has A=14; A135518 has A=15; A131865 has A=16; A091045 has A=17; A064108 has A=20. - Ctibor O. Zizka, Mar 03 2008
a(n) is also a Mersenne prime A000668 when n is a prime number in A000043. - Omar E. Pol, Aug 31 2008
a(n) is also a Mersenne number A001348 when n is prime. - Omar E. Pol, Sep 05 2008
With offset 1, = row sums of triangle A144081; and INVERT transform of A009545 starting with offset 1; where A009545 = expansion of sin(x)*exp(x). - Gary W. Adamson, Sep 10 2008
Numbers n such that A000120(n)/A070939(n) = 1. - Ctibor O. Zizka, Oct 15 2008
For n > 0, sequence is equal to partial sums of A000079; a(n) = A000203(A000079(n-1)). - Lekraj Beedassy, May 02 2009
Starting with offset 1 = the Jacobsthal sequence, A001045, (1, 1, 3, 5, 11, 21, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Numbers n such that n=2*phi(n+1)-1. - Farideh Firoozbakht, Jul 23 2009
a(n) = (a(n-1)+1)-th odd numbers = A005408(a(n-1)) for n >= 1. - Jaroslav Krizek, Sep 11 2009
Partial sums of a(n) for n >= 0 are A000295(n+1). Partial sums of a(n) for n >= 1 are A000295(n+1) and A130103(n+1). a(n) = A006127(n) - (n+1). - Jaroslav Krizek, Oct 16 2009
If n is even a(n) mod 3 = 0. This follows from the congruences 2^(2k) - 1 ~ 2*2*...*2 - 1 ~ 4*4*...*4 - 1 ~ 1*1*...*1 - 1 ~ 0 (mod 3). (Note that 2*2*...*2 has an even number of terms.) - Washington Bomfim, Oct 31 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 26 2010
This is the sequence A(0,1;1,2;2) = A(0,1;3,-2;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) = S(n+1,2), a Stirling number of the second kind. See the example below. - Dennis P. Walsh, Mar 29 2011
Entries of row a(n) in Pascal's triangle are all odd, while entries of row a(n)-1 have alternating parities of the form odd, even, odd, even, ..., odd.
Define the bar operation as an operation on signed permutations that flips the sign of each entry. Then a(n+1) is the number of signed permutations of length 2n that are equal to the bar of their reverse-complements and avoid the set of patterns {(-2,-1), (-1,+2), (+2,+1)}. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011
A159780(a(n)) = n and A159780(m) < n for m < a(n). - Reinhard Zumkeller, Oct 21 2011
This sequence is also the number of proper subsets of a set with n elements. - Mohammad K. Azarian, Oct 27 2011
a(n) is the number k such that the number of iterations of the map k -> (3k +1)/2 == 1 (mod 2) until reaching (3k +1)/2 == 0 (mod 2) equals n. (see the Collatz problem). - Michel Lagneau, Jan 18 2012
For integers a, b, denote by a<+>b the least c >= a such that Hd(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>1. Thus this sequence is the Hamming analog of nonnegative integers. - Vladimir Shevelev, Feb 13 2012
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... apparently A007733. - R. J. Mathar, Aug 10 2012
Start with n. Each n generates a sublist {n-1,n-2,...,1}. Each element of each sublist also generates a sublist. Take the sum of all. E.g., 3->{2,1} and 2->{1}, so a(3)=3+2+1+1=7. - Jon Perry, Sep 02 2012
This is the Lucas U(P=3,Q=2) sequence. - R. J. Mathar, Oct 24 2012
The Mersenne numbers >= 7 are all Brazilian numbers, as repunits in base two. See Proposition 1 & 5.2 in Links: "Les nombres brésiliens". - Bernard Schott, Dec 26 2012
Number of line segments after n-th stage in the H tree. - Omar E. Pol, Feb 16 2013
Row sums of triangle in A162741. - Reinhard Zumkeller, Jul 16 2013
a(n) is the highest power of 2 such that 2^a(n) divides (2^n)!. - Ivan N. Ianakiev, Aug 17 2013
In computer programming, these are the only unsigned numbers such that k&(k+1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Minimal number of moves needed to interchange n frogs in the frogs problem (see for example the NRICH 1246 link or the Britton link below). - N. J. A. Sloane, Jan 04 2014
a(n) !== 4 (mod 5); a(n) !== 10 (mod 11); a(n) !== 2, 4, 5, 6 (mod 7). - Carmine Suriano, Apr 06 2014
After 0, antidiagonal sums of the array formed by partial sums of integers (1, 2, 3, 4, ...). - Luciano Ancora, Apr 24 2015
a(n+1) equals the number of ternary words of length n avoiding 01,02. - Milan Janjic, Dec 16 2015
With offset 0 and another initial 0, the n-th term of 0, 0, 1, 3, 7, 15, ... is the number of commas required in the fully-expanded von Neumann definition of the ordinal number n. For example, 4 := {0, 1, 2, 3} := {{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}}, which uses seven commas. Also, for n>0, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where a single symbol (as usual) is always used to represent the empty set and spaces are ignored. E.g., a(5) = 31, the total such symbols for the ordinal 4. - Rick L. Shepherd, May 07 2016
With the quantum integers defined by [n+1]_q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)), the Mersenne numbers are a(n+1) = q^n [n+1]_q with q = sqrt(2), whereas the signed Jacobsthal numbers A001045 are given by q = i * sqrt(2) for i^2 = -1. Cf. A239473. - Tom Copeland, Sep 05 2016
For n>1: numbers n such that n - 1 divides sigma(n + 1). - Juri-Stepan Gerasimov, Oct 08 2016
This is also the second column of the Stirling2 triangle A008277 (see also A048993). - Wolfdieter Lang, Feb 21 2017
Except for the initial terms, the decimal representation of the x-axis of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", "Rule 721" and "Rule 734", based on the 5-celled von Neumann neighborhood initialized with a single on cell. - Robert Price, Mar 14 2017
a(n), n > 1, is the number of maximal subsemigroups of the monoid of order-preserving partial injective mappings on a set with n elements. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Also the number of independent vertex sets and vertex covers in the complete bipartite graph K_{n-1,n-1}. - Eric W. Weisstein, Sep 21 2017
Sum_{k=0..n} p^k is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*p + binomial(i+j-1, i), in this case p=2 (empirical observation). - Tony Foster III, May 11 2019
The rational numbers r(n) = a(n+1)/2^(n+1) = a(n+1)/A000079(n+1) appear also as root of the n-th iteration f^{[n]}(c; x) = 2^(n+1)*x - a(n+1)*c of f(c; x) = f^{[0]}(c; x) = 2*x - c as r(n)*c. This entry is motivated by a riddle of Johann Peter Hebel (1760 - 1826): Erstes Rechnungsexempel(Ein merkwürdiges Rechnungs-Exempel) from 1803, with c = 24 and n = 2, leading to the root r(2)*24 = 21 as solution. See the link and reference. For the second problem, also involving the present sequence, see a comment in A130330. - Wolfdieter Lang, Oct 28 2019
a(n) is the sum of the smallest elements of all subsets of {1,2,..,n} that contain n. For example, a(3)=7; the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 7. - Enrique Navarrete, Aug 21 2020
a(n-1) is the number of nonempty subsets of {1,2,..,n} which don't have an element that is the size of the set. For example, for n = 4, a(3) = 7 and the subsets are {2}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,2,4}. - Enrique Navarrete, Nov 21 2020
From Eric W. Weisstein, Sep 04 2021: (Start)
Also the number of dominating sets in the complete graph K_n.
Also the number of minimum dominating sets in the n-helm graph for n >= 3. (End)
Conjecture: except for a(2)=3, numbers m such that 2^(m+1) - 2^j - 2^k - 1 is composite for all 0 <= j < k <= m. - Chai Wah Wu, Sep 08 2021
a(n) is the number of three-in-a-rows passing through a corner cell in n-dimensional tic-tac-toe. - Ben Orlin, Mar 15 2022
From Vladimir Pletser, Jan 27 2023: (Start)
a(n) == 1 (mod 30) for n == 1 (mod 4);
a(n) == 7 (mod 120) for n == 3 (mod 4);
(a(n) - 1)/30 = (a(n+2) - 7)/120 for n odd;
(a(n) - 1)/30 = (a(n+2) - 7)/120 = A131865(m) for n == 1 (mod 4) and m >= 0 with A131865(0) = 0. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 8. - Stefano Spezia, Nov 15 2023
Also, number of nodes in a perfect binary tree of height n-1, or: number of squares (or triangles) after the n-th step of the construction of a Pythagorean tree: Start with a segment. At each step, construct squares having the most recent segment(s) as base, and isosceles right triangles having the opposite side of the squares as hypotenuse ("on top" of each square). The legs of these triangles will serve as the segments which are the bases of the squares in the next step. - M. F. Hasler, Mar 11 2024
a(n) is the length of the longest path in the n-dimensional hypercube. - Christian Barrientos, Apr 13 2024
a(n) is the diameter of the n-Hanoi graph. Equivalently, a(n) is the largest minimum number of moves between any two states of the Towers of Hanoi problem (aka problem of Benares Temple described above). - Allan Bickle, Aug 09 2024
REFERENCES
P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.
