[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a013655 -id:a013655
Displaying 1-10 of 27 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A274285 Numbers that are a product of distinct numbers in A013655. +20
2
2, 5, 7, 10, 12, 14, 19, 24, 31, 35, 38, 50, 60, 62, 70, 81, 84, 95, 100, 120, 131, 133, 155, 162, 168, 190, 212, 217, 228, 250, 262, 266, 310, 343, 350, 372, 405, 420, 424, 434, 456, 500, 555, 567, 589, 600, 655, 665, 686, 700, 744, 810, 840, 898, 917, 950 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
See the Comment on distinct-product sequences in A160009.
LINKS
EXAMPLE
10 = 2*5, 120 = 2*5*12.
MATHEMATICA
f[1] = 2; f[2] = 5; z = 33; f[n_] := f[n - 1] + f[n - 2]; f = Table[f[n], {n, 1, z}]; f
s = {1}; Do[s = Union[s, Select[s*f[[i]], # <= f[[z]] &]], {i, z}]; s1 = Rest[s]
CROSSREFS
Cf. A160009.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 17 2016
STATUS
approved
A035513 Wythoff array read by antidiagonals. +10
172
1, 2, 4, 3, 7, 6, 5, 11, 10, 9, 8, 18, 16, 15, 12, 13, 29, 26, 24, 20, 14, 21, 47, 42, 39, 32, 23, 17, 34, 76, 68, 63, 52, 37, 28, 19, 55, 123, 110, 102, 84, 60, 45, 31, 22, 89, 199, 178, 165, 136, 97, 73, 50, 36, 25, 144, 322, 288, 267, 220, 157, 118, 81, 58, 41, 27, 233, 521 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
T(0,0)=1, T(0,1)=2,...; y^2-x^2-xy<y if and only if there exist (i,j) with x=T(i,2j) and y=T(i,2j+1). - Claude Lenormand (claude.lenormand(AT)free.fr), Mar 17 2001
Inverse of sequence A064274 considered as a permutation of the nonnegative integers. - Howard A. Landman, Sep 25 2001
The Wythoff array W consists of all the Wythoff pairs (x(n),y(n)), where x=A000201 and y=A001950, so that W contains every positive integer exactly once. The differences T(i,2j+1)-T(i,2j) form the Wythoff difference array, A080164, which also contains every positive integer exactly once. - Clark Kimberling, Feb 08 2003
For n>2 the determinant of any n X n contiguous subarray of A035513 (as a square array) is 0. - Gerald McGarvey, Sep 18 2004
From Clark Kimberling, Nov 14 2007: (Start)
Except for initial terms in some cases:
(Row 1) = A000045
(Row 2) = A000032
(Row 3) = A006355
(Row 4) = A022086
(Row 5) = A022087
(Row 6) = A000285
(Row 7) = A022095
(Row 8) = A013655 (sum of Fibonacci and Lucas numbers)
(Row 9) = A022112
(Column 1) = A003622 = AA Wythoff sequence
(Column 2) = A035336 = BA Wythoff sequence
(Column 3) = A035337 = ABA Wythoff sequence
(Column 4) = A035338 = BBA Wythoff sequence
(Column 5) = A035339 = ABBA Wythoff sequence
(Column 6) = A035340 = BBBA Wythoff sequence
Main diagonal = A020941. (End)
The Wythoff array is the dispersion of the sequence given by floor(n*x+x-1), where x=(golden ratio). See A191426 for a discussion of dispersions. - Clark Kimberling, Jun 03 2011
If u and v are finite sets of numbers in a row of the Wythoff array such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. See A160009 (row 1 products), A274286 (row 2), A274287 (row 3), A274288 (row 4). - Clark Kimberling, Jun 17 2016
All columns of the Wythoff array are compound Wythoff sequences. This follows from the main theorem in the 1972 paper by Carlitz, Scoville and Hoggatt. For an explicit expression see Theorem 10 in Kimberling's paper from 2008 in JIS. - Michel Dekking, Aug 31 2017
