This site is supported by donations to The OEIS Foundation.
Index to 2D 5-Neighbor Cellular Automata
Index to 2D 5-Neighbor Outer Totalistic Cellular Automata
Sequences in the OEIS related to 2D 5-Neighbor Outer Totalistic Cellular Automata are tabulated here.
Contents
- 1 Introduction
- 2 Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Describing the Total Number of ON Cells
- 3 Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Related to the Position of ON Cells Along the X-Axis
- 4 Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Related to the Position of ON Cells Along the Diagonal
- 5 Mathematica Program To Generate the Sequences Above
- 6 Output from the Mathematica Program To Generate the Sequences Above
- 7 Rules that generate equivalent counts of ON cells at stage 2^n-1
- 8 Links
Introduction
There are 2^32 possible rules for general two-dimensional Cellular Automata. Totalistic rules depend only upon the total number of ON cells in a neighborhood. Outer Totalistic rules also include the state of the center cell. The 5-Neighbor Outer Totalistic rules include the center cell and those to the N, E, S and W of it. 9-Neighbor rules would also consider neighbors that are diagonal to the center cell.
There are 1024 possible 2D 5-Neighbor Outer Totalistic Cellular Automata. Wolfram's numbering scheme identifies these by rule numbers from 0 to 1023. See "A New Kind of Science" by Stephen Wolfram, pages 170-179 or the Eric Weisstein's "World of Mathematics" links below. The sequences in the OEIS generally represent a two-dimensional cellular automata (CA) on a square grid representing successive generations or stages. This grid is initialized by a single black (ON) cell. Some rules will generate ON cells that nearly fill any grid size at stage 1. See rule 777 for example. So, in order to ensure finite values in these sequences, the grid is restricted to grow at only one cell in each direction at each stage. Thus, at stage n, the grid under consideration is 2n+1 cells on each side. Due to the definition of the rules and being initiated by a single cell, all resulting diagrams are symmetric along each axis and along each diagonal.
An example. The base 2 digits of the rule number determines the CA evolution. The last bit specifies the state of a cell if all neighbors are OFF and it too is OFF. The next to last bit specifies the state of a cell if all neighbors are OFF but the cell itself is ON. Then each earlier pair of bits specifies what should happen if progressively (Totalistic) more neighbors are black. So, bits 2^0 and 2^1 apply if none of the four neighbors are ON, bits 2^2 and 2^3 apply if one neighbor is ON, bits 2^4 and 2^5 apply if two neighbors are ON, bits 2^6 and 2^7 apply if three neighbors are ON and bits 2^8 and 2^9 apply if all four neighbors are ON. For example, Rule 614 equates to the bits {1,0,0,1,1,0,0,1,1,0}. Since we are considering 5-Neighbor Outer Totalistic CA the future state of a cell is determined by the four nearest neighbors (N,E,S,W) and the cell itself. Progressing from stage 0 to stage 1 we have to determine the new state of nine cells. The first cell (upper left corner) has the initial state of OFF and all neighbors are OFF, so bit 2^0 applies dictating that the new state is OFF. The second cell (middle of top row) has the initial state of OFF and one of its neighbors (the original ON cell from stage 0) is ON. One neighbor is ON so bits 2^2 and 2^3 apply. Since the initial state is OFF, bit 2^2 applies dictating that the new state is ON. Now skipping to the cell at the origin, no neighbors are ON and the initial state is ON, so bit 2^1 applies to dictate that the new state is ON. For rule 614, a more specific statement of the rule can be stated. The state of the cell is turned ON or remains ON only if an odd number of these five cells are ON. The first five stages (0-4) of the CA generated by Rule 614 are:
Stage 0 Stage 1 Stage 2 Stage 3 Stage 4 . . . . x . . . . . . . x . . . . . . . . . . . . . . x . . . . x x x . . . . . . . . . . . . x . . . . . . . x . . . x . . . . . . . . . . x x x x x . x . x x x . x . x x x . . . x . . . x . x . . . . . . . x . . . x . . . . . . . . . . . . x . . . . x x x . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . x . . . .
Certain attributes of these CA can be interpreted as integer sequences. These are tabulated in the tables below. Perhaps the simplest attribute is the total number of ON cells at each stage. For example, the sequence generated by Rule 614 begins: 1,5,5,17,5,25,17,61,5,25,25,85 (A072272). Another sequence are the terms above only at at stages 2^n-1. This is relevant in the analysis of sequences such as Rule 614. See Sloane reference, "On the number of ON Cells in Cellular Automata" link below. The sequence generated by Rule 614 for this attribute begins: 1,5,17,61,217,773,2753 (A007483). Another sequence is the first difference of the total number of ON cells at each stage. This is simply the number of ON cells added at each stage, which could be negative. The sequence generated by Rule 614 for this attribute begins: 4,0,12,-12,20,-8,44,-56,20 (A170878). Another sequence is the partial sum of the total number of ON cells at each stage. This represents the total number of ON cells through n stages. The sequence generated by Rule 614 for this attribute begins: 1,6,11,28,33,58,75,136,141 (A253908).
Certain CA definitions (or rules), while different, generate identical sequences based solely on the number of ON cells. For example, rules 675 and 899 have different diagram sequences but have identical number of ON cells at each stage. The table below consolidates these rules that generate identical number of ON cells at each stage for the first 50 terms. It is conjectured that the ON cells remain identical for all terms for these rules.
Often a well known sequence like A005408 (The Odd Integers) comes very close to the CA generated sequence. The first term, usually a zero, may be missing or substituted. Or an extra first term will be present. In these cases the well known sequence is used in the tables below and the sequence is indicated with an asterisk. For example, the partial sums sequence based on Rule 4 begins 1,5,9,25,29,45,61,125. The OEIS sequence A116520 begins 0,1,5,9,25,29,45,61,125. This is a close match and will be used in the table below for Rule 4.
Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Describing the Total Number of ON Cells
Column headings in the table below: Rule Wolfram's Rule Number(s) Sequence First seven terms of the number of ON cells sequence ON A-number of the sequence listing the number of ON cells at each stage of the CA evolution ON(2^n-1) A-number of the sequence listing the number of ON cells at stages 2^n-1, n=0,... Partial Sum A-number of the sequence listing the partial sums of the number of ON cells at each stage First Diff A-number of the sequence listing the first differences of the number of ON cells at each stage (an asterisk, "*", in an A-number indicates a near match)