LINKS
Franklin T. Adams-Watters, Table of n, a(n) for n = 0..1000
Omran Ahmadi and Robert Granger, An efficient deterministic test for Kloosterman sum zeros, Math. Comp. 83 (2014), 347-363, arXiv:1104.3882 [math.NT], 2011-2012. See 1st and 2nd column of Table 1 p. 9.
Feryal Alayont and Evan Henning, Edge Covers of Caterpillars, Cycles with Pendants, and Spider Graphs, J. Int. Seq. (2023) Vol. 26, Art. 23.9.4.
M. Baake, F. Gahler and U. Grimm, Examples of substitution systems and their factors, arXiv:1211.5466 [math.DS], 2012-2013.
Michael Baake, Franz Gähler, and Uwe Grimm, Examples of Substitution Systems and Their Factors, Journal of Integer Sequences, Vol. 16 (2013), #13.2.14.
J.-L. Baril, Classical sequences revisited with permutations avoiding dotted pattern, Electronic Journal of Combinatorics, 18 (2011), #P178.
Paul Barry, A Catalan Transform and Related Transformations on Integer Sequences, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.5.
Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
J. Bernheiden, Mersennesche Zahlen, (Text in German) [Wayback Machine cached version].
Michael Boardman, The Egg-Drop Numbers, Mathematics Magazine, 77 (2004), 368-372.
R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100, CWI Report 9212, 1992 [Wayback Machine cached version].
R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100: Update 2
R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations Of Cunningham Numbers With Bases 13 To 99. Millennium Edition [BROKEN LINK]
R. P. Brent, P. L. Montgomery and H. J. J. te Riele, Factorizations of Cunningham numbers with bases 13 to 99: Millennium edition
R. P. Brent and H. J. J. te Riele, Factorizations of a^n +- 1, 13 <= a < 100
John Brillhart et al., Cunningham Project [Factorizations of b^n +- 1, b = 2, 3, 5, 6, 7, 10, 11, 12 up to high powers] [Subscription required].
Jill Britton, The Tower of Hanoi [Video file, Wayback Machine cached version].
Jill Britton, The Frog Puzzle [Wayback Machine cached version].
C. K. Caldwell, The Prime Glossary, Mersenne number
Naiomi T. Cameron and Asamoah Nkwanta, On Some (Pseudo) Involutions in the Riordan Group, Journal of Integer Sequences, Vol. 8 (2005), Article 05.3.7.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
P. Catarino, H. Campos, and P. Vasco, On the Mersenne sequence, Annales Mathematicae et Informaticae, 46 (2016) pp. 37-53.
F. Javier de Vega, An extension of Furstenberg's theorem of the infinitude of primes, arXiv:2003.13378 [math.NT], 2020.
W. M. B. Dukes, On the number of matroids on a finite set, arXiv:math/0411557 [math.CO], 2004.
James East, Jitender Kumar, James D. Mitchell, and Wilf A. Wilson, Maximal subsemigroups of finite transformation and partition monoids, arXiv:1706.04967 [math.GR], 2017. [James Mitchell and Wilf A. Wilson, Jul 21 2017]
W. Edgington, Mersenne Page [BROKEN LINK]
David Eppstein, Making Change in 2048, arXiv:1804.07396 [cs.DM], 2018.
G. Everest et al., Primes generated by recurrence sequences, Amer. Math. Monthly, 114 (No. 5, 2007), 417-431.
G. Everest, S. Stevens, D. Tamsett and T. Ward, Primitive divisors of quadratic polynomial sequences, arXiv:math/0412079 [math.NT], 2004-2006.
G. Everest, A. J. van der Poorten, Y. Puri and T. Ward, Integer Sequences and Periodic Points, Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.3.
Bakir Farhi, Summation of Certain Infinite Lucas-Related Series, J. Int. Seq., Vol. 22 (2019), Article 19.1.6.
Emmanuel Ferrand, Deformations of the Taylor Formula, Journal of Integer Sequences, Vol. 10 (2007), Article 07.1.7.
Robert Frontczak and Taras Goy, Mersenne-Horadam identities using generating functions, Carpathian Mathematical Publications, Vol. 12, no. 1, (2020), 34-45.
Robert Granger, On the Enumeration of Irreducible Polynomials over GF(q) with Prescribed Coefficients, arXiv:1610.06878 [math.AG], 2016. See 1st and 2nd column of Table 1 p. 13.
Taras Goy, On new identities for Mersenne numbers, Applied Mathematics E-Notes, 18 (2018), 100-105.
A. Hardt and J. M. Troyka, Restricted symmetric signed permutations, Pure Mathematics and Applications, Vol. 23 (No. 3, 2012), pp. 179--217.
A. Hardt and J. M. Troyka, Slides (associated with the Hardt and Troyka reference above).
A. M. Hinz, S. Klavžar, U. Milutinović, and C. Petr, The Tower of Hanoi - Myths and Maths, Birkhäuser 2013. See page 11. Book's website
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Andreas M. Hinz and Paul K. Stockmeyer, Precious Metal Sequences and Sierpinski-Type Graphs, J. Integer Seq., Vol 25 (2022), Article 22.4.8.
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 138, 345, 371, and 880
Jiří Klaška, Jakóbczyk's Hypothesis on Mersenne Numbers and Generalizations of Skula's Theorem, J. Int. Seq., Vol. 26 (2023), Article 23.3.8.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
Edouard Lucas, The Theory of Simply Periodic Numerical Functions, Fibonacci Association, 1969. English translation of article "Théorie des Fonctions Numériques Simplement Périodiques, I", Amer. J. Math., 1 (1878), 184-240.
Mathforum, Tower of Hanoi
Mathforum, Problem of the Week, The Tower of Hanoi Puzzle
Donatella Merlini and Massimo Nocentini, Algebraic Generating Functions for Languages Avoiding Riordan Patterns, Journal of Integer Sequences, Vol. 21 (2018), Article 18.1.3.
N. Moreira and R. Reis, On the Density of Languages Representing Finite Set Partitions, Journal of Integer Sequences, Vol. 8 (2005), Article 05.2.8.
NRICH 1246, Frogs
Ahmet Öteleş, Bipartite Graphs Associated with Pell, Mersenne and Perrin Numbers, An. Şt. Univ. Ovidius Constantą, (2019) Vol. 27, Issue 2, 109-120.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, avril-juin 2010, pages 30-38, included here with permission from the editors of Quadrature.
R. R. Snapp, The Tower of Hanoi
Amelia Carolina Sparavigna, On the generalized sums of Mersenne, Fermat, Cullen and Woodall Numbers, Politecnico di Torino (Italy, 2019).
Amelia Carolina Sparavigna, Composition Operations of Generalized Entropies Applied to the Study of Numbers, International Journal of Sciences (2019) Vol. 8, No. 4, 87-92.
Amelia Carolina Sparavigna, Some Groupoids and their Representations by Means of Integer Sequences, International Journal of Sciences (2019) Vol. 8, No. 10.
Thesaurus.maths.org, Mersenne Number
A. Umar, Combinatorial Results for Semigroups of Orientation-Preserving Partial Transformations, Journal of Integer Sequences, 14 (2011), #11.7.5.
Eric Weisstein's World of Mathematics, Coin Tossing, Digit, Repunit, Rule 222, Run, and Tower of Hanoi
Eric Weisstein's World of Mathematics, Complete Bipartite Graph
Eric Weisstein's World of Mathematics, Complete
Eric Weisstein's World of Mathematics, Dominating Set
Eric Weisstein's World of Mathematics, Helm Graph
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Mersenne Number
Eric Weisstein's World of Mathematics, Minimum Dominating Set
Eric Weisstein's World of Mathematics, Vertex Cover
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. Math., 3 (1892), 265-284.
FORMULA
G.f.: x/((1-2*x)*(1-x)).
E.g.f.: exp(2*x) - exp(x).
E.g.f. if offset 1: ((exp(x)-1)^2)/2.
a(n) = Sum_{k=0..n-1} 2^k. - Paul Barry, May 26 2003
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=0, a(1)=1. - Paul Barry, Jun 06 2003
Let b(n) = (-1)^(n-1)*a(n). Then b(n) = Sum_{i=1..n} i!*i*Stirling2(n,i)*(-1)^(i-1). E.g.f. of b(n): (exp(x)-1)/exp(2x). - Mario Catalani (mario.catalani(AT)unito.it), Dec 19 2003
a(n+1) = 2*a(n) + 1, a(0) = 0.
a(n) = Sum_{k=1..n} binomial(n, k).