The Wythoff array can be viewed as an infinite graph over the set of nonnegative integers, built as follows: start with an empty graph; for all n = 0, 1, ..., create an edge between n and the sum of the degrees of all i < n. Finally, remove vertex 0. In the resulting graph, the connected components are chains and correspond to the rows of the Wythoff array. - Luc Rousseau, Sep 28 2017
Suppose that h < k are consecutive terms in a row of the Wythoff array. If k is in an even numbered column, then h = floor(k/tau); otherwise, h = -1 + floor(k/tau). - Clark Kimberling, Mar 05 2020
From Clark Kimberling, May 26 2020: (Start)
For k > = 0, column k shows the numbers m having F(k+1) as least term in the Zeckendorf representation of m. For n >= 1, let r(n,k) be the number of terms in column k that are <= n. Then n/r(n,k) = n/(F(k+1)*tau + F(k)*(n-1)), by Bottomley's formula, so that the limiting ratio is 1/(F(k+1)*tau + F(k)). Summing over all k gives Sum_{k>=0} 1/(F(k+1)*tau + F(k)) = 1. Thus, in the limiting sense:
38.19...% of the numbers m have least term 1;
23.60...% have least term 2;
14.58...% have least term 3;
9.01...% have least term 5, etc. (End)
Named after the Dutch mathematician Willem Abraham Wythoff (1865-1939). - Amiram Eldar, Jun 11 2021
REFERENCES
John H. Conway, Posting to Math Fun Mailing List, Nov 25 1996.
Clark Kimberling, "Stolarsky interspersions," Ars Combinatoria 39 (1995) 129-138.
LINKS
Peter G. Anderson, More Properties of the Zeckendorf Array, Fib. Quart. 52-5 (2014), 15-21.
L. Carlitz, Richard Scoville, and V. E. Hoggatt, Jr., Fibonacci representations, Fib. Quart., Vol. 10, No. 1 (1972), pp. 1-28.
J. H. Conway, Allan Wechsler, Marc LeBrun, Dan Hoey, and N. J. A. Sloane, On Kimberling Sums and Para-Fibonacci Sequences, Correspondence and Postings to Math-Fun Mailing List, Nov 1996 to Jan 1997.
John Conway and Alex Ryba, The extra Fibonacci series and the Empire State Building, Math. Intelligencer, Vol. 38, No. 1 (2016), pp. 41-48.
Larry Ericksen and Peter G. Anderson, Patterns in differences between rows in k-Zeckendorf arrays, The Fibonacci Quarterly, Vol. 50, No. 1 (February 2012), pp. 11-18. - N. J. A. Sloane, Jun 10 2012
Clark Kimberling, Interspersions.
Clark Kimberling, The Zeckendorf array equals the Wythoff array, Fibonacci Quarterly, Vol. 33, No. 1 (1995), pp. 3-8.
Clark Kimberling, Complementary equations and Wythoff Sequences, JIS, Vol. 11 (2008), Article 08.3.3.
Clark Kimberling, Lucas Representations of Positive Integers, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.
Clark Kimberling and Kenneth B. Stolarsky, Slow Beatty sequences, devious convergence, and partitional divergence, Amer. Math. Monthly, 123, No. 2 (2016), pp. 267-273.
Stéphane Legendre, Labeled Fibonacci Trees, Fibonacci Quart. 53 (2015), no. 2, 152-167.
A. J. Macfarlane, On the fibbinary numbers and the Wythoff array, arXiv:2405.18128 [math.CO], 2024. See pages 1-2.
Casey Mongoven, Sonification of multiple Fibonacci-related sequences, Annales Mathematicae et Informaticae, Vol. 41 (2013), pp. 175-192.
N. J. A. Sloane, My favorite integer sequences, in Sequences and their Applications (Proceedings of SETA '98).
N. J. A. Sloane, Classic Sequences
Sam Vandervelde, On the divisibility of Fibonacci sequences by primes of index two, The Fibonacci Quarterly, Vol. 50, No. 3 (2012), pp. 207-216. See Figure 1.
Eric Weisstein's World of Mathematics, Wythoff Array.