Rule | Sequence | ON | ON(2^n-1) | Partial Sum | First Diff |
---|---|---|---|---|---|
0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,136,144, 152,160,168,176,184,192,200,208,216,224,232,240,248,256,264, 272,280,288,296,304,312,320,328,336,344,352,360,368,376,384, 392,400,408,416,424,432,440,448,456,464,472,480,488,496,504, 512,520,528,536,544,552,560,568,576,584,592,600,608,616,624, 632,640,648,656,664,672,680,688,696,704,712,720,728,736,744, 752,760,768,776,784,792,800,808,816,824,832,840,848,856,864, 872,880,888,896,904,912,920,928,936,944,952,960,968,976,984, 992,1000,1008,1016 | 1,0,0,0,0,0,0 | A000007 | A000007 | A000012 | A154955* |
1,9,17,25,257,265,273,281 | 1,4,1,44,1,116,1 | A269906 | A269907 | A269908 | A269909 |
2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122,130,138,146, 154,162,170,178,186,194,202,210,218,226,234,242,250,258,266, 274,282,290,298,306,314,322,330,338,346,354,362,370,378,386, 394,402,410,418,426,434,442,450,458,466,474,482,490,498,506, 514,522,530,538,546,554,562,570,578,586,594,602,610,618,626, 634,642,650,658,666,674,682,690,698,706,714,722,730,738,746, 754,762,770,778,786,794,802,810,818,826,834,842,850,858,866, 874,882,890,898,906,914,922,930,938,946,954,962,970,978,986, 994,1002,1010,1018 | 1,1,1,1,1,1,1 | A000012 | A000012 | A000027 | A000004 |
3,11,19,27,67,75,83,91 | 1,5,1,45,1,117,1 | A269910 | A269911 | A269912 | A269913 |
4,12,36,44,68,76,100,108,132,140,164,172,196,204,228,236,516, 524,548,556,580,588,612,620,644,652,676,684,708,716,740,748 | 1,4,4,16,4,16,16 | A102376 | A000302 | A116520* | A269880 |
5,13,21,29,37,45,53,61,69,77,85,93,101,109,117,125 | 1,8,0,49,0,121,0 | A270006 | A270007 | A270008 | A270009 |
6,38,70,102,134,166,198,230 | 1,5,4,20,4,20,16 | A269695 | A269696 | A269697 | A269698 |
7,15,23,31,39,47,55,63,71,79,87,95,103,111,119,127,135,143,151, 159,167,175,183,191,199,207,215,223,231,239,247,255,263,271, 279,287,295,303,311,319,327,335,343,351,359,367,375,383,391, 399,407,415,423,431,439,447,455,463,471,479,487,495,503,511 | 1,9,0,49,0,121,0 | A270010 | A270011 | A270012 | A270013 |
14,46,142,174 | 1,5,8,20,20,32,40 | A269707 | A269708 | A269709 | A269710 |
20,28,52,60,148,156,180,188,532,540,564,572,660,668,692,700 | 1,4,8,12,20,24,44 | A269711 | A269712 | A269713 | A269714 |
22 | 1,5,8,20,16,44,32 | A269715 | A269716 | A269717 | A269718 |
30 | 1,5,12,16,36,24,60 | A269753 | A269754 | A269755 | A269756 |
33 | 1,4,5,32,9,92,21 | A269810 | A269811 | A269812 | A269813 |
35 | 1,5,5,37,9,101,21 | A269814 | A269815 | A269816 | A269817 |
41 | 1,4,5,32,13,84,29 | A269872 | A269873 | A269874 | A269875 |
43,59 | 1,5,5,37,13,97,25 | A269876 | A269815 | A269878 | A269879 |
49 | 1,4,5,32,9,100,21 | A270014 | A270015 | A270016 | A270017 |
51 | 1,5,5,37,9,109,13 | A270018 | A270019 | A270020 | A270021 |
54 | 1,5,8,20,28,40,44 | A270022 | A270023 | A270024 | A270025 |
57 | 1,4,5,32,13,84,29 | A270075 | A270076 | A270077 | A270078 |
62 | 1,5,12,20,32,44,68 | A270079 | A270080 | A270081 | A270082 |
65,321 | 1,4,5,36,9,96,17 | A269782 | A270084 | A270085 | A270086 |
73 | 1,4,5,40,0,121,0 | A270087 | A270088 | A270089 | A270090 |
78 | 1,6,14,34,54,86,134 | A270091 | A270092 | A270093 | A270094 |
81 | 1,4,5,40,9,100,21 | A270098 | A270099 | A270100 | A270101 |
84,92,116,124,212,220,244,252,596,604,628,636,724,732,756,764 | 1,4,8,16,16,32,32 | A189007 | A000302 | A270106 | A270107 |
86 | 1,5,8,24,16,48,32 | A270125 | A270126 | A270127 | A270128 |
89 | 1,4,5,44,0,121,0 | A270129 | A270130 | A270131 | A270132 |
94 | 1,5,12,16,36,24,60 | A270133 | A270134 | A270135 | A270136 |
97 | 1,4,9,32,13,84,21 | A270152 | A270153 | A270154 | A270155 |
99 | 1,5,5,41,12,109,16 | A270156 | A270157 | A270158 | A270159 |
105 | 1,4,9,32,13,92,45 | A270160 | A270161 | A270162 | A270163 |
107 | 1,5,5,41,12,109,16 | A270164 | A270165 | A270166 | A270167 |
110 | 1,5,8,20,20,32,48 | A270168 | A270169 | A270170 | A270171 |
113 | 1,4,9,32,17,88,37 | A270177 | A270178 | A270179 | A270180 |
115 | 1,5,5,41,12,109,16 | A270181 | A270182 | A270183 | A270184 |
118 | 1,5,8,24,24,48,36 | A270185 | A270186 | A270187 | A270188 |
121 | 1,4,9,32,17,100,40 | A270206 | A270207 | A270208 | A270209 |
123 | 1,5,5,41,12,109,16 | A270210 | A270211 | A270212 | A270213 |
126 | 1,5,12,20,36,40,80 | A270214 | A173034 | A270215 | A270216 |
129,385 | 1,4,5,28,9,84,21 | A270217 | A270218 | A270219 | A270220 |
131 | 1,5,5,33,13,93,25 | A270221 | A270222 | A270223 | A270224 |
133 | 1,8,4,40,17,100,25 | A270232 | A270233 | A270234 | A270235 |
137 | 1,4,5,28,9,84,29 | A270274 | A270275 | A270276 | A270277 |
139 | 1,5,5,33,13,93,33 | A270278 | A270279 | A270280 | A270281 |
141 | 1,8,4,40,17,108,17 | A270282 | A270283 | A270284 | A270285 |
145,153 | 1,4,5,32,4,101,20 | A270286 | A270287 | A270288 | A270289 |
147 | 1,5,5,37,4,105,20 | A270290 | A270291 | A270292 | A270293 |
149 | 1,8,4,44,5,116,12 | A270317 | A270318 | A270319 | A270320 |
150 | 1,5,8,20,20,44,3 | A270321 | A270322 | A270323 | A270324 |
155 | 1,5,5,37,8,97,25 | A270325 | A270326 | A270327 | A270328 |
157 | 1,8,4,44,5,116,12 | A270329 | A270330 | A270331 | A270332 |
158 | 1,5,12,20,32,32,64 | A270333 | A270334 | A270335 | A270336 |
161 | 1,4,9,24,29,64,49 | A270450 | A270451 | A270452 | A270453 |
163,171,227,235 | 1,5,9,33,25,85,49 | A270454 | A270222 | A270455 | A270456 |
165 | 1,8,4,40,17,104,20 | A270457 | A270458 | A270459 | A270460 |
169 | 1,4,9,24,29,68,41 | A270461 | A270462 | A270463 | A270464 |
173 | 1,8,4,40,17,112,20 | A270465 | A270466 | A270467 | A270468 |
177 | 1,4,9,32,33,84,65 | A270618 | A270619 | A270620 | A270621 |
179 | 1,5,9,41,21,93,41 | A270622 | A270623 | A270624 | A270625 |
181 | 1,8,4,44,9,108,21 | A270626 | A270627 | A270628 | A270629 |
182 | 1,5,8,20,32,36,52 | A270630 | A270631 | A270632 | A270633 |
185 | 1,4,9,32,33,92,65 | A270634 | A270635 | A270636 | A270637 |
187 | 1,5,9,41,21,93,49 | A270673 | A270674 | A270675 | A270676 |
189 | 1,8,4,44,9,108,21 | A270677 | A270678 | A270679 | A270680 |
190,254 | 1,5,12,24,32,52,60 | A270681 | A270682 | A270683 | A270684 |
193 | 1,4,9,24,21,72,45 | A270685 | A270686 | A270687 | A270688 |
195 | 1,5,5,33,13,93,25 | A270689 | A270690 | A270691 | A270692 |
197 | 1,8,4,40,17,100,25 | A270716 | A270717 | A270718 | A270719 |
201 | 1,4,9,28,17,80,28 | A270720 | A270721 | A270722 | A270723 |
203 | 1,5,5,33,13,93,33 | A270725 | A270726 | A270727 | A270728 |
205 | 1,8,4,40,17,108,17 | A270729 | A270730 | A270731 | A270732 |
206 | 1,5,8,20,20,32,48 | A270733 | A270734 | A270735 | A270736 |
209 | 1,4,9,28,25,80,53 | A270891 | A270892 | A270893 | A270894 |
211 | 1,5,5,37,4,105,20 | A270897 | A270898 | A270899 | A270900 |