a(n) = n + Sum_{i=0..n-1} a(i); a(0) = 0. - Rick L. Shepherd, Aug 04 2004
a(n+1) = (n+1)*Sum_{k=0..n} binomial(n, k)/(k+1). - Paul Barry, Aug 06 2004
a(n+1) = Sum_{k=0..n} binomial(n+1, k+1). - Paul Barry, Aug 23 2004
Inverse binomial transform of A001047. Also U sequence of Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A099393(n-1) - A020522(n-1) for n > 0. - Reinhard Zumkeller, Feb 07 2006
a(n) = A119258(n,n-1) for n > 0. - Reinhard Zumkeller, May 11 2006
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
Sum_{n>0} 1/a(n) = 1.606695152... = A065442, see A038631. - Philippe Deléham, Jun 27 2006
Stirling_2(n-k,2) starting from n=k+1. - Artur Jasinski, Nov 18 2006
a(n) = A125118(n,1) for n > 0. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1,2). - Ross La Haye, Jan 10 2008
a(n) = A024036(n)/A000051(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A024088(n)/A001576(n). -Reinhard Zumkeller, Feb 15 2009
a(2*n) = a(n)*A000051(n); a(n) = A173787(n,0). - Reinhard Zumkeller, Feb 28 2010
For n > 0: A179857(a(n)) = A024036(n) and A179857(m) < A024036(n) for m < a(n). - Reinhard Zumkeller, Jul 31 2010
From Enrique Pérez Herrero, Aug 21 2010: (Start)
a(n) = J_n(2), where J_n is the n-th Jordan Totient function: (A007434, is J_2).
a(n) = Sum_{d|2} d^n*mu(2/d). (End)
A036987(a(n)) = 1. - Reinhard Zumkeller, Mar 06 2012
a(n+1) = A044432(n) + A182028(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = A007283(n)/3 - 1. - Martin Ettl, Nov 11 2012
a(n+1) = A001317(n) + A219843(n); A219843(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2012
a(n) = det(|s(i+2,j+1)|, 1 <= i,j <= n-1), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: Q(0), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 - 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
E.g.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/Q(k+1))); (continued fraction).
G.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(n) = A000203(2^(n-1)), n >= 1. - Ivan N. Ianakiev, Aug 17 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n=n} n*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n)/(t_1+t_2 +...+t_n). - Mircea Merca, Dec 06 2013
a(0) = 0; a(n) = a(n-1) + 2^(n-1) for n >= 1. - Fred Daniel Kline, Feb 09 2014
a(n) = A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 07 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Binomial transform of A057427.
Sum_{n>=0} a(n)/n! = A090142. (End)
a(n) = A000918(n) + 1. - Miquel Cerda, Aug 09 2016
a(n+1) = (A095151(n+1) - A125128(n))/2. - Miquel Cerda, Aug 12 2016
a(n) = (A079583(n) - A000325(n+1))/2. - Miquel Cerda, Aug 15 2016
Convolution of binomial coefficient C(n,a(k)) with itself is C(n,a(k+1)) for all k >= 3. - Anton Zakharov, Sep 05 2016
a(n) = (A083706(n-1) + A000325(n))/2. - Miquel Cerda, Sep 30 2016
a(n) = A005803(n) + A005408(n-1). - Miquel Cerda, Nov 25 2016
a(n) = A279396(n+2,2). - Wolfdieter Lang, Jan 10 2017
a(n) = n + Sum_{j=1..n-1} (n-j)*2^(j-1). See a Jun 14 2017 formula for A000918(n+1) with an interpretation. - Wolfdieter Lang, Jun 14 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n+m) = a(n)*a(m) + a(n) + a(m). - Yuchun Ji, Jul 27 2018
a(n+m) = a(n+1)*a(m) - 2*a(n)*a(m-1). - Taras Goy, Dec 23 2018
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*2 + binomial(i+j-1, i) (empirical observation). - Tony Foster III, May 11 2019
EXAMPLE
For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely,
{a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - Dennis P. Walsh, Mar 29 2011
From Justin M. Troyka, Aug 13 2011: (Start)
Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are:
(+1,+2,-3,-4),
(+1,+3,-2,-4),
(+1,-3,+2,-4),
(+2,+4,-1,-3),
(+3,+4,-1,-2),
(-3,+1,-4,+2),
(-3,-4,+1,+2). (End)
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ...
For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3.
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12 - Allan Bickle, Aug 07 2024
MAPLE
A000225 := n->2^n-1; [ seq(2^n-1, n=0..50) ];
A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
MATHEMATICA
a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *)
Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *)
2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *)
LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
PROG
(PARI) A000225(n) = 2^n-1 \\ Michael B. Porter, Oct 27 2009
(Haskell)
a000225 = (subtract 1) . (2 ^)
a000225_list = iterate ((+ 1) . (* 2)) 0
-- Reinhard Zumkeller, Mar 20 2012
(PARI) concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
(SageMath)
def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
(Python)
def A000225(n): return (1<<n)-1 # Chai Wah Wu, Jul 06 2022
CROSSREFS
Cf. A000043 (Mersenne exponents).
Cf. A000668 (Mersenne primes).
Cf. A001348 (Mersenne numbers with n prime).
Cf. a(n)=A112492(n, 2). Rightmost column of A008969.
a(n) = A118654(n, 1) = A118654(n-1, 3), for n > 0.
Subsequence of A132781.
Smallest number whose base b sum of digits is n: this sequence (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).
Cf. A008277, A048993 (columns k=2), A000918, A130330.
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).
KEYWORD
nonn,easy,core,nice,changed
EXTENSIONS
Name partially edited by Eric W. Weisstein, Sep 04 2021
STATUS
approved
Powers of 4: a(n) = 4^n.
(Formerly M3518 N1428)
+10
543
1, 4, 16, 64, 256, 1024, 4096, 16384, 65536, 262144, 1048576, 4194304, 16777216, 67108864, 268435456, 1073741824, 4294967296, 17179869184, 68719476736, 274877906944, 1099511627776, 4398046511104, 17592186044416, 70368744177664, 281474976710656
OFFSET
0,2
COMMENTS
Same as Pisot sequences E(1, 4), L(1, 4), P(1, 4), T(1, 4). Essentially same as Pisot sequences E(4, 16), L(4, 16), P(4, 16), T(4, 16). See A008776 for definitions of Pisot sequences.
The convolution square root of this sequence is A000984, the central binomial coefficients: C(2n,n). - T. D. Noe, Jun 11 2002
With P(n) being the number of integer partitions of n, p(i) as the number of parts of the i-th partition of n, d(i) as the number of different parts of the i-th partition of n, m(i, j) the multiplicity of the j-th part of the i-th partition of n, one has a(n) = Sum_{i = 1..P(n)} p(i)!/(Product_{j = 1..d(i)} m(i, j)!) * 2^(n-1). - Thomas Wieder, May 18 2005
Sums of rows of the triangle in A122366. - Reinhard Zumkeller, Aug 30 2006
Hankel transform of A076035. - Philippe Deléham, Feb 28 2009
Equals the Catalan sequence: (1, 1, 2, 5, 14, ...), convolved with A032443: (1, 3, 11, 42, ...). - Gary W. Adamson, May 15 2009
Sum of coefficients of expansion of (1 + x + x^2 + x^3)^n.
a(n) is number of compositions of natural numbers into n parts less than 4. For example, a(2) = 16 since there are 16 compositions of natural numbers into 2 parts less than 4.
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n >= 1, a(n) equals the number of 4-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Squares in A002984. - Reinhard Zumkeller, Dec 28 2011
Row sums of Pascal's triangle using the rule that going left increases the value by a factor of k = 3. For example, the first three rows are {1}, {3, 1}, and {9, 6, 1}. Using this rule gives row sums as (k+1)^n. - Jon Perry, Oct 11 2012
First differences of A002450. - Omar E. Pol, Feb 20 2013
Sum of all peak heights in Dyck paths of semilength n+1. - David Scambler, Apr 22 2013
Powers of 4 exceed powers of 2 by A020522 which is the m-th oblong number A002378(m), m being the n-th Mersenne number A000225(n); hence, we may write, a(n) = A000079(n) + A002378(A000225(n)). - Lekraj Beedassy, Jan 17 2014
a(n) is equal to 1 plus the sum for 0 < k < 2^n of the numerators and denominators of the reduced fractions k/2^n. - J. M. Bergot, Jul 13 2015
Binomial transform of A000244. - Tony Foster III, Oct 01 2016
From Ilya Gutkovskiy, Oct 01 2016: (Start)
Number of nodes at level n regular 4-ary tree.
Partial sums of A002001. (End)
Satisfies Benford's law [Berger-Hill, 2011]. - N. J. A. Sloane, Feb 08 2017
Also the number of connected dominating sets in the (n+1)-barbell graph. - Eric W. Weisstein, Jun 29 2017
Side length of the cells at level n in a pyramid scheme where a square grid is decomposed into overlapping 2 X 2 blocks (cf. Kropatsch, 1985). - Felix Fröhlich, Jul 04 2019
a(n-1) is the number of 3-compositions of n; see Hopkins & Ouvry reference. - Brian Hopkins, Aug 15 2020
REFERENCES
H. W. Gould, Combinatorial Identities, 1972, eq. (1.93), p. 12.
R. L. Graham, D. E. Knuth and O. Patashnik, Concrete Mathematics. Addison-Wesley, Reading, MA, 2nd. ed., 1994, eq. (5.39), p. 187.
D. Phulara and L. W. Shapiro, Descendants in ordered trees with a marked vertex, Congressus Numerantium, 205 (2011), 121-128.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.
LINKS
Arno Berger and Theodore P. Hill, Benford's law strikes back: no simple explanation in sight for mathematical gem, The Mathematical Intelligencer 33.1 (2011): 85-91.
Isabel Cação, Helmuth R. Malonek, Maria Irene Falcão, and Graça Tomaz, Combinatorial Identities Associated with a Multidimensional Polynomial Sequence, J. Int. Seq., Vol. 21 (2018), Article 18.7.4.