FORMULA
T(n, k) = Fib(k+1)*floor[n*tau]+Fib(k)*(n-1) where tau = (sqrt(5)+1)/2 = A001622 and Fib(n) = A000045(n). - Henry Bottomley, Dec 10 2001
T(n,-1) = n-1. T(n,0) = floor(n*tau). T(n,k) = T(n,k-1) + T(n,k-2) for k>=1. - R. J. Mathar, Sep 03 2016
EXAMPLE
The Wythoff array begins:
1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
25 41 66 107 173 280 453 733 1186 1919 3105 ...
27 44 71 115 186 301 487 788 1275 2063 3338 ...
...
The extended Wythoff array has two extra columns, giving the row number n and A000201(n), separated from the main array by a vertical bar:
0 1 | 1 2 3 5 8 13 21 34 55 89 144 ...
1 3 | 4 7 11 18 29 47 76 123 199 322 521 ...
2 4 | 6 10 16 26 42 68 110 178 288 466 754 ...
3 6 | 9 15 24 39 63 102 165 267 432 699 1131 ...
4 8 | 12 20 32 52 84 136 220 356 576 932 1508 ...
5 9 | 14 23 37 60 97 157 254 411 665 1076 1741 ...
6 11 | 17 28 45 73 118 191 309 500 809 1309 2118 ...
7 12 | 19 31 50 81 131 212 343 555 898 1453 2351 ...
8 14 | 22 36 58 94 152 246 398 644 1042 1686 2728 ...
9 16 | 25 41 66 107 173 280 453 733 1186 1919 3105 ...
10 17 | 27 44 71 115 186 301 487 788 1275 2063 3338 ...
11 19 | 30 49 79 ...
12 21 | 33 54 87 ...
13 22 | 35 57 92 ...
14 24 | 38 62 ...
15 25 | 40 65 ...
16 27 | 43 70 ...
17 29 | 46 75 ...
18 30 | 48 78 ...
19 32 | 51 83 ...
20 33 | 53 86 ...
21 35 | 56 91 ...
22 37 | 59 96 ...
23 38 | 61 99 ...
24 40 | 64 ...
25 42 | 67 ...
26 43 | 69 ...
27 45 | 72 ...
28 46 | 74 ...
29 48 | 77 ...
30 50 | 80 ...
31 51 | 82 ...
32 53 | 85 ...
33 55 | 88 ...
34 56 | 90 ...
35 58 | 93 ...
36 59 | 95 ...
37 61 | 98 ...
38 63 | ...
...
Each row of the extended Wythoff array also satisfies the Fibonacci recurrence, and may be extended to the left using this recurrence backwards.
From Peter Munn, Jun 11 2021: (Start)
The Wythoff array appears to have the following relationship to the traditional Fibonacci rabbit breeding story, modified for simplicity to be a story of asexual reproduction.
Give each rabbit a number, 0 for the initial rabbit.
When a new round of rabbits is born, allocate consecutive numbers according to 2 rules (the opposite of many cultural rules for inheritance precedence): (1) newly born child of Rabbit 0 gets the next available number; (2) the descendants of a younger child of any given rabbit precede the descendants of an older child of the same rabbit.
Row n of the Wythoff array lists the children of Rabbit n (so Rabbit 0's children have the Fibonacci numbers: 1, 2, 3, 5, ...). The generation tree below shows rabbits 0 to 20. It is modified so that each round of births appears on a row.
0
:
,-------------------------:
: :
,---------------: 1
: : :
,--------: 2 ,---------:
: : : : :
,-----: 3 ,-----: ,-----: 4
: : : : : : : :
,--: 5 ,--: ,---: 6 ,---: 7 ,---:
: : : : : : : : : : : : :
,--: 8 ,--: ,--: 9 ,--: 10 ,--: ,--: 11 ,--: ,--: 12
: : : : : : : : : : : : : : : : : : : : :
: 13 : : 14 : 15 : : 16 : : 17 : 18 : : 19 : 20 :
The extended array's nontrivial extra column (A000201) gives the number that would have been allocated to the first child of Rabbit n, if Rabbit n (and only Rabbit n) had started breeding one round early.