213 | 1,8,4,44,9,112,21 | A270901 | A270902 | A270903 | A270904 |
214 | 1,5,8,24,20,60,28 | A270905 | A270906 | A270907 | A270908 |
217 | 1,4,9,32,9,96,44 | A270909 | A270910 | A270911 | A270912 |
219 | 1,5,5,37,8,97,25 | A270930 | A270931 | A270932 | A270933 |
221 | 1,8,4,44,9,116,9 | A270934 | A270935 | A270936 | A270937 |
222 | 1,5,12,20,32,32,72 | A270938 | A270939 | A270940 | A270941 |
225 | 1,4,13,28,33,84,61 | A270942 | A270943 | A270944 | A270945 |
229 | 1,8,4,40,17,104,20 | A270946 | A270947 | A270948 | A270949 |
233 | 1,4,13,32,21,68,40 | A270976 | A270977 | A270978 | A270979 |
237 | 1,8,4,40,17,112,20 | A270980 | A270981 | A270982 | A270983 |
238 | 1,5,8,20,20,32,48 | A270984 | A270985 | A270986 | A270987 |
241 | 1,4,13,36,37,88,77 | A270988 | A270989 | A270990 | A270991 |
243 | 1,5,9,41,21,101,49 | A269702 | A271001 | A271002 | A271003 |
245 | 1,8,4,44,13,112,25 | A271004 | A271005 | A271006 | A271007 |
246 | 1,5,8,24,28,48,36 | A271008 | A271009 | A271010 | A271011 |
249 | 1,4,13,40,25,88,81 | A271012 | A271013 | A271014 | A271015 |
Rule | Sequence | ON | ON(2^n-1) | Partial Sum | First Diff |
---|---|---|---|---|---|
251 | 1,5,9,41,21,101,49 | A271016 | A271017 | A271018 | A271019 |
253 | 1,8,4,44,13,116,13 | A271051 | A270935 | A271052 | A271053 |
259 | 1,5,5,36,5,108,5 | A271054 | A271055 | A271056 | A271057 |
260,268,292,300,388,396,420,428,772,780,804,812,900,908,932,940 | 1,4,5,12,4,16,20 | A253086 | A253087 | A255150 | A271059 |
261,269,277,285,293,301,309,317,325,333,341,349,357,365,373,381 | 1,8,1,48,1,120,1 | A271060 | A271061 | A271062 | A271064 |
262 | 1,5,4,20,9,33,13 | A271065 | A271066 | A271067 | A271068 |
267 | 1,5,5,40,13,100,13 | A271083 | A271084 | A271085 | A271086 |
270 | 1,5,8,21,20,28,36 | A271087 | A271088 | A271089 | A271090 |
275 | 1,5,5,40,5,112,5 | A271091 | A271092 | A271093 | A271094 |
276,284,308,316,340,348,372,380,404,412,436,444,468,476,500,508, 788,796,820,828,852,860,884,892,916,924,948,956,980,988,1012,1020 | 1,4,9,16,25,36,49 | A000290* | A000302 | A000330* | A005408* |
278 | 1,5,8,20,16,44,32 | A271095 | A271096 | A271097 | A271098 |
283 | 1,5,5,44,5,109,16 | A271117 | A271118 | A271119 | A271120 |
286 | 1,5,12,17,37,28,76 | A271121 | A271122 | A271123 | A271124 |
289 | 1,4,5,32,9,92,21 | A271125 | A271126 | A271127 | A271128 |
291 | 1,5,9,32,9,101,41 | A271129 | A271130 | A271131 | A271132 |
294 | 1,5,4,20,9,33,17 | A271133 | A271136 | A271134 | A271135 |
297 | 1,4,5,32,13,88,17 | A271148 | A271149 | A271150 | A271151 |
299 | 1,5,9,32,9,101,45 | A271152 | A271153 | A271154 | A271155 |
302 | 1,5,8,21,24,37,44 | A271156 | A271157 | A271158 | A271159 |
305 | 1,4,5,32,9,100,21 | A271160 | A271161 | A271162 | A271163 |
307 | 1,5,9,32,13,104,25 | A271164 | A271165 | A271166 | A271167 |
310 | 1,5,8,20,28,40,45 | A271195 | A271196 | A271198 | A271199 |
313 | 1,4,5,32,13,88,21 | A271200 | A271201 | A271202 | A271203 |
315 | 1,5,9,32,13,104,25 | A266206 | A270565 | A271248 | A271249 |
318 | 1,5,12,21,37,40,68 | A271250 | A271251 | A271252 | A271253 |
323 | 1,5,5,36,9,96,17 | A270565 | A271254 | A271255 | A271256 |
324,332,356,364,452,460,484,492,836,844,868,876,964,972,996,1004 | 1,4,5,12,8,24,25 | A246316 | A246317 | A271257 | A271258 |
326 | 1,5,4,20,9,37,24 | A271259 | A271260 | A271261 | A271262 |
329 | 1,4,5,40,9,100,5 | A265689 | A271274 | A271275 | A271276 |
331 | 1,5,5,40,13,100,21 | A271277 | A271278 | A271279 | A271280 |
334 | 1,5,8,21,20,32,44 | A271281 | A271282 | A271283 | A271284 |
337 | 1,4,5,40,9,100,21 | A271285 | A271286 | A271287 | A271288 |
339 | 1,5,5,40,9,100,25 | A271289 | A271290 | A271291 | A271292 |
342 | 1,5,8,24,17,53,32,96 | A264797 | A270126 | A269511 | A269512 |
345 | 1,4,5,44,5,104,13 | A271293 | A271294 | A271295 | A271296 |
347 | 1,5,5,44,5,109,16 | A271297 | A271298 | A271299 | A271300 |
350 | 1,5,12,17,37,28,76 | A271301 | A271302 | A271303 | A271304 |
353 | 1,4,9,32,13,84,21 | A271305 | A271306 | A271307 | A271308 |
355 | 1,5,9,32,17,101,36 | A271397 | A271398 | A271399 | A271408 |
358 | 1,5,4,20,9,37,24 | A271409 | A271411 | A271412 | A271413 |
361 | 1,4,9,32,13,92,45 | A271414 | A271415 | A271416 | A271417 |
363 | 1,5,9,32,17,101,40 | A264099 | A268153 | A268154 | A268194 |
366 | 1,5,8,21,24,37,52 | A268195 | A268202 | A268275 | A268276 |
369 | 1,4,9,32,17,92,37 | A268277 | A268282 | A268503 | A270793 |
371 | 1,5,9,32,21,96,41 | A271454 | A271455 | A271456 | A271457 |
374 | 1,5,8,24,25,53,36 | A169701 | A271458 | A271459 | A271460 |
377 | 1,4,9,32,17,104,29 | A271461 | A271462 | A271463 | A271464 |
379 | 1,5,9,32,21,96,41 | A265916 | A270423 | A271537 | A271538 |
382 | 1,5,12,21,37,40,76 | A271539 | A271540 | A271541 | A271542 |
387 | 1,5,9,24,17,84,41 | A271543 | A271544 | A271545 | A271546 |
389 | 1,8,5,40,17,104,17 | A271594 | A271595 | A271596 | A271597 |
390 | 1,5,4,20,9,33,13 | A271598 | A271599 | A271600 | A271601 |
393 | 1,4,5,28,9,84,29 | A271602 | A271603 | A271604 | A271605 |
395 | 1,5,9,28,17,89,32 | A271685 | A271686 | A271687 | A271688 |
397 | 1,8,5,44,17,108,33 | A271689 | A271690 | A271691 | A271692 |
398 | 1,5,8,21,20,28,36 | A271693 | A271694 | A271695 | A271696 |
401,409 | 1,4,5,32,5,96,17 | A271803 | A271804 | A271805 | A271806 |
403 | 1,5,9,28,17,96,45 | A271807 | A271808 | A271809 | A271810 |
405 | 1,8,5,44,5,116,17 | A271812 | A271813 | A271814 | A271815 |
406 | 1,6,14,34,54,102,139 | A271885 | A271887 | A271772 | A271888 |
411 | 1,5,9,32,25,93,48 | A271889 | A271890 | A271891 | A271892 |
413,445,477,509 | 1,8,5,48,5,120,5 | A272007 | A271061 | A272009 | A272010 |
414 | 1,5,12,21,32,40,81 | A272012 | A272013 | A272014 | A272015 |
417 | 1,4,9,28,17,68,41 | A272016 | A272017 | A272018 | A272019 |
419 | 1,5,13,28,25,101,56 | A272045 | A272046 | A272047 | A272048 |
421 | 1,8,5,40,17,108,29 | A272049 | A272050 | A272051 | A272052 |
422 | 1,5,4,20,9,33,17 | A272085 | A272086 | A272087 | A272088 |
425 | 1,4,9,28,17,68,41 | A272089 | A272218 | A272091 | A272092 |
427 | 1,5,13,32,37,89,80 | A271902 | A271903 | A271904 | A272110 |
429 | 1,8,5,44,17,108,33 | A272111 | A272112 | A272113 | A272114 |
430 | 1,5,8,21,24,37,44 | A272115 | A002450* | A272116 | A272117 |
433 | 1,4,9,36,25,88,65 | A272145 | A272146 | A272147 | A272148 |
435 | 1,5,13,36,33,92,65 | A272149 | A272150 | A272151 | A272152 |
437 | 1,8,5,44,9,112,21 | A272153 | A272154 | A272155 | A272156 |
438 | 1,5,8,20,32,40,36 | A272217 | A272218 | A272219 | A272220 |
441 | 1,4,9,36,25,96,65 | A272221 | A272222 | A272223 | A272224 |
443 | 1,5,13,40,25,97,72 | A272225 | A272226 | A272227 | A272228 |
446 | 1,5,12,25,28,52,64 | A272194 | A272249 | A272250 | A272251 |
449 | 1,4,9,24,21,72,45 | A272252 | A272253 | A272254 | A272255 |
451 | 1,5,9,24,21,72,45 | A272256 | A272257 | A272258 | A270844 |
453 | 1,8,5,40,17,104,29 | A272273 | A272274 | A272275 | A272276 |
