[go: up one dir, main page]

login
A058809
The sequence lambda(3,n), where lambda is defined in A055203. Number of ways of placing n identifiable positive intervals with a total of exactly three starting and/or finishing points.
15
0, 0, 6, 24, 78, 240, 726, 2184, 6558, 19680, 59046, 177144, 531438, 1594320, 4782966, 14348904, 43046718, 129140160, 387420486, 1162261464, 3486784398, 10460353200, 31381059606, 94143178824, 282429536478, 847288609440
OFFSET
0,3
COMMENTS
For all n, a(n)=1*3^n-3*1^n+3*0^n-1*0^n [with 0^0=1] where powers are taken of triangular numbers and multiplied by binomial coefficients with alternating signs. - Henry Bottomley, Jan 05 2001
For n>=1, a(n) is the number of facets of the harmonic polytope. See Ardila and Escobar. - Michel Marcus, Jun 08 2020
For n >= 3, this is the number of acyclic orientations of the wheel graph of order n+1. - Peter Kagey, Oct 13 2020
Number of ternary strings of length n with at least 2 different digits. - Enrique Navarrete, Nov 20 2020
A level 1 Hanoi graph is a triangle. Level n+1 is formed from three copies of level n by adding edges between pairs of corner vertices of each pair of triangles. This graph represents the allowable moves in the Towers of Hanoi problem with n disks. a(n) is the number of degree 3 vertices in the level n Hanoi graph. - Allan Bickle, Aug 07 2024
LINKS
Federico Ardila and Laura Escobar, The harmonic polytope, arXiv:2006.03078 [math.CO], 2020.
Allan Bickle, Properties of Sierpinski Triangle Graphs, Springer PROMS 448 (2021) 295-303.
A. Hinz, S. Klavzar, and S. Zemljic, A survey and classification of Sierpinski-type graphs, Discrete Applied Mathematics 217 3 (2017), 565-600.
Eric Weisstein's World of Mathematics, Hanoi Graph
Eric Weisstein's World of Mathematics, Wheel Graph
FORMULA
For n>0, a(n) = 3^n-3 = 3*a(n-1)+6.
a(0)=0, a(1)=0, a(2)=6, a(n) = 4*a(n-1)-3*a(n-2). - Harvey P. Dale, Sep 29 2013
G.f.: 6*x^2 / ((1 - x)*(1 - 3*x)). - Colin Barker, Oct 14 2020
EXAMPLE
a(2)=6 since intervals a-a and b-b can be combined as a-ab-b, a-b-ab, ab-a-b, b-ab-a, b-a-ab, or ab-b-a.
The level 2 Hanoi graph has 9 vertices, 6 with degree 3, so a(2) = 6.
MATHEMATICA
Join[{0}, NestList[3#+6&, 0, 30]] (* or *) Join[{0}, LinearRecurrence[{4, -3}, {0, 6}, 30]] (* Harvey P. Dale, Sep 29 2013 *)
PROG
(PARI) concat([0, 0], Vec(6*x^2 / ((1 - x)*(1 - 3*x)) + O(x^30))) \\ Colin Barker, Oct 14 2020
CROSSREFS
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).
Sequence in context: A276179 A162583 A259662 * A140088 A359133 A011855
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jan 03 2001
STATUS
approved