(End)
MAPLE
W:= proc(n, k) Digits:= 100; (Matrix([n, floor((1+sqrt(5))/2* (n+1))]). Matrix([[0, 1], [1, 1]])^(k+1))[1, 2] end: seq(seq(W(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Aug 18 2008
A035513 := proc(r, c)
option remember;
if c = 1 then
A003622(r) ;
else
A022342(1+procname(r, c-1)) ;
end if;
end proc:
seq(seq(A035513(r, d-r), r=1..d-1), d=2..15) ; # R. J. Mathar, Jan 25 2015
MATHEMATICA
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; Table[ W[n - k + 1, k], {n, 12}, {k, n, 1, -1}] // Flatten
PROG
(PARI) T(n, k)=(n+sqrtint(5*n^2))\2*fibonacci(k+1) + (n-1)*fibonacci(k)
for(k=0, 9, for(n=1, k, print1(T(n, k+1-n)", "))) \\ Charles R Greathouse IV, Mar 09 2016
(Python)
from sympy import fibonacci as F, sqrt
import math
tau = (sqrt(5) + 1)/2
def T(n, k): return F(k + 1)*int(math.floor(n*tau)) + F(k)*(n - 1)
for n in range(1, 11): print([T(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Apr 23 2017
CROSSREFS
See comments above for more cross-references.
Cf. A003622, A064274 (inverse), A083412 (transpose), A000201, A001950, A080164, A003603, A265650, A019586 (row that contains n).
For two versions of the extended Wythoff array, see A287869, A287870.
KEYWORD
nonn,tabl,easy,nice
AUTHOR
EXTENSIONS
Comments about the extended Wythoff array added by N. J. A. Sloane, Mar 07 2016
STATUS
approved
A000285 a(0) = 1, a(1) = 4, and a(n) = a(n-1) + a(n-2) for n >= 2.
(Formerly M3246 N1309)
+10
47
1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620, 180510493, 292072113, 472582606 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
a(n-1) = Sum_{k=0..ceiling((n-1)/2)} P(4;n-1-k,k), n >= 1, with a(-1)=3. These are the sums over the SW-NE diagonals in P(4;n,k), the (4,1) Pascal triangle A093561. Observation by Paul Barry, Apr 29 2004. Proof via recursion relations and comparison of inputs. Also SW-NE diagonal sums in the Pascal (1,3) triangle A095660.
In general, for a Fibonacci sequence beginning with 1,b we have a(n) = (2^(-1-n)*((1-sqrt(5))^n*(1+sqrt(5)-2b) + (1+sqrt(5))^n*(-1+sqrt(5)+2b)))/sqrt(5). In this case we have b=4. - Herbert Kociemba, Dec 18 2011
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 5, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... - R. J. Mathar, Aug 10 2012
a(n) = number of independent vertex subsets (i.e., the Merrifield-Simmons index) of the tree obtained from the path tree P_{n-1} by attaching two pendant edges to one of its endpoints (n >= 2). Example: if n=3, then we have the star tree with edges ab, ac, ad; it has 9 independent vertex subsets: empty, a, b, c, d, bc, cd, bd, bcd.
For n >= 2, the number a(n-1) is the dimension of a commutative Hecke algebra of type D_n with independent parameters. See Theorem 1.4 and Corollary 1.5 in the link "Hecke algebras with independent parameters". - Jia Huang, Jan 20 2019
For n >= 1, a(n) is the number of edge covers of the tadpole graph T_{3,n-1} with T_{3,0} interpreted as just the cycle C_3. Example: If n=2, we have C_3 and P_1 joined by a bridge, which is just the triangle with a pendant, and this graph has 5 edge covers. In general, because of the path portion of the graph, the number of edge covers of T{3,n-1} satisfies the same recurrence as Fibonacci sequence and it starts with 4,5. - Feryal Alayont, Aug 27 2023
Eswarathasan (1978) called these numbers "pseudo-Fibonacci numbers", and proved that 1, 4, and 9 are the only squares in this sequence. If the recurrence is extended to negative indices, then there is only one more square, a(-9) = 81. Eswarathasan (1979) proved that none of the terms (even with negative indices) are twice a square. - Amiram Eldar, Mar 09 2024
REFERENCES
Richard E. Merrifield and Howard E. Simmons, Topological Methods in Chemistry, Wiley, New York, 1989. pp. 131.