P. J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), #00.1.5.
G. Dresden and Y. Li, Periodic Weighted Sums of Binomial Coefficients, arXiv:2210.04322 [math.NT], 2022.
R. Duarte and A. G. de Oliveira, Short note on the convolution of binomial coefficients, arXiv preprint arXiv:1302.2100 [math.CO], 2013 and J. Int. Seq. 16 (2013) #13.7.6.
Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
Brian Hopkins and Stéphane Ouvry, Combinatorics of Multicompositions, arXiv:2008.04937 [math.CO], 2020.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
Tanya Khovanova, Recursive Sequences
Walter G. Kropatsch, A pyramid that grows by powers of 2, Pattern Recognition Letters, Vol. 3, No. 5 (1985), 315-322 [Subscription required].
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Y. Puri and T. Ward, Arithmetic and growth of periodic orbits, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9., 2016.
Paul K. Stockmeyer, The Pascal Rhombus and the Stealth Configuration, arXiv preprint arXiv:1504.04404 [math.CO], 2015.
Eric Weisstein's World of Mathematics, Barbell Graph
Eric Weisstein's World of Mathematics, Cantor Dust
Eric Weisstein's World of Mathematics, Connected Dominating Set
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
a(n) = 4^n.
a(0) = 1; a(n) = 4*a(n-1).
G.f.: 1/(1-4*x).
E.g.f.: exp(4*x).
a(n) = Sum_{k = 0..n} binomial(2k, k) * binomial(2(n - k), n - k). - Benoit Cloitre, Jan 26 2003 [See Graham et al., eq. (5.39), p. 187. - Wolfdieter Lang, Aug 16 2019]
1 = Sum_{n >= 1} 3/a(n) = 3/4 + 3/16 + 3/64 + 3/256 + 3/1024, ...; with partial sums: 3/4, 15/16, 63/64, 255/256, 1023/1024, ... - Gary W. Adamson, Jun 16 2003
a(n) = A001045(2*n) + A001045(2*n+1). - Paul Barry, Apr 27 2004
A000005(a(n)) = A005408(n+1). - Reinhard Zumkeller, Mar 04 2007
a(n) = Sum_{j = 0..n} 2^(n - j)*binomial(n + j, j). - Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
Hankel transform of A115967. - Philippe Deléham, Jun 22 2007
a(n) = 6*Stirling2(n+1, 4) + 6*Stirling2(n+1, 3) + 3*Stirling2(n+1, 2) + 1 = 2*Stirling2(2^n, 2^n - 1) + Stirling2(n+1, 2) + 1. - Ross La Haye, Jun 26 2008
a(n) = A159991(n)/A001024(n) = A047653(n) + A181765(n). A160700(a(n)) = A010685(n). - Reinhard Zumkeller, May 02 2009
a(n) = A188915(A006127(n)). - Reinhard Zumkeller, Apr 14 2011
a(n) = Sum_{k = 0..n} binomial(2*n+1, k). - Mircea Merca, Jun 25 2011
Sum_{n >= 1} Mobius(n)/a(n) = 0.1710822479183... - R. J. Mathar, Aug 12 2012
a(n) = Sum_{k = 0..n} binomial(2*k + x, k)*binomial(2*(n - k) - x, n - k) for every real number x. - Rui Duarte and António Guedes de Oliveira, Feb 16 2013
a(n) = 5*a(n - 1) - 4*a(n - 2). - Jean-Bernard François, Sep 12 2013
a(n) = (2*n+1) * binomial(2*n,n) * Sum_{j=0..n} (-1)^j/(2*j+1)*binomial(n,j). - Vaclav Kotesovec, Sep 15 2013
a(n) = A000217(2^n - 1) + A000217(2^n). - J. M. Bergot, Dec 28 2014
a(n) = (2^n)^2 = A000079(n)^2. - Doug Bell, Jun 23 2015
a(n) = A002063(n)/3 - A004171(n). - Zhandos Mambetaliyev, Nov 19 2016
a(n) = (1/2) * Product_{k = 0..n} (1 + (2*n + 1)/(2*k + 1)). - Peter Bala, Mar 06 2018
a(n) = A001045(n+1)*A001045(n+2) + A001045(n)^2. - Ezhilarasu Velayutham, Aug 30 2019
a(n) = denominator(zeta_star({2}_(n + 1))/zeta(2*n + 2)) where zeta_star is the multiple zeta star values and ({2}_n) represents (2, ..., 2) where the multiplicity of 2 is n. - Roudy El Haddad, Feb 22 2022
a(n) = 1 + 3*Sum_{k=0..n} binomial(2*n, n+k)*(k|9), where (k|9) is the Jacobi symbol. - Greg Dresden, Oct 11 2022
a(n) = Sum_{k = 0..n} binomial(2*n+1, 2*k) = Sum_{k = 0..n} binomial(2*n+1, 2*k+1). - Sela Fried, Mar 23 2023
MAPLE
A000302 := n->4^n;
for n from 0 to 10 do sum(2^(n-j)*binomial(n+j, j), j=0..n); od; # Peter C. Heinig (algorithms(AT)gmx.de), Apr 06 2007
A000302:=-1/(-1+4*z); # Simon Plouffe in his 1992 dissertation.
MATHEMATICA
Table[4^n, {n, 0, 30}] (* Stefan Steinerberger, Apr 01 2006 *)
CoefficientList[Series[1/(1 - 4 x), {x, 0, 50}], x] (* Vincenzo Librandi, May 29 2014 *)
NestList[4 # &, 1, 30] (* Harvey P. Dale, Mar 26 2015 *)
4^Range[0, 30] (* Eric W. Weisstein, Jun 29 2017 *)
LinearRecurrence[{4}, {1}, 31] (* Robert A. Russell, Nov 08 2018 *)
PROG
(PARI) A000302(n)=4^n \\ Michael B. Porter, Nov 06 2009
(Haskell)
a000302 = (4 ^)
a000302_list = iterate (* 4) 1 -- Reinhard Zumkeller, Apr 04 2012
(Maxima) A000302(n):=4^n$ makelist(A000302(n), n, 0, 30); /* Martin Ettl, Oct 24 2012 */
(Scala) (List.fill(20)(4: BigInt)).scanLeft(1: BigInt)(_ * _) // Alonso del Arte, Jun 22 2019
(Python) print([4**n for n in range(25)]) # Michael S. Branicky, Jan 04 2021
CROSSREFS
Cf. A024036, A052539, A032443, A000351 (Binomial transform).
Cf. A249307.
Cf. A083420.
KEYWORD
easy,nonn,nice,core
EXTENSIONS
Partially edited by Joerg Arndt, Mar 11 2010
STATUS
approved
a(n) = 2^(n-1)*(2^n - 1), n >= 0.
(Formerly M4183)
+10
129
0, 1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528, 140737479966720, 562949936644096
OFFSET
0,3
COMMENTS
a(n) is also the number of different lines determined by pair of vertices in an n-dimensional hypercube. The number of these lines modulo being parallel is in A003462. - Ola Veshta (olaveshta(AT)my-deja.com), Feb 15 2001
Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
a(n) is the number of n-letter words formed using four distinct letters, one of which appears an odd number of times. - Lekraj Beedassy, Jul 22 2003 [See, e.g., the Balakrishnan reference, problems 2.67 and 2.68, p. 69. - Wolfdieter Lang, Jul 16 2017]
Number of 0's making up the central triangle in a Pascal's triangle mod 2 gasket. - Lekraj Beedassy, May 14 2004
m-th triangular number, where m is the n-th Mersenne number, i.e., a(n)=A000217(A000225(n)). - Lekraj Beedassy, May 25 2004
Number of walks of length 2n+1 between two nodes at distance 3 in the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
The sequence of fractions a(n+1)/(n+1) is the 3rd binomial transform of (1, 0, 1/3, 0, 1/5, 0, 1/7, ...). - Paul Barry, Aug 05 2005
Number of monic irreducible polynomials of degree 2 in GF(2^n)[x]. - Max Alekseyev, Jan 23 2006
(A007582(n))^2 + a(n)^2 = A007582(2n). E.g., A007582(3) = 36, a(3) = 28; A007582(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
The sequence 6*a(n), n>=1, gives the number of edges of the Hanoi graph H_4^{n} with 4 pegs and n>=1 discs. - Daniele Parisse, Jul 28 2006
8*a(n) is the total border length of the 4*n masks used when making an order n regular DNA chip, using the bidimensional Gray code suggested by Pevzner in the book "Computational Molecular Biology." - Bruno Petazzoni (bruno(AT)enix.org), Apr 05 2007
If we start with 1 in binary and at each step we prepend 1 and append 0, we construct this sequence: 1 110 11100 1111000 etc.; see A109241(n-1). - Artur Jasinski, Nov 26 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which x does not equal y. - Ross La Haye, Jan 02 2008
Wieder calls these "conjoint usual 2-combinations." The set of "conjoint strict k-combinations" is the subset of conjoint usual k-combinations where the empty set and the set itself are excluded from possible selection. These numbers C(2^n - 2,k), which for k = 2 (i.e., {x,y} of the power set of a set) give {1, 0, 1, 15, 91, 435, 1891, 7875, 32131, 129795, 521731, ...}. - Ross La Haye, Jan 15 2008
If n is a member of A000043 then a(n) is also a perfect number (A000396). - Omar E. Pol, Aug 30 2008
a(n) is also the number whose binary representation is A109241(n-1), for n>0. - Omar E. Pol, Aug 31 2008
From Daniel Forgues, Nov 10 2009: (Start)
If we define a spoof-perfect number as:
A spoof-perfect number is a number that would be perfect if some (one or more) of its odd composite factors were wrongly assumed to be prime, i.e., taken as a spoof prime.