454 | 1,5,4,20,9,37,28 | A246326 | A272277 | A272278 | A272279 |
457 | 1,4,9,28,21,92,57 | A272280 | A272281 | A2722782 | A272283 |
459 | 1,5,9,28,25,81,32 | A272287 | A272288 | A272289 | A272290 |
461 | 1,8,5,44,17,112,21 | A272291 | A272292 | A272293 | A272294 |
462 | 1,5,8,21,20,32,48 | A246330 | A272310 | A272311 | A272312 |
465 | 1,4,9,28,25,84,49 | A272313 | A272218 | A272316 | A272317 |
467 | 1,5,9,28,29,80,53 | A272315 | A272319 | A272320 | A272321 |
469 | 1,8,5,44,9,112,21 | A272416 | A272417 | A272418 | A272419 |
470 | 1,5,8,24,21,56,32 | A253078 | A272420 | A272421 | A272422 |
473 | 1,4,9,32,21,100,41 | A272423 | A272424 | A272425 | A272426 |
475 | 1,5,9,32,29,84,61 | A272447 | A272448 | A272449 | A272450 |
478 | 1,5,12,21,32,44,73 | A272451 | A272452 | A272453 | A272454 |
481 | 1,4,13,28,33,84,69 | A272455 | A272456 | A272457 | A272458 |
483 | 1,5,13,28,37,85,76 | A248860 | A267828 | A267829 | A272346 |
485 | 1,8,5,40,17,108,37 | A272350 | A272396 | A272504 | A272505 |
486 | 1,5,4,20,9,37,28 | A272506 | A272507 | A272508 | A272509 |
489 | 1,4,13,32,33,100,65 | A272510 | A272511 | A272512 | A272513 |
Rule | Sequence | ON | ON(2^n-1) | Partial Sum | First Diff |
---|---|---|---|---|---|
491 | 1,5,13,32,41,76,77 | A272539 | A272540 | A272541 | A272542 |
493 | 1,8,5,44,17,112,29 | A272543 | A272544 | A272545 | A272546 |
494 | 1,5,8,21,24,37,52 | A169705 | A272547 | A272548 | A169706 |
497 | 1,4,13,36,37,88,85 | A272556 | A272557 | A272558 | A272559 |
499 | 1,5,13,36,37,88,85 | A272560 | A272561 | A272562 | A272563 |
501 | 1,8,5,44,13,112,25 | A272564 | A271005 | A272566 | A272567 |
502 | 1,5,8,24,29,48,56 | A272577 | A272578 | A272579 | A272580 |
505 | 1,4,13,40,29,100,69 | A272581 | A271286 | A272583 | A272584 |
507 | 1,5,13,40,29,100,69 | A272585 | A272586 | A272587 | A272588 |
510 | 1,5,12,25,28,56,56 | A169699 | A092440 | A272700 | A169700 |
513,769 | 1,4,13,24,53,65,113 | A272702 | A059153 | A272703 | A272704 |
515,523 | 1,5,13,25,49,69,109 | A272705 | A272706 | A272707 | A272708 |
517 | 1,8,20,37,60,84,129 | A272730 | A272731 | A272732 | A272733 |
518,550,582,614 | 1,5,5,17,5,25,17 | A072272 | A007483 | A253908 | A170878 |
519,527,535,543,551,559,567,575,583,591,599,607,615,623,631,639,647, 655,663,671,679,687,695,703,711,719,727,735,743,751,759,767,775,783, 791,799,807,815,823,831,839,847,855,863,871,879,887,895,903,911,919, 927,935,943,951,959,967,975,983,991,999,1007,1015,1023 | 1,9,25,49,81,121,169 | A016754 | A060867 | A000447* | A008590* |
521 | 1,4,13,24,53,69,105 | A272734 | A272735 | A272736 | A272737 |
525 | 1,8,20,37,60,84,129 | A272738 | A272739 | A272740 | A272741 |
526 | 1,5,9,17,17,33,45 | A272742 | A272743 | A272744 | A272745 |
529 | 1,4,13,28,49,77,96 | A272746 | A272747 | A272748 | A272749 |
531 | 1,5,13,29,49,89,97 | A272750 | A272751 | A272752 | A272753 |
533 | 1,8,20,37,64,84,141 | A272782 | A272783 | A272784 | A272785 |
534 | 1,5,9,21,17,49,29 | A272786 | A272787 | A272788 | A272789 |
537 | 1,4,13,28,49,81,88 | A272790 | A272791 | A272792 | A272793 |
539 | 1,5,13,29,49,89,105 | A272801 | A272802 | A272803 | A272804 |
541 | 1,8,20,37,64,84,141 | A272805 | A272806 | A272807 | A272808 |
542 | 1,5,13,21,33,37,69 | A272809 | A272810 | A272811 | A272812 |
545 | 1,4,17,28,57,84,117 | A272834 | A272835 | A272836 | A272837 |
547 | 1,5,17,29,61,89,121 | A272838 | A272839 | A272840 | A272841 |
549 | 1,8,20,41,60,97,132 | A272842 | A272843 | A272844 | A272845 |
553 | 1,4,17,28,57,84,125 | A272846 | A272218 | A272848 | A272849 |
555,571 | 1,5,17,29,61,89,129 | A272920 | A272921 | A272922 | A272923 |
557 | 1,8,20,41,60,97,132 | A272924 | A272925 | A272926 | A272927 |
558,686 | 1,5,9,21,25,37,49 | A147562* | A002450* | A272928 | A147582* |
561 | 1,4,17,28,61,89,121 | A272769 | A272936 | A272937 | A272938 |
563 | 1,5,17,29,61,89,121 | A272939 | A272940 | A272941 | A272942 |
565 | 1,8,20,41,60,101,137 | A272943 | A272944 | A272945 | A272946 |
566 | 1,5,9,21,29,37,49 | A272986 | A272987 | A272989 | A272990 |
569 | 1,4,17,28,61,93,133 | A272991 | A272992 | A272993 | A272994 |
573 | 1,8,20,41,60,101,141 | A272995 | A272996 | A272997 | A272998 |
574,638,702,766,830,894,958,1022 | 1,5,13,25,41,61,85 | A001844 | A092440 | A005900* | A008586* |
577 | 1,4,17,25,52,73,113 | A273022 | A273023 | A273024 | A273025 |
579 | 1,5,13,29,57,73,121 | A273026 | A273027 | A273028 | A273029 |
581 | 1,8,20,41,57,96,116 | A273069 | A273070 | A273071 | A273072 |
585 | 1,4,17,29,49,81,133 | A273073 | A273074 | A273075 | A273076 |
587 | 1,5,13,29,57,73,121 | A273077 | A273078 | A273079 | A273080 |
589 | 1,8,20,41,61,93,129 | A273111 | A273112 | A273113 | A273114 |
590 | 1,5,9,17,17,37,49 | A273115 | A273116 | A273117 | A273118 |
593 | 1,4,17,25,60,65,137 | A273119 | A273120 | A273121 | A273122 |
595 | 1,5,13,33,49,93,97 | A272161 | A273141 | A273142 | A273143 |
597 | 1,8,20,41,57,104,116 | A273144 | A273145 | A273146 | A273147 |
598 | 1,5,9,21,17,53,41 | A273150 | A002450* | A273151 | A273152 |
601 | 1,4,17,29,61,73,132 | A272330 | A272373 | A272824 | A272825 |
603 | 1,5,13,33,49,93,105 | A272828 | A272833 | A273173 | A273174 |
605 | 1,8,20,41,61,105,125 | A273175 | A273176 | A273177 | A273178 |
606 | 1,5,13,21,33,37,77 | A273204 | A273205 | A273206 | A273207 |
609 | 1,4,21,29,72,84,141 | A273208 | A273209 | A273210 | A273211 |
611 | 1,5,17,37,61,97,133 | A273212 | A273213 | A273214 | A273215 |
613 | 1,8,20,45,61,112,132 | A273241 | A273242 | A273243 | A273244 |
617 | 1,4,21,29,72,88,152 | A273246 | A273247 | A273248 | A273249 |
619,635 | 1,5,17,37,65,101,137 | A273250 | A273251 | A273252 | A273253 |
621 | 1,8,20,45,61,112,136 | A273266 | A273267 | A273268 | A273269 |
622 | 1,5,9,21,25,37,57 | A269522 | A269566 | A269567 | A269568 |
625 | 1,4,21,29,72,84,141 | A273270 | A273271 | A273272 | A273273 |
627 | 1,5,17,37,61,101,121 | A273274 | A273275 | A273276 | A273277 |
629 | 1,8,20,45,61,112,132 | A273295 | A273296 | A273297 | A273298 |
630 | 1,5,9,21,29,45,65 | A269523 | A267268 | A269543 | A269629 |
633 | 1,4,21,29,72,88,156 | A273299 | A273300 | A273301 | A273303 |
637 | 1,8,20,45,61,112,136 | A273304 | A273305 | A273306 | A273307 |
641,649,897,905 | 1,4,17,40,73,112,161 | A273309 | A273310 | A273311 | A273312 |
643,651,707,715 | 1,5,17,41,73,113,161 | A166147* | A273313 | A273314 | A273315 |
645,653,661,669,677,685,693,701,709,717,725,733,741,749,757,765 | 1,8,24,48,80,120,168 | A033996* | A271061 | A273316 | A008590* |
646 | 1,5,5,17,9,29,17 | A273326 | A273327 | A273328 | A273329 |
654 | 1,5,9,17,21,29,37 | A273330 | A273331 | A273332 | A273333 |
657,665 | 1,4,17,48,80,120,168 | A273334 | A273335 | A273336 | A273337 |
659,667,723,731 | 1,5,17,49,81,121,169 | A273384 | A273385 | A273386 | A273387 |
662 | 1,5,9,21,21,45,33 | A273388 | A273389 | A273390 | A273391 |