Joe Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 224.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Ben Adenbaum, Jennifer Elder, Pamela E. Harris, and J. Carlos Martínez Mori, Boolean intervals in the weak Bruhat order of a finite Coxeter group, arXiv:2403.07989 [math.CO], 2024. See pp. 2, 10.
Brandon Avila and Tanya Khovanova, Free Fibonacci Sequences, arXiv preprint arXiv:1403.4614 [math.NT], 2014 and J. Int. Seq. 17 (2014) # 14.8.5.
Alfred Brousseau, Seeking the lost gold mine or exploring Fibonacci factorizations, Fib. Quart., 3 (1965), 129-130.
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 53.
A. Eswarathasan, On Square Pseudo-Fibonacci Numbers, Fibonacci Quarterly, Vol. 16, No. 4 (1978), pp. 310-314.
A. Eswarathasan, On Pseudo-Fibonacci Numbers of the Form 2S^2, Where S is an Integer, Fibonacci Quarterly, Vol. 17, No. 2 (1979), pp. 142-147.
Jia Huang, Hecke algebras with independent parameters, arXiv preprint arXiv:1405.1636 [math.RT], 2014; Journal of Algebraic Combinatorics 43 (2016) 521-551.
Tanya Khovanova, Recursive Sequences.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
José L. Ramírez, Gustavo N. Rubiano, and Rodrigo de Castro, A Generalization of the Fibonacci Word Fractal and the Fibonacci Snowflake, arXiv preprint arXiv:1212.1368 [cs.DM], 2012.
FORMULA
G.f.: (1+3*x)/(1-x-x^2). - Simon Plouffe in his 1992 dissertation
Row sums of A131775 starting (1, 4, 5, 9, 14, 23, ...). - Gary W. Adamson, Jul 14 2007
a(n) = 2*Fibonacci(n) + Fibonacci(n+2). - Zerinvary Lajos, Oct 05 2007
a(n) = ((1+sqrt(5))^n - (1-sqrt(5))^n)/(2^n*sqrt(5)) + (3/2)* ((1+sqrt(5))^(n-1) - (1-sqrt(5))^(n-1))/(2^(n-2)*sqrt(5)). Offset 1. a(3)=5. - Al Hakanson (hawkuu(AT)gmail.com), Jan 14 2009
a(n) = 3*Fibonacci(n+2) - 2*Fibonacci(n+1). - Gary Detlefs, Dec 21 2010
a(n) = A104449(n+1). - Michael Somos, Apr 07 2012
From Michael Somos, May 28 2014: (Start)
a(n) = A101220(3, 0, n+1).
a(n) = A109754(3, n+1).
a(k) = A090888(2, k-1), for k > 0.
a(-1 - n) = (-1)^n * A013655(n).
a(n) = Fibonacci(n) + Lucas(n+1), see Mathematica field. (End)
11*Fibonacci(n+1) = a(n+3) - a(n-2) = 3*a(n-1) + 2*a(n). - Manfred Arens and Michel Marcus, Jul 14 2014
a(n) = (9*F(n) + F(n-3))/2. - J. M. Bergot, Jul 15 2017
a(n-1) = 3 * A000045(n) + A000045(n+1). - R. J. Mathar, Feb 14 2024
EXAMPLE
G.f. = 1 + 4*x + 5*x^2 + 9*x^3 + 14*x^4 + 23*x^5 + 37*x^6 + 60*x^7 + ...