And if we define a "strong" spoof-perfect number as:
A "strong" spoof-perfect number is a spoof-perfect number where sigma(n) does not reveal the compositeness of the odd composite factors of n which are wrongly assumed to be prime, i.e., taken as a spoof prime.
The odd composite factors of n which are wrongly assumed to be prime then have to be obtained additively in sigma(n) and not multiplicatively.
Then:
If 2^n-1 is odd composite but taken as a spoof prime then 2^(n-1)*(2^n - 1) is an even spoof perfect number (and moreover "strong" spoof-perfect).
For example:
a(8) = 2^(8-1)*(2^8 - 1) = 128*255 = 32640 (where 255 (with factors 3*5*17) is taken as a spoof prime);
sigma(a(8)) = (2^8 - 1)*(255 + 1) = 255*256 = 2*(128*255) = 2*32640 = 2n is spoof-perfect (and also "strong" spoof-perfect since 255 is obtained additively);
a(11) = 2^(11-1)*(2^11 - 1) = 1024*2047 = 2096128 (where 2047 (with factors 23*89) is taken as a spoof prime);
sigma(a(11)) = (2^11 - 1)*(2047 + 1) = 2047*2048 = 2*(1024*2047) = 2*2096128 = 2n is spoof-perfect (and also "strong" spoof-perfect since 2047 is obtained additively).
I did a Google search and didn't find anything about the distinction between "strong" versus "weak" spoof-perfect numbers. Maybe some other terminology is used.
An example of an even "weak" spoof-perfect number would be:
n = 90 = 2*5*9 (where 9 (with factors 3^2) is taken as a spoof prime);
sigma(n) = (1+2)*(1+5)*(1+9) = 3*(2*3)*(2*5) = 2*(2*5*(3^2)) = 2*90 = 2n is spoof-perfect (but is not "strong" spoof-perfect since 9 is obtained multiplicatively as 3^2 and is thus revealed composite).
Euler proved:
If 2^k - 1 is a prime number, then 2^(k-1)*(2^k - 1) is a perfect number and every even perfect number has this form.
The following seems to be true (is there a proof?):
If 2^k - 1 is an odd composite number taken as a spoof prime, then 2^(k-1)*(2^k - 1) is a "strong" spoof-perfect number and every even "strong" spoof-perfect number has this form?
There is only one known odd spoof-perfect number (found by Rene Descartes) but it is a "weak" spoof-perfect number (cf. 'Descartes numbers' and 'Unsolved problems in number theory' links below). (End)
a(n+1) = A173787(2*n+1,n); cf. A020522, A059153. - Reinhard Zumkeller, Feb 28 2010
Also, row sums of triangle A139251. - Omar E. Pol, May 25 2010
From Gary W. Adamson, Oct 26 2010: (Start)
Starting with "1" = (1, 1, 2, 4, 8, ...) convolved with A002450: (1, 5, 21, 85, 341, ...); and (1, 3, 7, 15, 31, ...) convolved with A002001: (1, 3, 12, 48, 192, ...). - Gary W. Adamson, Oct 26 2010
a(n) is also the number of toothpicks in the corner toothpick structure of A153006 after 2^n - 1 stages. - Omar E. Pol, Nov 20 2010
The number of n-dimensional odd theta functions of half-integral characteristic. (Gunning, p.22) - Michael Somos, Jan 03 2014
a(n) = A000217((2^n)-1) = 2^(2n-1) - 2^(n-1) is the nearest triangular number below 2^(2n-1); cf. A007582, A233327. - Antti Karttunen, Feb 26 2014
a(n) is the sum of all the remainders when all the odd numbers < 2^n are divided by each of the powers 2,4,8,...,2^n. - J. M. Bergot, May 07 2014
Let b(m,k) = number of ways to form a sequence of m selections, without replacement, from a circular array of m labeled cells, such that the first selection of a cell whose adjacent cells have already been selected (a "first connect") occurs on the k-th selection. b(m,k) is defined for m >=3, and for 3 <= k <= m. Then b(m,k)/2m ignores rotations and reflection. Let m=n+2, then a(n) = b(m,m-1)/2m. Reiterated, a(n) is the (m-1)th column of the triangle b(m,k)/2m, whose initial rows are (1), (1 2), (2 6 4), (6 18 28 8), (24 72 128 120 16), (120 360 672 840 496 32), (720 2160 4128 5760 5312 2016 64); see A249796. Note also that b(m,3)/2m = n!, and b(m,m)/2m = 2^n. Proofs are easy. - Tony Bartoletti, Oct 30 2014
Beginning at a(1) = 1, this sequence is the sum of the first 2^(n-1) numbers of the form 4*k + 1 = A016813(k). For example, a(4) = 120 = 1 + 5 + 9 + 13 + 17 + 21 + 25 + 29. - J. M. Bergot, Dec 07 2014
a(n) is the number of edges in the (2^n - 1)-dimensional simplex. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete plane graph in 2^n points. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete parallelotope graph in n dimensions. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_4. - Álvar Ibeas, Nov 26 2015
a(n) gives the quadratic coefficient of the polynomial ((x + 1)^(2^n) + (x - 1)^(2^n))/2, cf. A201461. - Martin Renner, Jan 14 2017
Let f(x)=x+2*sqrt(x) and g(x)=x-2*sqrt(x). Then f(4^n*x)=b(n)*f(x)+a(n)*g(x) and g(4^n*x)=a(n)*f(x)+b(n)*g(x), where b is A007582. - Luc Rousseau, Dec 06 2018
For n>=1, a(n) is the covering radius of the first order Reed-Muller code RM(1,2n). - Christof Beierle, Dec 22 2021
a(n) =
REFERENCES
V. K. Balakrishnan, Theory and problems of Combinatorics, "Schaum's Outline Series", McGraw-Hill, 1995, p. 69.
Martin Gardner, Mathematical Carnival, "Pascal's Triangle", p. 201, Alfred A. Knopf NY, 1975.
Richard K. Guy, Unsolved problems in number theory, (p 72.) [From Daniel Forgues, Nov 10 2009]
Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
Clifford A. Pickover, Wonders of Numbers, Chap. 55, Oxford Univ. Press NY 2000.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
David Applegate, Omar E. Pol and N. J. A. Sloane, The Toothpick Sequence and Other Sequences from Cellular Automata, Congressus Numerantium, Vol. 206 (2010), 157-191. [There is a typo in Theorem 6: (13) should read u(n) = 4.3^(wt(n-1)-1) for n >= 2.]
M. Archibald, A. Blecher, A. Knopfmacher and M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
William Banks, Ahmet Güloğlu, Wesley Nevans and Filip Saidak, Descartes numbers, Anatomy of integers, 167-173, CRM Proc. Lecture Notes, 46, Amer. Math. Soc., Providence, RI, 2008. MathSciNet review (subscription required).
Taylor Brysiewicz, Holger Eble, and Lukas Kühne, Enumerating chambers of hyperplane arrangements with symmetry, arXiv:2105.14542 [math.CO], 2021.
Farideh Firoozbakht and M. F. Hasler, Variations on Euclid's formula for Perfect Numbers, JIS 13 (2010) #10.3.1.
Ross La Haye, Binary Relations on the Power Set of an n-Element Set, Journal of Integer Sequences, Vol. 12 (2009), Article 09.2.6.
T. Helleseth, T. Klove and J.Mykkeltveit, On the covering radius of binary codes (Corresp.), IEEE Transactions on Information Theory, Vol. 24 (1978).
Axel Muller, Metod Saniga, Alain Giorgetti, Henri de Boutray, and Frédéric Holweck, New and improved bounds on the contextuality degree of multi-qubit configurations, arXiv:2305.10225 [quant-ph], 2023.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
O. S. Rothaus, On "bent" functions, Journal of Combinatorial Theory, Series A, Vol. 20 (1976).
Thomas Wieder, The number of certain k-combinations of an n-set, Applied Mathematics Electronic Notes, vol. 8 (2008).
FORMULA
G.f.: x/((1 - 2*x)*(1 - 4*x)).
E.g.f. for a(n+1), n>=0: 2*exp(4*x) - exp(2*x).
a(n) = 2^(n-1)*StirlingS2(n+1,2), n>=0, with StirlingS2(n,m)=A008277(n,m).