670 | 1,5,13,21,33,49,61 | A273392 | A273393 | A273394 | A273395 |
673,681,689,697 | 1,4,21,44,77,116,165 | A273405 | A269907 | A273406 | A273407 |
675,683,691,699,739,747,755,763 | 1,5,21,45,77,117,165 | A078371* | A269911 | A273408 | A234275* |
678 | 1,5,5,17,9,29,21 | A079317 | A052539* | A273409 | A151921 |
694 | 1,5,9,21,33,45,53 | A273410 | A272832 | A273411 | A273412 |
705,713 | 1,4,21,41,72,113,160 | A273417 | A273418 | A273419 | A273420 |
710 | 1,5,5,17,9,29,17 | A273421 | A273422 | A273423 | A273424 |
718 | 1,5,9,17,21,29,37 | A273425 | A273426 | A273427 | A273428 |
721,729 | 1,4,21,41,80,120,168 | A273443 | A273446 | A273447 | A273448 |
726 | 1,5,9,21,21,53,53 | A273449 | A273450 | A273451 | A273452 |
734 | 1,5,13,21,33,49,61 | A273453 | A273454 | A273455 | A273456 |
737,745,753,761,993,1001,1009,1017 | 1,4,25,49,81,121,169 | A016754* | A060867* | A273480 | A273481 |
742 | 1,5,5,17,9,29,21 | A273482 | A273483 | A273484 | A273485 |
750 | 1,5,9,21,25,37,57 | A169707 | A002450* | A253098 | A169708 |
758 | 1,5,9,21,33,45,61 | A273486 | A273489 | A273490 | A273491 |
771,787,835,851 | 1,5,17,33,65,89,137 | A273499 | A272022 | A273500 | A273501 |
773,781,789,797,837,845,853,861 | 1,8,21,40,65,96,133 | A000567* | A165665 | A002414 | A016921* |
774 | 1,5,5,17,5,25,17 | A273502 | A273503 | A273504 | A273505 |
777 | 1,4,13,24,53,69,105 | A273414 | A273444 | A273532 | A273533 |
779,795,843,859 | 1,5,17,37,61,97,125 | A273538 | A273539 | A273540 | A273541 |
782 | 1,5,9,17,17,33,53 | A273534 | A273535 | A273536 | A273537 |
785 | 1,4,13,28,49,77,104 | A273557 | A273558 | A273559 | A273560 |
790,854 | 1,5,9,25,29,53,49 | A273561 | A092440 | A273562 | A273563 |
793 | 1,4,13,28,49,81,108 | A273564 | A273565 | A273566 | A273567 |
Rule | Sequence | ON | ON(2^n-1) | Partial Sum | First Diff |
---|---|---|---|---|---|
798,862 | 1,5,13,21,37,41,85 | A273569 | A273570 | A273571 | A273572 |
801 | 1,4,17,28,57,84,117 | A273573 | A273574 | A273575 | A273576 |
803,811,819,827,867,875,883,891 | 1,5,21,33,77,105,153 | A273577 | A270222 | A273578 | A273579 |
805,821,869,885 | 1,8,21,44,69,113,145 | A273602 | A273603 | A273604 | A273605 |
806 | 1,5,5,17,5,25,17 | A273606 | A273607 | A273608 | A273609 |
809 | 1,4,17,28,57,84,125 | A273610 | A273611 | A273612 | A273613 |
813,829,877,893 | 1,8,21,44,69,117,153 | A258448 | A273639 | A273640 | A273641 |
814 | 1,5,9,21,29,41,53 | A273642 | A273643 | A273644 | A273645 |
817 | 1,4,17,28,61,89,121 | A273646 | A273647 | A273648 | A273649 |
822,886 | 1,5,9,25,37,49,57 | A269918 | A272762 | A272847 | A273370 |
825 | 1,4,17,28,61,93,141 | A273430 | A273431 | A273581 | A273674 |
833,849 | 1,4,17,33,56,85,120 | A273675 | A273676 | A273677 | A273678 |
838 | 1,5,5,17,5,25,17 | A273544 | A273680 | A273681 | A273682 |
841,857 | 1,4,17,37,61,97,124 | A273683 | A273684 | A273685 | A273686 |
846 | 1,5,9,17,17,37,53 | A273687 | A273688 | A273689 | A273690 |
865,881 | 1,4,21,33,68,105,140 | A273699 | A273700 | A273701 | A273702 |
870 | 1,5,5,17,5,25,17,61 | A273703 | A273704 | A273705 | A273706 |
873,889 | 1,4,21,33,68,105,144 | A273707 | A273708 | A273709 | A273710 |
878 | 1,5,9,21,29,41,61,65 | A273739 | A273740 | A273741 | A273742 |
899,907,915,923,963,971,979,987 | 1,5,21,45,77,117,165 | A265056 | A269911 | A273408 | A234275* |
901,909,917,925,933,941,949,957,965,973,981,989,997,1005,1013,1021 | 1,8,25,49,81,121,169 | A273743 | A270007 | A273744 | A273745 |
902 | 1,5,5,17,9,29,17 | A273758 | A273759 | A273760 | A273761 |
910 | 1,5,9,17,21,29,37 | A273762 | A273763 | A273764 | A273765 |
913,921 | 1,4,17,48,81,121,169 | A273766 | A273767 | A273768 | A273769 |
918,982 | 1,5,9,25,29,53,53 | A273746 | A273747 | A273748 | A273749 |
926,990 | 1,5,13,21,37,45,77 | A273750 | A002450* | A273778 | A273779 |
929,937,945,953 | 1,4,21,48,81,121,169 | A273780 | A273767 | A273781 | A273782 |
931,939,947,955,995,1003,1011,1019 | 1,5,25,49,81,121,169 | A273789 | A273385 | A273790 | A273791 |
934 | 1,5,5,17,9,29,21 | A273792 | A273793 | A273794 | A273795 |
942 | 1,5,9,21,29,41,53 | A169649* | A273796 | A273797 | A169648* |
950,1014 | 1,5,9,25,37,53,65 | A273827 | A273828 | A273829 | A273830 |
961,977 | 1,4,21,45,76,117,164 | A273831 | A273832 | A273833 | A273834 |
966 | 1,5,5,17,9,29,17 | A273835 | A273836 | A273837 | A273838 |
969,985 | 1,4,21,45,76,121,169 | A273847 | A273848 | A273849 | A273850 |
974 | 1,5,9,17,21,29,37 | A273851 | A273852 | A273853 | A273854 |
998 | 1,5,5,17,9,29,21 | A273855 | A273856 | A273857 | A273858 |
1006 | 1,5,9,21,29,41,61 | A169709 | A273860 | A273861 | A169710 |
Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Related to the Position of ON Cells Along the X-Axis
Column headings in the table below: Rule Wolfram's Rule Number(s) Left(B) Sequence describing the binary representation of the x-axis from the left edge to the origin Right(B) Sequence describing the binary representation of the x-axis from the origin to the right edge Left(D) Sequence describing the decimal representation of the x-axis from the left edge to the origin Right(D) Sequence describing the decimal representation of the x-axis from the origin to the right edge (an asterisk, "*", in an A-number indicates a near match)
Rule | Left(B) | Right(B) | Left(D) | Right(D) |
---|---|---|---|---|
0,8,16,24,32,40,48,56,64,72,80,88,96,104,112,120,128,136,144, 152,160,168,176,184,192,200,208,216,224,232,240,248,256,264,272, 280,288,296,304,312,320,328,336,344,352,360,368,376,384,392,400, 408,416,424,432,440,448,456,464,472,480,488,496,504,512,520,528, 536,544,552,560,568,576,584,592,600,608,616,624,632,640,648,656, 664,672,680,688,696,704,712,720,728,736,744,752,760,768,776,784, 792,800,808,816,824,832,840,848,856,864,872,880,888,896,904,912, 920,928,936,944,952,960,968,976,984,992,1000,1008,1016 | A000007 | A000007 | A000007 | A000007 |
1,9,17,25,257,265,273,281 | A277797 | A277798 | A277799 | A277800 |
2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122,130,138,146, 154,162,170,178,186,194,202,210,218,226,234,242,250,258,266,274, 282,290,298,306,314,322,330,338,346,354,362,370,378,386,394,402, 410,418,426,434,442,450,458,466,474,482,490,498,506,514,522,530, 538,546,554,562,570,578,586,594,602,610,618,626,634,642,650,658, 666,674,682,690,698,706,714,722,730,738,746,754,762,770,778,786, 794,802,810,818,826,834,842,850,858,866,874,882,890,898,906,914, 922,930,938,946,954,962,970,978,986,994,1002,1010,1018 | A000012 | A011557 | A000012 | A000079 |
3,11,19,27,67,75,83,91 | A277864 | A277865 | A277866 | A277867 |
4,12,36,44,68,76,84,92,100,108,116,124,132,140,164,172,196,204, 212,220,228,236,244,252,516,524,548,556,580,588,596,604,612,620, 628,636,644,652,676,684,708,716,724,732,740,748,756,764 | A277916 | A277917 | A277918 | A101692* |
5,13,21,29,37,45,53,61,69,77,85,93,101,109,117,125 | A277926 | A277927 | A277928 | A277929 |