MAPLE
with(combinat):a:=n->2*fibonacci(n)+fibonacci(n+2): seq(a(n), n=0..34);
MATHEMATICA
LinearRecurrence[{1, 1}, {1, 4}, 40] (* or *) Table[(3*LucasL[n]- Fibonacci[n])/2, {n, 40}] (* Harvey P. Dale, Jul 18 2011 *)
a[ n_]:= Fibonacci[n] + LucasL[n+1]; (* Michael Somos, May 28 2014 *)
PROG
(Haskell)
a000285 n = a000285_list !! n
a000285_list = 1 : 4 : zipWith (+) a000285_list (tail a000285_list)
-- Reinhard Zumkeller, Apr 28 2011
(Maxima) a[0]:1$ a[1]:4$ a[n]:=a[n-1]+a[n-2]$ makelist(a[n], n, 0, 30); /* Martin Ettl, Oct 25 2012 */
(PARI) Vec((1+3*x)/(1-x-x^2)+O(x^40)) \\ Charles R Greathouse IV, Nov 20 2012
(Magma) a0:=1; a1:=4; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..30]]; // Bruno Berselli, Feb 12 2013
(Sage) f=fibonacci; [f(n+2) +2*f(n) for n in (0..40)] # G. C. Greubel, Nov 08 2019
(GAP) F:=Fibonacci;; List([0..40], n-> F(n+2) +2*F(n) ); // G. C. Greubel, Nov 08 2019
CROSSREFS
Essentially the same as A104449, which only has A104449(0)=3 prefixed.
Cf. A090888, A101220, A109754, A091157 (subsequence of primes).
KEYWORD
nonn,easy,nice
AUTHOR
STATUS
approved
A160009 Numbers that are the product of distinct Fibonacci numbers. +10
26
0, 1, 2, 3, 5, 6, 8, 10, 13, 15, 16, 21, 24, 26, 30, 34, 39, 40, 42, 48, 55, 63, 65, 68, 78, 80, 89, 102, 104, 105, 110, 120, 126, 130, 144, 165, 168, 170, 178, 195, 204, 208, 210, 233, 240, 267, 272, 273, 275, 288, 312, 315, 330, 336, 340, 377, 390, 432, 440, 442, 445 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Starts the same as A049862, the product of two distinct Fibonacci numbers. This sequence has an infinite number of consecutive terms that are consecutive numbers (such as 15 and 16) because fib(k)*fib(k+3) and fib(k+1)*fib(k+2) differ by one for all k >= 0.
It follows from Carmichael's theorem that if u and v are finite sets of Fibonacci numbers such that (product of all the numbers in u) = (product of all the numbers in v), then u = v. The same holds for many other 2nd order linear recurrence sequences with constant coefficients. In the following guide to related "distinct product sequences", W = Wythoff array, A035513:
base sequence distinct-product sequence
A000045 (Fibonacci) A160009
A000032 (Lucas, without 2) A274280
A000032 (Lucas, with 2) A274281
A000285 (1,4,5,...) A274282
A022095 (1,5,6,...) A274283
A006355 (2,4,6,...) A274284
A013655 (2,5,7,...) A274285
A022086 (3,6,9,...) A274191
row 2 of W: (4,7,11,...) A274286
row 3 of W: (6,10,16,...) A274287
row 4 of W: (9,15,24,...) A274288
- Clark Kimberling, Jun 17 2016
LINKS
MATHEMATICA
s={1}; nn=30; f=Fibonacci[2+Range[nn]]; Do[s=Union[s, Select[s*f[[i]], #<=f[[nn]]&]], {i, nn}]; s=Prepend[s, 0]
CROSSREFS
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 29 2009
STATUS
approved
A001060 a(n) = a(n-1) + a(n-2) with a(0)=2, a(1)=5. Sometimes called the Evangelist Sequence.