Second column of triangle A075497.
a(n) = StirlingS2(2^n,2^n-1) = binomial(2^n,2). - Ross La Haye, Jan 12 2008
a(n+1) = 4*a(n) + 2^n. - Philippe Deléham, Feb 20 2004
Convolution of 4^n and 2^n. - Ross La Haye, Oct 29 2004
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} 4^(n-j)*binomial(j,k). - Paul Barry, Aug 05 2005
a(n+2) = 6*a(n+1) - 8*a(n), a(1) = 1, a(2) = 6. - Daniele Parisse, Jul 28 2006 [Typo corrected by Yosu Yurramendi, Aug 06 2008]
Row sums of triangle A134346. Also, binomial transform of A048473: (1, 5, 17, 53, 161, ...); double bt of A151821: (1, 4, 8, 16, 32, 64, ...) and triple bt of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
a(n) = 3*Stirling2(n+1,4) + Stirling2(n+2,3). - Ross La Haye, Jun 01 2008
a(n) = ((4^n - 2^n)/2 - 2^(n-1))/4, n>=1. - Zerinvary Lajos, Jun 05 2009
a(n) = A153006(2^n-1). - Omar E. Pol, Nov 20 2010
Sum_{n>=1} 1/a(n) = 2 * (A065442 - 1) = A211705 - 2. - Amiram Eldar, Dec 24 2020
a(n) = binomial(2*n+2, n+1) - Catalan(n+2). - N. J. A. Sloane, Apr 01 2021
a(n) = A171476(n-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Jul 27 2022
EXAMPLE
G.f. = x + 6*x^2 + 28*x^3 + 120*x^4 + 496*x^5 + 2016*x^6 + 8128*x^7 + 32640*x^8 + ...
MAPLE
GBC := proc(n, k, q) local i; mul( (q^(n-i)-1)/(q^(k-i)-1), i=0..k-1); end; # define q-ary Gaussian binomial coefficient [ n, k ]_q
[ seq(GBC(n+1, 2, 2)-GBC(n, 2, 2), n=0..30) ]; # produces A006516
A006516:=1/(4*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation
seq(binomial(2^n, 2), n=0..19); # Zerinvary Lajos, Feb 22 2008
MATHEMATICA
Table[2^(n - 1)(2^n - 1), {n, 0, 30}] (* or *) LinearRecurrence[{6, -8}, {0, 1}, 30] (* Harvey P. Dale, Jul 15 2011 *)
PROG
(Sage) [lucas_number1(n, 6, 8) for n in range(24)] # Zerinvary Lajos, Apr 22 2009
(Sage) [(4**n - 2**n) / 2 for n in range(24)] # Zerinvary Lajos, Jun 05 2009
(PARI) a(n)=(1<<n-1)<<(n-1) \\ Charles R Greathouse IV, Jun 10 2011
(PARI) vector(100, n, n--; 2^(n-1)*(2^n-1)) \\ Altug Alkan, Oct 06 2015
(Maxima) A006516(n):=2^(n-1)*(2^n - 1)$ makelist(A006516(n), n, 0, 30); /* Martin Ettl, Nov 15 2012 */
(Haskell)
a006516 n = a006516_list !! n
a006516_list = 0 : 1 :
zipWith (-) (map (* 6) $ tail a006516_list) (map (* 8) a006516_list)
-- Reinhard Zumkeller, Oct 25 2013
(Magma) [2^(n-1)*(2^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 31 2014
(Python) for n in range(0, 30): print(2**(n-1)*(2**n - 1), end=', ') # Stefano Spezia, Dec 06 2018
(GAP) List([0..25], n->2^(n-1)*(2^n-1)); # Muniru A Asiru, Dec 06 2018
CROSSREFS
Equals A006095(n+1) - A006095(n). In other words, A006095 gives the partial sums.
Cf. A000043, A000396. - Omar E. Pol, Aug 30 2008
Cf. A109241, A139251, A153006. - Omar E. Pol, Aug 31 2008, May 25 2010, Nov 20 2010
Cf. A002450, A002001. - Gary W. Adamson, Oct 26 2010
Cf. A049072, A000384, A201461, A005059 (binomial transform, and special 5-letter words), A065442, A211705.
Cf. A171476.
KEYWORD
nonn,nice,easy
STATUS
approved
a(n) = 2*4^n - 1.
+10
54
1, 7, 31, 127, 511, 2047, 8191, 32767, 131071, 524287, 2097151, 8388607, 33554431, 134217727, 536870911, 2147483647, 8589934591, 34359738367, 137438953471, 549755813887, 2199023255551, 8796093022207, 35184372088831, 140737488355327, 562949953421311
OFFSET
0,2
COMMENTS
Sum of divisors of 4^n. - Paul Barry, Oct 13 2005
Subsequence of A000069; A132680(a(n)) = A005408(n). - Reinhard Zumkeller, Aug 26 2007
If x = a(n), y = A000079(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
It seems that a(n) divides A001676(3+4n). Several other entries apparently have this sequence embedded in them, e.g., A014551, A168604, A213243, A213246-8, and A279872. - Tom Copeland, Dec 27 2016
To elaborate on Librandi's comment from 2014: all these numbers, even if prime in Z, are sure not to be prime in Z[sqrt(2)], since a(n) can at least be factored as ((2^(2n + 1) - 1) - (2^(2n) - 1)*sqrt(2))((2^(2n + 1) - 1) + (2^(2n) - 1)*sqrt(2)). For example, 7 = (3 - sqrt(2))(3 + sqrt(2)), 31 = (7 - 3*sqrt(2))(7 + 3*sqrt(2)), 127 = (15 - 7*sqrt(2))(15 + 7*sqrt(2)). - Alonso del Arte, Oct 17 2017
Largest odd factors of A147590. - César Aguilera, Jan 07 2020
LINKS
Roudy El Haddad, Recurrent Sums and Partition Identities, arXiv:2101.09089 [math.NT], 2021.
Roudy El Haddad, A generalization of multiple zeta value. Part 1: Recurrent sums. Notes on Number Theory and Discrete Mathematics, 28(2), 2022, 167-199, DOI: 10.7546/nntdm.2022.28.2.167-199.
Robert Schneider, Partition zeta functions, Research in Number Theory, 2(1):9, 2016.
Eric Weisstein's World of Mathematics, Rule 220
FORMULA
G.f.: (1+2*x)/((1-x)*(1-4*x)).
E.g.f.: 2*exp(4*x)-exp(x).
With a leading zero, this is a(n) = (4^n - 2 + 0^n)/2, the binomial transform of A080925. - Paul Barry, May 19 2003
From Benoit Cloitre, Jun 18 2004: (Start)
a(n) = (-16^n/2)*B(2n, 1/4)/B(2n) where B(n, x) is the n-th Bernoulli polynomial and B(k) = B(k, 0) is the k-th Bernoulli number.
a(n) = 5*a(n-1) - 4*a(n-2).
a(n) = (-4^n/2)*B(2*n, 1/2)/B(2*n). (End)
a(n) = A099393(n) + A020522(n) = A000302(n) + A024036(n). - Reinhard Zumkeller, Feb 07 2006
a(n) = Stirling2(2*(n+1), 2). - Zerinvary Lajos, Dec 06 2006
a(n) = 4*a(n-1) + 3 with n > 0, a(0) = 1. - Vincenzo Librandi, Dec 30 2010
a(n) = A001576(n+1) - 2*A001576(n). - Brad Clardy, Mar 26 2011
a(n) = 6*A002450(n) + 1. - Roderick MacPhee, Jul 06 2012
a(n) = A000203(A000302(n)). - Michel Marcus, Jan 20 2014
a(n) = Sum_{i = 0..n} binomial(2n+2, 2i). - Wesley Ivan Hurt, Mar 14 2015
a(n) = (1/4^n) * Sum_{k = 0..n} binomial(2*n+1,2*k)*9^k. - Peter Bala, Feb 06 2019
a(n) = A147590(n)/A000079(n). - César Aguilera, Jan 07 2020
a(n) = numerator(zeta_star({2}_(n + 1))/zeta(2*n + 2)) where zeta_star is the multiple zeta star values and ({2}_n) represents (2, ..., 2) where the multiplicity of 2 is n. - Roudy El Haddad, Feb 22 2022
MAPLE
seq(2*4^n-1, n = 0..22); # Peter Luschny, Aug 17 2011
MATHEMATICA
2 * 4^Range[0, 31] - 1 (* Alonso del Arte, Oct 17 2017 *)
PROG
(Magma) [2*4^n-1 : n in [0..30]]; // Wesley Ivan Hurt, Mar 14 2015
(PARI) a(n)=2*4^n-1 \\ Charles R Greathouse IV, Sep 24 2015
(Haskell)
a083420 = subtract 1 . (* 2) . (4 ^) -- Reinhard Zumkeller, Dec 22 2015
CROSSREFS
Cf. A083421, A000668 (primes in this sequence), A004171, A000244.
Cf. A000302.
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Apr 29 2003
STATUS
approved
Array of values of Jordan function J_k(n) read by antidiagonals (version 1).
+10
24
1, 1, 1, 2, 3, 1, 2, 8, 7, 1, 4, 12, 26, 15, 1, 2, 24, 56, 80, 31, 1, 6, 24, 124, 240, 242, 63, 1, 4, 48, 182, 624, 992, 728, 127, 1, 6, 48, 342, 1200, 3124, 4032, 2186, 255, 1, 4, 72, 448, 2400, 7502, 15624, 16256, 6560, 511, 1, 10, 72, 702, 3840
OFFSET
1,4
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
R. Sivaramakrishnan, "The many facets of Euler's totient. II. Generalizations and analogues", Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187.