6,38,70,86,102,134,166,198,230 | A277931 | A277932 | A277933 | A277934 |
7,15,23,31,39,47,55,63,71,79,87,95,103,111,119,127,135,143,151,
159,167,175,183,191,199,207,215,223,231,239,247,255,263,271,279, 287,295,303,311,319,327,335,343,351,359,367,375,383,391,399,407, 415,423,431,439,447,455,463,471,479,487,495,503,511 |
A277560 | A277560 | A277736 | A277936 |
14,46,110,142,174,190,238,254 | A277952 | A277953 | A277954 | A277955 |
20,28,52,60,148,156,180,188,532,540,564,572,660,668,692,700 | A273495 | A273531 | A273972 | A273973 |
22 | A274060 | A274216 | A274224 | A274473 |
30 | A274474 | A274475 | A274476 | A274487 |
33 | A276708 | A276768 | A276966 | A277773 |
35 | A278343 | A278344 | A278345 | A278346 |
41 | A278421 | A278422 | A278423 | A278424 |
43,59 | A278443 | A278444 | A278445 | A278446 |
49 | A278466 | A278467 | A278468 | A278469 |
51 | A278592 | A278593 | A278594 | A278595 |
54 | A278598 | A278599 | A278600 | A278601 |
57 | A278659 | A278660 | A278661 | A278662 |
62 | A278664 | A278665 | A278666 | A278667 |
65,81,321,337 | A278753 | A278754 | A278755 | A278756 |
73,89 | A278757 | A278758 | A278759 | A278760 |
78 | A278786 | A278778 | A278788 | A278789 |
94 | A278819 | A278820 | A278821 | A278822 |
97 | A278864 | A278865 | A278866 | A278867 |
99 | A278870 | A278871 | A278872 | A278873 |
105 | A278719 | A278739 | A278859 | A278863 |
107 | A278898 | A278899 | A278900 | A278901 |
113 | A278904 | A278905 | A278292 | A278906 |
115 | A278915 | A278916 | A278917 | A278918 |
118 | A278951 | A278952 | A278953 | A278954 |
121 | A278955 | A278956 | A278957 | A278958 |
123 | A278980 | A279016 | A279023 | A279025 |
126 | A272609 | A273979 | A274059 | A274993 |
129,385 | A279028 | A279029 | A279030 | A279031 |
131,139,163,171,187,227,235,251 | A279053 | A056830* | A052992 | A000975 |
133 | A279137 | A279138 | A279139 | A279140 |
137 | A279141 | A279142 | A279143 | A279144 |
141 | A279145 | A279146 | A279147 | A279148 |
145,153 | A279149 | A278584 | A279150 | A279151 |
147 | A279173 | A279174 | A279175 | A279176 |
150 | A279246 | A279247 | A279248 | A279249 |
155 | A279250 | A279251 | A279252 | A279253 |
157 | A279468 | A279469 | A279470 | A279471 |
158 | A279472 | A279473 | A279474 | A279475 |
161 | A279498 | A279499 | A279500 | A279501 |
165 | A279502 | A279503 | A279504 | A279505 |
169 | A279545 | A279546 | A279547 | A279548 |
173 | A279597 | A279598 | A279599 | A279600 |
177 | A279601 | A279602 | A279603 | A279604 |
179 | A279528 | A279665 | A279666 | A279668 |
181 | A279669 | A279670 | A279671 | A279672 |
182 | A279694 | A279695 | A279696 | A279697 |
185 | A279698 | A279699 | A279700 | A279701 |
189 | A279716 | A279717 | A279718 | A279719 |
193 | A279720 | A279721 | A279722 | A279723 |
195 | A279748 | A279749 | A279750 | A279751 |
197 | A279752 | A279753 | A279754 | A279755 |
201 | A279799 | A279800 | A279801 | A279802 |
203 | A279808 | A279809 | A279810 | A279811 |
205 | A279822 | A279823 | A279824 | A279825 |
206 | A279826 | A279827 | A279828 | A279829 |
209,465 | A279118 | A279118 | A279872 | A279872 |
211 | A279873 | A279874 | A279875 | A279876 |
213,245 | A279877 | A279878 | A279879 | A279880 |
214 | A279936 | A279937 | A279938 | A279939 |
217 | A279940 | A279941 | A279942 | A279943 |
219 | A279057 | A279123 | A279957 | A279958 |
221,253 | A279959 | A279960 | A279961 | A279962 |
222 | A279949 | A279985 | A279986 | A279987 |
225 | A279988 | A279989 | A279990 | A279991 |
229 | A279992 | A279993 | A279994 | A279995 |
233 | A279996 | A279997 | A279998 | A279999 |
237 | A280137 | A280138 | A280139 | A280140 |
241 | A280141 | A280142 | A280143 | A280144 |
243 | A280145 | A280146 | A280147 | A280148 |
246 | A280329 | A280330 | A280331 | A280332 |
249 | A280334 | A280335 | A280336 | A280337 |
Sequences in the OEIS Related to 2D 5-Neighbor Outer Totalistic Cellular Automata Related to the Position of ON Cells Along the Diagonal
Column headings in the table below: Rule Wolfram's Rule Number(s) In(B) Sequence describing the binary representation of the diagonal from a corner to the origin Out(B) Sequence describing the binary representation of the diagonal from the origin to a corner In(D) Sequence describing the decimal representation of the diagonal from a corner to the origin Out(D) Sequence describing the decimal representation of the diagonal from the origin to a corner (an asterisk, "*", in an A-number indicates a near match)
Rule | In(B) | Out(B) | In(D) | Out(D) |
---|---|---|---|---|
0,4,8,12,16,24,32,36,40,44,48,56,64,68,72,76,80,88,96,
100,104,108,112,120,128,132,136,140,144,152,160,164,168,172, 176,184,192,196,200,204,208,216,224,228,232,236,240,248,256, 264,272,280,288,296,304,312,320,328,336,344,352,360,368,376, 384,392,400,408,416,424,432,440,448,456,464,472,480,488,496, 504,512,516,520,524,528,536,544,548,552,556,560,568,576,580, 584,588,592,600,608,612,616,620,624,632,640,644,648,652,656, 664,672,676,680,684,688,696,704,708,712,716,720,728,736,740, 744,748,752,760,768,776,784,792,800,808,816,824,832,840,848, 856,864,872,880,888,896,904,912,920,928,936,944,952,960,968, 976,984,992,1000,1008,1016 |
A000007 | A000007 | A000007 | A000007 |
1,9,17,25,129,137,257,261,265,269,273,277,281,285,293,301,
309,317,325,333,337,341,345,349,357,365,373,381,385,393,401, 405,409,413,445,465,469,473,477,509 |
A280410 | A280411 | A280412 | A280413 |
2,10,18,26,34,42,50,58,66,74,82,90,98,106,114,122,130,138,
146,154,162,170,178,186,194,202,210,218,226,234,242,250,258, 266,274,282,290,298,306,314,322,330,338,346,354,362,370,378, 386,394,402,410,418,426,434,442,450,458,466,474,482,490,498, 506,514,518,522,526,530,538,546,550,554,558,562,570,578,582, 586,590,594,602,610,614,618,622,626,634,642,646,650,654,658, 666,674,678,682,686,690,698,706,710,714,718,722,730,738,742, 746,750,754,762,770,778,786,794,802,810,818,826,834,842,850, 858,866,874,882,890,898,906,914,922,930,938,946,954,962,970, 978,986,994,1002,1010,1018 |
A000012 | A011557 | A000012 | A000079 |
3,11,19,27,67,75,83,91 | A285473 | A285474 | A080924 | A285475 |
5,13,21,29,37,45,53,61,69,77,85,93,101,109,117,125 | A277926 | A277927 | A277928 | A277928 |
6,14,38,46,70,78,102,110,134,142,166,174,198,206,230,238 | A019590 | A285476 | A019590 | A130706 |
7,15,23,31,39,47,55,63,71,79,87,95,103,111,119,127,135,
143,151,159,167,175,183,191,199,207,215,223,231,239,247,255, 263,271,279,287,295,303,311,319,327,335,343,351,359,367,375, 383,391,399,407,415,423,431,439,447,455,463,471,479,487,495, 503,511 |
A277560 | A277560 | A277936 | A277936 |
20,28,52,60,148,156,180,188,532,540,564,572,660,668,692,
700 |
A285477 | A285478 | A285479 | A285480 |
22,86 | A285434 | A285435 | A285436 | A285437 |
30 | A285536 | A285637 | A285538 | A285539 |
33,289 | A282415 | A282416 | A282417 | A282418 |
35,43,59,163,171,227,235 | A285540 | A285541 | A285542 | A285543 |
41 | A285544 | A285545 | A285546 | A285547 |