(Formerly M1338 N0512)
+10
19
2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, 2351, 3804, 6155, 9959, 16114, 26073, 42187, 68260, 110447, 178707, 289154, 467861, 757015, 1224876, 1981891, 3206767, 5188658, 8395425, 13584083, 21979508, 35563591, 57543099, 93106690, 150649789 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
Literally the same as A013655(n+1), since A001060(-1) = A013655(0) = 3. - Eric W. Weisstein, Jun 30 2017
Used by the Sofia Gubaidulina and other composers. - Ian Stewart, Jun 07 2012
From a(2) on, sums of five consecutive Fibonacci numbers; the subset of primes is essentially in A153892. - R. J. Mathar, Mar 24 2010
Pisano period lengths: 1, 3, 8, 6, 20, 24, 16, 12, 24, 60, 10, 24, 28, 48, 40, 24, 36, 24, 18, 60, ... (is this A001175?). - R. J. Mathar, Aug 10 2012
Also the number of independent vertex sets and vertex covers in the (n+1)-pan graph. - Eric W. Weisstein, Jun 30 2017
From Wajdi Maaloul, Jun 10 2022: (Start)
For n > 0, a(n) is the number of ways to tile the figure below with squares and dominoes (a strip of length n+1 that contains a vertical strip of height 3 in its second tile). For instance, a(4) is the number of ways to tile this figure (of length 5) with squares and dominoes.
_
|_|
_|_|_______
|_|_|_|_|_|_|
(End)
REFERENCES
R. V. Jean, Mathematical Approach to Pattern and Form in Plant Growth, Wiley, 1984. See p. 5.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alfred Brousseau, Seeking the lost gold mine or exploring Fibonacci factorizations, Fib. Quart., 3 (1965), 129-130.
Alfred Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972. See p. 52.
Tanya Khovanova, Recursive Sequences
Casey Mongoven, Fibonacci Pitch Sets. - From Ian Stewart, Jun 07 2012
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Eric Weisstein's World of Mathematics, Independent Vertex Set
Eric Weisstein's World of Mathematics, Pan Graph
Eric Weisstein's World of Mathematics, Vertex Cover
FORMULA
a(n) = 2*Fibonacci(n) + Fibonacci(n+3). - Zerinvary Lajos, Oct 05 2007
a(n) = Fibonacci(n+4) - Fibonacci(n-1) for n >= 1. - Ian Stewart, Jun 07 2012
a(n) = Fibonacci(n) + 2*Fibonacci(n+2) = 5*Fibonacci(n) + 2*Fibonacci(n-1). The ratio r(n) := a(n+2)/a(n) satisfies the recurrence r(n+1) = (2*r(n) - 1)/(r(n) - 1). If M denotes the 2 X 2 matrix [2, -1; 1, -1] then [a(n+2), a(n)] = M^n[2, -1]. - Peter Bala, Dec 06 2013
a(n) = 6*F(n) + F(n-3), for F(n)=A000045. - J. M. Bergot, Jul 14 2017
a(n) = -(-1)^n*A000285(-2-n) = -(-1)^n*A104449(-1-n) for all n in Z. - Michael Somos, Oct 28 2018
MAPLE
with(combinat): a:= n-> 2*fibonacci(n)+fibonacci(n+3): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
A001060:=-(2+3*z)/(-1+z+z**2); # conjectured by Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[Fibonacci[n+4] -Fibonacci[n-1], {n, 0, 50}] (* Vladimir Joseph Stephan Orlovsky, Nov 23 2009 *)
LinearRecurrence[{1, 1}, {2, 5}, 50] (* Vincenzo Librandi, Jan 16 2012 *)
Table[Fibonacci[n+2] + LucasL[n+1], {n, 0, 40}] (* Eric W. Weisstein, Jun 30 2017 *)
CoefficientList[Series[(2+3x)/(1-x-x^2), {x, 0, 40}], x] (* Eric W. Weisstein, Sep 22 2017 *)
PROG
(Magma) I:=[2, 5]; [n le 2 select I[n] else Self(n-1)+Self(n-2): n in [1..50]]; // Vincenzo Librandi, Jan 16 2012
(Magma) a0:=2; a1:=5; [GeneralizedFibonacciNumber(a0, a1, n): n in [0..35]]; // Bruno Berselli, Feb 12 2013
(PARI) a(n)=6*fibonacci(n)+fibonacci(n-3) \\ Charles R Greathouse IV, Jul 14 2017
(PARI) a(n)=([0, 1; 1, 1]^n*[2; 5])[1, 1] \\ Charles R Greathouse IV, Jul 14 2017
(Sage) f=fibonacci; [f(n+4) - f(n-1) for n in (0..40)] # G. C. Greubel, Sep 19 2019
(GAP) F:=Fibonacci;; List([0..40], n-> F(n+4) - F(n-1) ); # G. C. Greubel, Sep 19 2019
CROSSREFS
Apart from initial term, same as A013655.