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
FORMULA
J_k(n) = sum( d divides n, d^k*mu(n/d)) - Benoit Cloitre and Michael Orrison (orrison(AT)math.hmc.edu), Jun 07 2002
EXAMPLE
Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
MAPLE
J := proc(n, k) local i, p, t1, t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
#alternative
A059379 := proc(n, k)
add(d^k*numtheory[mobius](n/d), d=numtheory[divisors](n)) ;
end proc:
seq(seq(A059379(d-k, k), k=1..d-1), d=2..12) ; # R. J. Mathar, Nov 23 2018
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n];
A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]], 2]-n+1;
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];
A059379[n_]:=JordanTotient[A004736[n], A002260[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
PROG
(PARI)
jordantot(n, k)=sumdiv(n, d, d^k*moebius(n/d));
A002260(n)=n-binomial(floor(1/2+sqrt(2*n)), 2);
A004736(n)=binomial(floor(3/2+sqrt(2*n)), 2)-n+1;
A059379(n)=jordantot(A004736(n), A002260(n)); \\ Enrique Pérez Herrero, Jan 08 2011
(Python)
from functools import cache
def MoebiusTrans(a, i):
@cache
def mb(n, d = 1):
return d % n and -mb(d, n % d < 1) + mb(n, d + 1) or 1 // n
def mob(m, n): return mb(m // n) if m % n == 0 else 0
return sum(mob(i, d) * a(d) for d in range(1, i + 1))
def Jrow(n, size):
return [MoebiusTrans(lambda m: m ** n, k) for k in range(1, size)]
for n in range(1, 8): print(Jrow(n, 13))
# Alternatively:
from sympy import primefactors as prime_divisors
from fractions import Fraction as QQ
from math import prod as product
def J(n: int, k: int) -> int:
t = QQ(pow(k, n), 1)
s = product(1 - QQ(1, pow(p, n)) for p in prime_divisors(k))
return (t * s).numerator # the denominator is always 1
for n in range(1, 8): print([J(n, k) for k in range(1, 13)])
# Peter Luschny, Dec 16 2023
CROSSREFS
See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 28 2001
STATUS
approved
Array of values of Jordan function J_k(n) read by antidiagonals (version 2).
+10
22
1, 1, 1, 1, 3, 2, 1, 7, 8, 2, 1, 15, 26, 12, 4, 1, 31, 80, 56, 24, 2, 1, 63, 242, 240, 124, 24, 6, 1, 127, 728, 992, 624, 182, 48, 4, 1, 255, 2186, 4032, 3124, 1200, 342, 48, 6, 1, 511, 6560, 16256, 15624, 7502, 2400, 448, 72, 4, 1, 1023, 19682
OFFSET
1,5
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 199, #3.
R. Sivaramakrishnan, The many facets of Euler's totient. II. Generalizations and analogues, Nieuw Arch. Wisk. (4) 8 (1990), no. 2, 169-187
LINKS
Enrique Pérez Herrero, Table of n, a(n) for n = 1..10000
EXAMPLE
Array begins:
1, 1, 2, 2, 4, 2, 6, 4, 6, 4, 10, 4, ...
1, 3, 8, 12, 24, 24, 48, 48, 72, 72, ...
1, 7, 26, 56, 124, 182, 342, 448, 702, ...
1, 15, 80, 240, 624, 1200, 2400, 3840, ...
MAPLE
J := proc(n, k) local i, p, t1, t2; t1 := n^k; for p from 1 to n do if isprime(p) and n mod p = 0 then t1 := t1*(1-p^(-k)); fi; od; t1; end;
MATHEMATICA
JordanTotient[n_, k_:1]:=DivisorSum[n, #^k*MoebiusMu[n/#]&]/; (n>0)&&IntegerQ[n];
A004736[n_]:=Binomial[Floor[3/2+Sqrt[2*n]], 2]-n+1;
A002260[n_]:=n-Binomial[Floor[1/2+Sqrt[2*n]], 2];
A059380[n_]:=JordanTotient[A002260[n], A004736[n]]; (* Enrique Pérez Herrero, Dec 19 2010 *)
PROG
(PARI)
jordantot(n, k)=sumdiv(n, d, d^k*moebius(n/d));
A002260(n)=n-binomial(floor(1/2+sqrt(2*n)), 2);
A004736(n)=binomial(floor(3/2+sqrt(2*n)), 2)-n+1;
A059380(n)=jordantot(A002260(n), A004736(n)); \\ Enrique Pérez Herrero, Jan 08 2011
CROSSREFS
See A059379 and A059380 (triangle of values of J_k(n)), A000010 (J_1), A059376 (J_3), A059377 (J_4), A059378 (J_5). Columns give A000225, A024023, A020522, A024049, A059387, etc.
Main diagonal gives A067858.
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Jan 28 2001
STATUS
approved
G.f.: 1/((1-2*x)*(1-2*x^2)).
+10
21
1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528, 1073709056, 2147450880, 4294901760, 8589869056
OFFSET
0,2
COMMENTS
Equals row sums of triangle A156665. - Gary W. Adamson, Feb 12 2009
a(n) is the number of subsets of {1,2,...,n+1} that contain at least one odd integer. - Geoffrey Critzer, Mar 03 2009
a(n-3) is the number of chiral pairs of color patterns of length n using two colors. Two color patterns are equivalent if the colors are permuted. For example, a string of five colors using exactly two different colors has six chiral pairs: AAAAB-ABBBB, AAABA-ABAAA, AAABB-AABBB, AABAB-ABABB, AABBA-ABBAA, and ABAAB-ABBAB. The number of color patterns of length n using exactly k colors when chiral pairs are counted twice is the Stirling subset number S2(n,k). The number of achiral color patterns of length n using exactly 2 colors is S2(floor(n/2)+1,2). The value of a(n-3) is half the difference of these two. - Robert A. Russell, Feb 01 2018
a(n-2) is the number of chiral pairs for a row of n colors with exactly 2 different colors. If the reverse of a sequence is different, the combination of the two is a chiral pair. For a row of 4 colors using exactly 2 different colors, the chiral pairs are AAAB-BAAA, AABA-ABAA, AABB-BBAA, ABAB-BABA, ABBB-BBBA, and BABB-BBAB. Thus a(4-2) = a(2) = 6. - Robert A. Russell, Jun 10 2018
LINKS
S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
E. Filiol and C. Fontaine, Highly nonlinear balanced Boolean functions with a good correlation-immunity, Lect. Not. Comp. Sci 1403 (1998), 475-488, NL(F_n).
Juan B. Gil and Jessica A. Tomasko, Restricted Grassmannian permutations, arXiv:2112.03338 [math.CO], 2021.
FORMULA
From Alexander Adamchuk, Sep 25 2006: (Start)
a(2k) = A006516(k+1) = 2^k*(2^(k+1) - 1) = A020522(k+1) /2.
a(2k+1) = 2*A006516(k+1) = 2^(k+1)*(2^(k+1) - 1) = A020522(k+1). (End)
a(n) = 2^(n+1) - 2^(floor((n+1)/2)). - Geoffrey Critzer, Mar 03 2009
a(n) = 2*(a(n-1) bitwiseOR a(n-2)), a(0)=1, a(1)=2. - Pierre Charland, Dec 12 2010
G.f.: (1+x*Q(0))/(1-x)^2, where Q(k)= 1 - 1/(2^k - 2*x*2^(2*k)/(2*x*2^k - 1/(1 + 1/(2*2^k - 8*x*2^(2*k)/(4*x*2^k + 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(0)=1, a(1)=2, a(2)=6, a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Harvey P. Dale, Jun 25 2013
a(n) = (A000079(n+2) - A060546(n+2))/ 2. - Robert A. Russell, Jun 19 2018
a(n) = -a(-3-n) * 2^(n+2 + floor((n+1)/2)) for all n in Z. - Michael Somos, Jul 01 2018
a(n) = (A000918(n+2) - A056453(n+2)) / 2 = A000918(n+2) - A056309(n+2) = A056309(n+2) - A056453(n+2). - Robert A. Russell, Sep 26 2018
EXAMPLE
G.f. = 1 + 2*x + 6*x^2 + 12*x^3 + 28*x^4 + 56*x^5 + 120*x^6 + 240*x^7 + 496*x^8 + ... - Michael Somos, Jul 01 2018
MAPLE
seq(coeff(series(((1-2*x)*(1-2*x^2))^(-1), x, n+1), x, n), n = 0..35); # Muniru A Asiru, Sep 27 2018
MATHEMATICA
RecurrenceTable[{a[n] == 2 (BitOr[a[n - 1], a[n - 2]]), a[0] == 1, a[1] == 2}, a, {n, 0, 32}] (* Geoffrey Critzer, Jan 09 2011 *)
CoefficientList[Series[1/((1-2x)(1-2x^2)), {x, 0, 40}], x] (* or *) LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 40] (* Harvey P. Dale, Jun 25 2013 *)
Table[(StirlingS2[n, 2] - StirlingS2[Floor[n/2]+1, 2])/2, {n, 3, 30}] (* Robert A. Russell, Jan 29 2018 *)
a[ n_] := 2^(n + 1) - 2^Quotient[n + 1, 2]; (* Michael Somos, Jul 01 2018 *)
PROG
(PARI) {a(n) = 2^(n+1) - 2^((n+1)\2)}; /* Michael Somos, Jul 01 2018 */
(GAP) List([0..35], n->2^(n+1)-2^(QuoInt(n+1, 2))); # Muniru A Asiru, Sep 27 2018
CROSSREFS
Essentially the same as A032085.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Sep 24 2006
STATUS
approved
Triangle read by rows: T(n,k) = 2^n - 2^k, 0 <= k <= n.