49 | A285556 | A285557 | A285558 | A285559 |
51 | A285560 | A285561 | A285562 | A285563 |
54 | A285608 | A285609 | A285610 | A285611 |
57 | A285604 | A285605 | A285606 | A285607 |
62 | A285612 | A285613 | A056453 | A233411* |
65,321 | A285643 | A285644 | A285645 | A285646 |
73 | A285647 | A285648 | A285649 | A285650 |
81 | A285651 | A285652 | A285653 | A285654 |
84,92,116,124,212,220,244,252,596,604,628,636,724,732,756,
764 |
A285771 | A285772 | A285773 | A285774 |
89,145,153 | A285775 | A285776 | A285777 | A285778 |
94 | A285780 | A285781 | A285782 | A285783 |
97 | A285816 | A285817 | A285818 | A285819 |
99 | A285820 | A285821 | A285822 | A285823 |
105 | A285825 | A285826 | A285827 | A285828 |
107 | A284940 | A285833 | A285834 | A285835 |
113 | A285837 | A285838 | A285839 | A285840 |
115 | A285841 | A285842 | A285843 | A285844 |
118 | A285897 | A285907 | A285908 | A285909 |
121 | A285910 | A285911 | A285912 | A285913 |
123 | A285945 | A285946 | A285947 | A285948 |
126 | A285941 | A285942 | A285943 | A285944 |
131 | A285xxx | A285xxx | A285xxx | A285xxx |
133 | A286018 | A286019 | A286020 | A286021 |
139 | A286022 | A286023 | A286024 | A286025 |
141 | A286026 | A286027 | A286028 | A286029 |
147 | A286078 | A286079 | A286080 | A286081 |
149 | A286082 | A286083 | A286084 | A286085 |
150 | A286086 | A286087 | A286088 | A286089 |
155 | A286112 | A286113 | A286114 | A286115 |
157 | A286116 | A286117 | A286118 | A286119 |
158 | A286120 | A286121 | A286122 | A286123 |
161 | A286136 | A286140 | A286165 | A286166 |
165 | A286167 | A286168 | A286169 | A286170 |
169 | A286171 | A286172 | A286173 | A286174 |
173 | A286196 | A286197 | A286198 | A286199 |
177 | A286200 | A286201 | A286202 | A286203 |
179 | A286204 | A286205 | A286206 | A286207 |
181 | A286403 | A286404 | A286405 | A286406 |
182 | A286407 | A286408 | A286409 | A286410 |
185 | A286411 | A286412 | A286413 | A286414 |
187 | A286498 | A286500 | A286501 | A286502 |
189 | A286503 | A286504 | A286505 | A286506 |
190,254 | A286507 | A286508 | A016116 | A016116* |
193 | A286638 | A286639 | A286640 | A286641 |
195 | A286642 | A286643 | A286644 | A286645 |
197 | A286646 | A286647 | A286648 | A286649 |
201 | A286668 | A286669 | A286670 | A286671 |
203 | A286672 | A286673 | A286674 | A286675 |
205 | A286694 | A286695 | A286696 | A286697 |
209 | A286698 | A286699 | A286700 | A286701 |
211 | A286702 | A286703 | A286704 | A286705 |
213 | A286730 | A286731 | A286732 | A286733 |
214 | A286734 | A286735 | A286736 | A286737 |
217 | A286738 | A286739 | A286740 | A286741 |
219 | A286766 | A286767 | A286768 | A286769 |
221 | A286770 | A286771 | A286772 | A286773 |
222 | A286774 | A286775 | A286776 | A286777 |
225 | A286960 | A286961 | A286962 | A286963 |
229 | A283429 | A286964 | A286965 | A286966 |
233 | A286967 | A286943 | A286968 | A286969 |
237 | A287077 | A287078 | A287079 | A287080 |
241 | A287094 | A287095 | A287096 | A287097 |
243 | A287098 | A287099 | A287100 | A287101 |
245 | A287129 | A287130 | A287131 | A287132 |
246 | A287133 | A287134 | A287135 | A287136 |
249 | A287137 | A287138 | A287139 | A287140 |
251 | A286811 | A287187 | A287188 | A287189 |
253 | A287190 | A287191 | A287192 | A287193 |
Rule | In(B) | Out(B) | In(D) | Out(D) |
---|---|---|---|---|
513,769 | ||||
515,523 | ||||
517 | ||||
519,527,535,543,547,551,555,559,563,567,571,575,583,591,599,
607,611,615,619,623,627,631,635,639,647,655,663,671,675,679, 683,687,691,695,699,703,711,719,727,735,739,743,747,751,755, 759,763,767,775,783,791,799,803,807,811,815,819,823,827,831, 839,847,855,863,867,871,875,879,883,887,891,895,903,911,919, 927,931,935,939,943,947,951,955,959,967,975,983,991,995,999, 1003,1007,1011,1015,1019,1023 | ||||
521 | ||||
525 | ||||
529 | ||||
531 | ||||
533 | ||||
534 | ||||
537 | ||||
539 | ||||
541 | ||||
542 | ||||
545 | ||||
549 | ||||
553 | ||||
557 | ||||
561 | ||||
565 | ||||
566,574,630,638,694,702,758,766,822,830,886,894,950,958,1014,
1022 | ||||
569 | ||||
573 | ||||
577 | ||||
579 | ||||
581 | ||||
585 | ||||
587 | ||||
589 | ||||
593 | ||||
595 | ||||
597 | ||||
598 | ||||
601 | ||||
603 | ||||
605 | ||||
606 | ||||
609 | ||||
613 | ||||
617 | ||||
621 | ||||
625 | ||||
629 | ||||
633 | ||||
637 | ||||
641,649,897,905 | ||||
643,651,707,715 | ||||
645,653,661,669,677,685,693,701,709,717,725,733,741,749,757,
765 | ||||
657,665 | ||||
659,667,723,731 | ||||
662 | ||||
670 | ||||
673,681,689,697 | ||||
705,713 | ||||
721,729 | ||||
726 | ||||
734 | ||||
737,745,753,761,901,909,917,925,933,941,949,957,965,973,981,
989,993,997,1001,1005,1009,1013,1017,1021 | ||||
771,787,835,851 | ||||
773,781,789,797,837,845,853,861 | ||||
774 | ||||
777 | ||||
779,795,843,859 | ||||
782 | ||||
785,793 | ||||
790,854 | ||||
798,862 | ||||
801 | ||||
805,821,869,885 | ||||
806 | ||||
809 | ||||
813,829,877,893 | ||||
814,942 | ||||
817 | ||||
825 | ||||
833,849 | ||||
838 | ||||
841,857 | ||||
846 | ||||
865,881 | ||||
870 | ||||
873,889 | ||||
878 | ||||
899,907,915,923,963,971,979,987 | ||||
902 | ||||
910 | ||||
913,921 | ||||
918,982 | ||||
926,990 | ||||
929,937,945,953 | ||||
934 | ||||
961,977 | ||||
966 | ||||
969,985 | ||||
974 | ||||
998 | ||||
1006 | ||||
Mathematica Program To Generate the Sequences Above
(* Mathematica Program to Generate Outer Totalistic Cellular Automata Sequences *) CAStep[rule_, a_] := Map[rule[ [10 - #] ] &, ListConvolve[{{0,2,0}, {2,1,2}, {0,2,0}}, a, 2], {2}]; code = 622; stages = 16; rule = IntegerDigits[code, 2, 10]; (* Generate CA for this rule *) g = 2*stages + 1; a = PadLeft[{ {1} }, {g, g}, 0, Floor[{g, g}/2]]; ca = a; ca = Table[ca = CAStep[rule, ca], {n, 1, stages + 1}]; PrependTo[ca, a]; (* Trim full grid to reflect growth by one cell at each stage *) k = (Length[ca[ [1] ]] + 1)/2; ca = Table[Table[Part[ca[ [n] ] [ [j] ], Range[k+1-n, k-1+n]], {j, k+1-n, k-1+n}], {n,1,k}]; "CA Evolution Diagrams" lca = Length[ca]; For[is = 1, is ≤ lca, is++, Print["\nStage ", is - 1]; c = ca[ [is] ]; lc = Length[c]; For[i = 1, i ≤ lc, i++, line = c[ [i] ]; out = ""; For[j = 1, j ≤ lc, j++, out = out <> If[line[ [j] ] == 0, " .", " x"]]; Print[out]; ] ]; "Counts of ON Cells at Each Stage" on = Map[Function[Apply[Plus, Flatten[#1]]], ca] "Counts of ON Cells at Stages 2^n-1" Part[on, 2^Range[0, Log[2, stages]]] "Partial Sums" Table[Total[Part[on, Range[1, i]]], {i, 1, Length[on]}] "First Differences" Table[on[ [i + 1] ] - on[ [i] ], {i, 1, Length[on] - 1}]
Output from the Mathematica Program To Generate the Sequences Above
