[go: up one dir, main page]

login
A076035
G.f.: 1/(1-4*x*C) where C = (1/2-1/2*(1-4*x)^(1/2))/x = g.f. for Catalan numbers A000108.
15
1, 4, 20, 104, 548, 2904, 15432, 82128, 437444, 2331128, 12426200, 66250672, 353258536, 1883768176, 10045773072, 53573890464, 285714489348, 1523763466296, 8126565627192, 43341046493424, 231149891614008, 1232790669780816, 6574850950474992, 35065749759115104
OFFSET
0,2
COMMENTS
The Hankel transform of this sequence and that of the aerated sequence with g.f. 1/(1-4x^2*c(x^2)) is 4^n. In general, the expansions of 1/(1-k*x*c(x)) and 1/(1-k*x^2*c(x^2)) have Hankel transform k^n. - Paul Barry, Jan 20 2007
FORMULA
a(n) = sum{k=0..n, 3^k*C(2n, n-k)(2k+1)/(n+k+1)}. - Paul Barry, Jun 22 2004
a(n) = Sum_{k, 0<=k<=n} A106566(n, k)*4^k. - Philippe Deléham, Sep 01 2005
a(n) = if(n=0,1,sum{k=1..n, C(2n-k-1,n-k)*k*4^k/n}). - Paul Barry, Jan 20 2007
a(n) = Sum{k, 0<=k<=n}A039599(n,k)*3^k. - Philippe Deléham, Sep 08 2007
a(0)=1, a(n)=(16*a(n-1)-4*A000108(n-1))/3. - Philippe Deléham, Nov 27 2007
Conjecture: 3*n*a(n) +2*(9-14*n)*a(n-1) +32*(2*n-3)*a(n-2) = 0. - R. J. Mathar, Nov 14 2011 [proved by Ekhad & Yang, see link]
a(n) ~ 2^(4*n+1) / 3^(n+1). - Vaclav Kotesovec, Feb 13 2014
Conjecture: a(n) = 4*A076025(n), n>0. - R. J. Mathar, Apr 01 2022
MAPLE
CatalanNumber := n -> binomial(2*n, n)/(n+1):
h := (n, m) -> hypergeom([1+m, m-n], [m+n+2], -3):
a := n -> CatalanNumber(n)*(h(n, 0) + 6*n/(n+2)*h(n, 1)):
seq(simplify(a(n)), n=0..23); # Peter Luschny, Dec 09 2018
MATHEMATICA
CoefficientList[Series[1/(1-4*x*(1-Sqrt[1-4*x])/(2*x)), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Oct 29 2002
STATUS
approved