+10
20
0, 1, 0, 3, 2, 0, 7, 6, 4, 0, 15, 14, 12, 8, 0, 31, 30, 28, 24, 16, 0, 63, 62, 60, 56, 48, 32, 0, 127, 126, 124, 120, 112, 96, 64, 0, 255, 254, 252, 248, 240, 224, 192, 128, 0, 511, 510, 508, 504, 496, 480, 448, 384, 256, 0, 1023, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 0
OFFSET
0,4
FORMULA
A000120(T(n,k)) = A025581(n,k).
Row sums give A000337.
Central terms give A020522.
T(2*n+1, n) = A006516(n+1).
T(2*n+3, n+2) = A059153(n).
T(n, k) = A140513(n,k) - A173786(n,k), 0 <= k <= n.
T(n, k) = A173786(n,k) - A059268(n+1,k+1), 0 < k <= n.
T(2*n, 2*k) = T(n,k) * A173786(n,k), 0 <= k <= n.
T(n, 0) = A000225(n).
T(n, 1) = A000918(n) for n>0.
T(n, 2) = A028399(n) for n>1.
T(n, 3) = A159741(n-3) for n>3.
T(n, 4) = A175164(n-4) for n>4.
T(n, 5) = A175165(n-5) for n>5.
T(n, 6) = A175166(n-6) for n>6.
T(n, n-4) = A110286(n-4) for n>3.
T(n, n-3) = A005009(n-3) for n>2.
T(n, n-2) = A007283(n-2) for n>1.
T(n, n-1) = A000079(n-1) for n>0.
T(n, n) = A000004(n).
EXAMPLE
Triangle begins as:
0;
1, 0;
3, 2, 0;
7, 6, 4, 0;
15, 14, 12, 8, 0;
31, 30, 28, 24, 16, 0;
MATHEMATICA
Table[2^n -2^k, {n, 0, 15}, {k, 0, n}]//Flatten (* G. C. Greubel, Jul 13 2021 *)
PROG
(Magma) [2^n -2^k: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 13 2021
(Sage) flatten([[2^n -2^k for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 13 2021
KEYWORD
nonn,easy,tabl
AUTHOR
Reinhard Zumkeller, Feb 28 2010
STATUS
approved
Number of reversible strings with n beads of 2 colors. If more than 1 bead, not palindromic.
+10
15
2, 1, 2, 6, 12, 28, 56, 120, 240, 496, 992, 2016, 4032, 8128, 16256, 32640, 65280, 130816, 261632, 523776, 1047552, 2096128, 4192256, 8386560, 16773120, 33550336, 67100672, 134209536, 268419072, 536854528
OFFSET
1,1
COMMENTS
a(n) is also the number of induced subgraphs with odd number of edges in the path graph P(n) if n>0. - Alessandro Cosentino (cosenal(AT)gmail.com), Feb 06 2009
A common recurrence of the bisections A020522 and A006516 means a(n+4) = 6*a(n+2) - 8*a(n), n>1. - Yosu Yurramendi, Aug 07 2008
Also, the decimal representation of the diagonal from the origin to the corner of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 566", based on the 5-celled von Neumann neighborhood, initialized with a single black (ON) cell at stage zero. - Robert Price, Jul 05 2017
REFERENCES
S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 170.
LINKS
M. Archibald, A. Blecher, A. Knopfmacher, M. E. Mays, Inversions and Parity in Compositions of Integers, J. Int. Seq., Vol. 23 (2020), Article 20.4.1.
C. G. Bower, Transforms (2)
S. J. Cyvin et al., Theory of polypentagons, J. Chem. Inf. Comput. Sci., 33 (1993), 466-474.
N. J. A. Sloane, On the Number of ON Cells in Cellular Automata, arXiv:1503.01168 [math.CO], 2015.
Eric Weisstein's World of Mathematics, Elementary Cellular Automaton
FORMULA
"BHK" (reversible, identity, unlabeled) transform of 2, 0, 0, 0, ...
a(n) = 2^(n-1)-2^floor((n-1)/2), n > 1. - Vladeta Jovovic, Nov 11 2001
G.f.: 2*x+x^2/((1-2*x)*(1-2*x^2)). - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 25 2004
a(n) = A005418(n+1)-A016116(n+2), n>1. - Yosu Yurramendi, Aug 07 2008
a(n+1) = A077957(n) + 2*a(n), n>1. a(n+2) = A000079(n+1) + 2*a(n), n>1. - Yosu Yurramendi, Aug 10 2008
First differences: a(n+1)-a(n) = A007179(n) = A156232(n+2)/4, n>1. - Paul Curtz, Nov 16 2009
a(n) = 2*(a(n-1) bitwiseOR a(n-2)), n>3. - Pierre Charland, Dec 12 2010
a(n) = 2*a(n-1) + 2*a(n-2) - 4*a(n-3). - Wesley Ivan Hurt, Jul 03 2020
MATHEMATICA
Join[{2}, LinearRecurrence[{2, 2, -4}, {1, 2, 6}, 29]] (* Jean-François Alcover, Oct 11 2017 *)
PROG
(Magma) [2] cat [2^(n-1)-2^Floor((n-1)/2) : n in [2..40]]; // Wesley Ivan Hurt, Jul 03 2020
(PARI) a(n)=([0, 1, 0; 0, 0, 1; -4, 2, 2]^(n-1)*[2; 1; 2])[1, 1] \\ Charles R Greathouse IV, Oct 21 2022
CROSSREFS
Cf. A005418, A016116. Essentially the same as A122746.
Row sums of triangle A034877.
KEYWORD
nonn,easy
STATUS
approved
a(n) = 4^n + 2^n - 1.
+10
15
1, 5, 19, 71, 271, 1055, 4159, 16511, 65791, 262655, 1049599, 4196351, 16781311, 67117055, 268451839, 1073774591, 4295032831, 17180000255, 68719738879, 274878431231, 1099512676351, 4398048608255, 17592190238719
OFFSET
0,2
COMMENTS
Number of occurrences of letter 2 in the (n+1)-st Peano word.
In binary representation, a leading one followed by n zeros then by n ones. - Reinhard Zumkeller, Feb 07 2006
The number of involutions in group G_n G_{n+1} = G_n(operation) D_8. For example, Q_8->1 involution; D_8->5 involutions - Roger L. Bagula, Aug 08 2007
LINKS
A. M. Cohen and D. E. Taylor, On a Certain Lie Algebra Defined By a Finite Group, American Mathematical Monthly, volume 114, number 7, August-September 2007, pages 633-638. Also preprint. a(n) = t_n in proof of theorem 6.2.
Sergey Kitaev and Toufik Mansour, The Peano curve and counting occurrences of some patterns, arXiv:math/0210268 [math.CO], 2002. Section 3 lemma 1, d_2^n = a(n-1).
Sergey Kitaev, Toufik Mansour, and Patrice Séébold, Generating the Peano curve and counting occurrences of some patterns, Journal of Automata, Languages and Combinatorics, volume 9, number 4, 2004, pages 439-455. Also at ResearchGate. Section 4, |P_n|_r = a(n-1).
FORMULA
a(n) = A063376(n)-1.
a(n) = A020522(n) + A000225(n+1) = A083420(n) - A020522(n); A000120(a(n)) = n+1; A023416(a(n))=n; A070939(a(n)) = 2*n+1; 2*A020522(n)+1 = A030101(a(n)). - Reinhard Zumkeller, Feb 07 2006
a(n) = 2^(2*n-1) + 2*a(n-1) + 1. - Roger L. Bagula, Aug 08 2007
From Mohammad K. Azarian, Jan 15 2009: (Start)
G.f.: 1/(1-4*x) + 1/(1-2*x) - 1/(1-x).
E.g.f.: e^(4*x) + e^(2*x) - e^x. (End)
a(n) = A279396(n+4, 4). - Wolfdieter Lang, Jan 10 2017
a(n) = A002378(2^n) - 1 = 2*A000217(2^n) - 1 = 2*A007582(n) - 1. - Peter Munn, Nov 20 2022
EXAMPLE
n=5: a(5)=4^5+2^5-1=1024+32-1=1055 -> '10000011111'.
MATHEMATICA
LinearRecurrence[{7, -14, 8}, {1, 5, 19}, 30] (* Harvey P. Dale, Sep 06 2015 *)
PROG
(Magma) [4^n + 2^n - 1: n in [0..60]]; // Vincenzo Librandi, Apr 26 2011
(PARI) a(n)=4^n+2^n-1; \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
See the formula section for the relationships with A000120, A000217, A000225, A002378, A007582, A020522, A023416, A030101, A063376, A070939, A083420, A279396.
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Oct 20 2004
STATUS
approved

Search completed in 0.043 seconds