CA Evolution Diagrams Stage 0 x Stage 1 . x . x x x . x . Stage 2 . . x . . . . x . . x x x x x . . x . . . . x . . Stage 3 . . . x . . . . . x x x . . . x . x . x . x x x x x x x . x . x . x . . . x x x . . . . . x . . . Stage 4 . . . . x . . . . . . . . x . . . . . . . x x x . . . . . x . x . x . . x x x x x x x x x . . x . x . x . . . . . x x x . . . . . . . x . . . . . . . . x . . . . ... Stage 16 . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x x x x . . . . . . . . . . . . . . . . . . . . . . . . . . . x x . x . x x . . . . . . . . . . . . . . . . . . . . . . . . . x x x . x . x x x . . . . . . . . . . . . . . . . . . . . . . . x x x x x x x x x x x . . . . . . . . . . . . . . . . . . . . . x x x . x x x x x . x x x . . . . . . . . . . . . . . . . . . . x x x x . x x x x x . x x x x . . . . . . . . . . . . . . . . . x . . x . x . x x x . x . x . . x . . . . . . . . . . . . . . . x x . . . x . . x x x . . x . . . x x . . . . . . . . . . . . . x x x x . . x x x x x x x x x . . x x x x . . . . . . . . . . . x x x x . x x . x . . x . . x . x x . x x x x . . . . . . . . . x x x . . x . x x . x x x x x . x x . x . . x x x . . . . . . . x x x x x x . . x . x . x x x . x . x . . x x x x x x . . . . . x x . . x x x x x x . x x . x . x x . x x x x x x . . x x . . x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x . . x x . . x x x x x x . x x . x . x x . x x x x x x . . x x . . . . . x x x x x x . . x . x . x x x . x . x . . x x x x x x . . . . . . . x x x . . x . x x . x x x x x . x x . x . . x x x . . . . . . . . . x x x x . x x . x . . x . . x . x x . x x x x . . . . . . . . . . . x x x x . . x x x x x x x x x . . x x x x . . . . . . . . . . . . . x x . . . x . . x x x . . x . . . x x . . . . . . . . . . . . . . . x . . x . x . x x x . x . x . . x . . . . . . . . . . . . . . . . . x x x x . x x x x x . x x x x . . . . . . . . . . . . . . . . . . . x x x . x x x x x . x x x . . . . . . . . . . . . . . . . . . . . . x x x x x x x x x x x . . . . . . . . . . . . . . . . . . . . . . . x x x . x . x x x . . . . . . . . . . . . . . . . . . . . . . . . . x x . x . x x . . . . . . . . . . . . . . . . . . . . . . . . . . . x x x x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x x x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x . . . . . . . . . . . . . . . . Counts of ON Cells at Each Stage {1,5,9,21,25,37,57,69,89,101,121,133,169,205,257,309,361} Counts of ON Cells at Stages 2^n-1 {1,5,21,69,309} Partial Sums {1,6,15,36,61,98,155,224,313,414,535,668,837,1042,1299,1608,1969} First Differences {4,4,12,4,12,20,12,20,12,20,12,36,36,52,52,52}
Rules that generate equivalent counts of ON cells at stage 2^n-1
Rules in each of the lists below generate equivalent counts of ON cells at stage 2^n-1 based on the first 6 terms:
{0, 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, 88, 96, 104, 112, 120, 128, 136, 144, 152, 160, 168, 176, 184, 192, 200, 208, 216, 224, 232, 240, 248, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352, 360, 368, 376, 384, 392, 400, 408, 416, 424, 432, 440, 448, 456, 464, 472, 480, 488, 496, 504, 512, 520, 528, 536, 544, 552, 560, 568, 576, 584, 592, 600, 608, 616, 624, 632, 640, 648, 656, 664, 672, 680, 688, 696, 704, 712, 720, 728, 736, 744, 752, 760, 768, 776, 784, 792, 800, 808, 816, 824, 832, 840, 848, 856, 864, 872, 880, 888, 896, 904, 912, 920, 928, 936, 944, 952, 960, 968, 976, 984, 992, 1000, 1008, 1016}
{1, 9, 17, 25, 257, 265, 273, 281, 673, 681, 689, 697}
{2, 10, 18, 26, 34, 42, 50, 58, 66, 74, 82, 90, 98, 106, 114, 122, 130, 138, 146, 154, 162, 170, 178, 186, 194, 202, 210, 218, 226, 234, 242, 250, 258, 266, 274, 282, 290, 298, 306, 314, 322, 330, 338, 346, 354, 362, 370, 378, 386, 394, 402, 410, 418, 426, 434, 442, 450, 458, 466, 474, 482, 490, 498, 506, 514, 522, 530, 538, 546, 554, 562, 570, 578, 586, 594, 602, 610, 618, 626, 634, 642, 650, 658, 666, 674, 682, 690, 698, 706, 714, 722, 730, 738, 746, 754, 762, 770, 778, 786, 794, 802, 810, 818, 826, 834, 842, 850, 858, 866, 874, 882, 890, 898, 906, 914, 922, 930, 938, 946, 954, 962, 970, 978, 986, 994, 1002, 1010, 1018}
{3, 11, 19, 27, 67, 75, 83, 91, 675, 683, 691, 699, 739, 747, 755, 763, 899, 907, 915, 923, 963, 971, 979, 987}
{4, 12, 36, 44, 68, 76, 84, 92, 100, 108, 116, 124, 132, 140, 164, 172, 196, 204, 212, 220, 228, 236, 244, 252, 276, 284, 308, 316, 340, 348, 372, 380, 404, 412, 436, 444, 468, 476, 500, 508, 516, 524, 548, 556, 580, 588, 596, 604, 612, 620, 628, 636, 644, 652, 676, 684, 708, 716, 724, 732, 740, 748, 756, 764, 788, 796, 820, 828, 852, 860, 884, 892, 916, 924, 948, 956, 980, 988, 1012, 1020}
{5, 13, 21, 29, 37, 45, 53, 61, 69, 77, 85, 93, 101, 109, 117, 125, 901, 909, 917, 925, 933, 941, 949, 957, 965, 973, 981, 989, 997, 1005, 1013, 1021}
{6, 38, 70, 102, 134, 166, 198, 230}
{7, 15, 23, 31, 39, 47, 55, 63, 71, 79, 87, 95, 103, 111, 119, 127, 135, 143, 151, 159, 167, 175, 183, 191, 199, 207, 215, 223, 231, 239, 247, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351, 359, 367, 375, 383, 391, 399, 407, 415, 423, 431, 439, 447, 455, 463, 471, 479, 487, 495, 503, 511, 519, 527, 535, 543, 551, 559, 567, 575, 583, 591, 599, 607, 615, 623, 631, 639, 647, 655, 663, 671, 679, 687, 695, 703, 711, 719, 727, 735, 743, 751, 759, 767, 775, 783, 791, 799, 807, 815, 823, 831, 839, 847, 855, 863, 871, 879, 887, 895, 903, 911, 919, 927, 935, 943, 951, 959, 967, 975, 983, 991, 999, 1007, 1015, 1023}
{14, 46, 142, 174}
{20, 28, 52, 60, 148, 156, 180, 188, 532, 540, 564, 572, 660, 668, 692, 700}
{35, 43, 59}
{65, 321}
{86, 342}
{129, 385, 425, 465, 553}
{131, 163, 171, 227, 235, 771, 787, 803, 811, 819, 827, 835, 851, 867, 875, 883, 891}
{145, 153}
{190, 254}
{221, 253}
{245, 501}
{260, 268, 292, 300, 388, 396, 420, 428, 772, 780, 804, 812, 900, 908, 932, 940}
{261, 269, 277, 285, 293, 301, 309, 317, 325, 333, 341, 349, 357, 365, 373, 381, 413, 445, 477, 509, 645, 653, 661, 669, 677, 685, 693, 701, 709, 717, 725, 733, 741, 749, 757, 765}
{324, 332, 356, 364, 452, 460, 484, 492, 836, 844, 868, 876, 964, 972, 996, 1004}
{337, 505}
{401, 409}
{430, 558, 598, 686, 750, 926, 990}
{510, 574, 638, 702, 766, 790, 830, 854, 894, 958, 1022}
{513, 769}
{515, 523}
{518, 550, 582, 614
{555, 571}
{619, 635}
{641, 649, 897, 905}
{643, 651, 707, 715}
{657, 665}
{659, 667, 723, 731, 931, 939, 947, 955, 995, 1003, 1011, 1019}
{705, 713}
{721, 729}
{737, 745, 753, 761, 993, 1001, 1009, 1017}
{773, 781, 789, 797, 837, 845, 853, 861}
{779, 795, 843, 859}
{798, 862}
{805, 821, 869, 885}
{813, 829, 877, 893}
{822, 886}
{833, 849}
{841, 857}
{865, 881}
{873, 889}
{913, 921, 929, 937, 945, 953}
{918, 982}
{950, 1014}
{961, 977}
{969, 985}
Links
- N. J. A. Sloane, On the Number of ON Cells in Cellular Automata
- Eric Weisstein's World of Mathematics, Cellular Automaton
- Eric Weisstein's World of Mathematics, Outer Totalistic Cellular Automaton
- Eric Weisstein's World of Mathematics, Totalistic Cellular Automaton
- WolframAlpha, Outer Totalistic Cellular Automaton
- S. Wolfram, A New Kind of Science
- N. J. A. Sloane, Catalog of Toothpick and Cellular Automata Sequences in the OEIS
- Index to Elementary Cellular Automata
- OEIS Index entries for sequences related to cellular automata