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
More terms from James A. Sellers, May 04 2000
STATUS
approved
A104449 Fibonacci sequence with initial values a(0) = 3 and a(1) = 1. +10
13
3, 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, 1741, 2817, 4558, 7375, 11933, 19308, 31241, 50549, 81790, 132339, 214129, 346468, 560597, 907065, 1467662, 2374727, 3842389, 6217116, 10059505, 16276621, 26336126, 42612747, 68948873, 111561620 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
The old name was: The Pibonacci numbers (a Fibonacci-type sequence): each term is the sum of the two previous terms.
The 6th row in the Wythoff array begins with the 6th term of the sequence (14, 23, 37, 60, 97, 157, ...). a(n) = f(n-3) + f(n+2) for the Fibonacci numbers f(n) = f(n-1) + f(n-2); f(0) = 0, f(1) = 1.
(a(2*k), a(2*k+1)) give for k >= 0 the proper positive solutions of one of two families (or classes) of solutions (x, y) of the indefinite binary quadratic form x^2 + x*y - y^2 of discriminant 5 representing 11. The other family of such solutions is given by (x2, y2) = (b(2*k), b(2*k+1)) with b = A013655. See the formula in terms of Chebyshev S polynomials S(n, 3) = A001906(n+1) below, which follows from the fundamental solution (3, 1) by applying positive powers of the automorphic matrix given in a comment in A013655. See also A089270 with the Alfred Brousseau link with D = 11. - Wolfdieter Lang, May 28 2019
REFERENCES
V. E. Hoggatt, Jr., Fibonacci and Lucas Numbers. Houghton, Boston, MA, 1969.
LINKS
John Conway, Alex Ryba, The extra Fibonacci series and the Empire State Building, Math. Intelligencer 38 (2016), no. 1, 41-48. (Uses the name Pibonacci.)
Tanya Khovanova, Recursive Sequences
Eric Weisstein's World of Mathematics, Fibonacci Number
Shaoxiong Yuan, Generalized Identities of Certain Continued Fractions, arXiv:1907.12459 [math.NT], 2019.
FORMULA
a(n) = a(n-1) + a(n-2) with a(0) = 3, a(1) = 1.
a(n) = 3*Fibonacci(n-1) + Fibonacci(n). - Zerinvary Lajos, Oct 05 2007
G.f.: (3-2*x)/(1-x-x^2). - Philippe Deléham, Nov 19 2008
a(n) = ( (3*sqrt(5)-1)*((1+sqrt(5))/2)^n + (3*sqrt(5)+1)*((1-sqrt(5) )/2)^n )/(2*sqrt(5)). - Bogart B. Strauss, Jul 19 2013
Bisection: a(2*k) = 4*S(k-1, 3) - 3*S(k-2, 3), a(2*k+1) = 2*S(k-1, 3) + S(k, 3) for k >= 0, with the Chebyshev S(n, 3) polynomials from A001906(n+1) for n >= -1. - Wolfdieter Lang, May 28 2019
a(n) = Fibonacci(n-1) + Lucas(n). - G. C. Greubel, May 29 2019
a(3n + 4)/a(3n + 1) = continued fraction 4,4,4,...,4,9 (that's n 4's followed by a single 9). - Greg Dresden and Shaoxiong Yuan, Jul 16 2019
E.g.f.: (exp((1/2)*(1 - sqrt(5))*x)*(1 + 3*sqrt(5) + (- 1 + 3*sqrt(5))*exp(sqrt(5)*x)))/(2*sqrt(5)). - Stefano Spezia, Jul 18 2019
MAPLE
a:=n->3*fibonacci(n-1)+fibonacci(n): seq(a(n), n=0..40); # Zerinvary Lajos, Oct 05 2007
MATHEMATICA
LinearRecurrence[{1, 1}, {3, 1}, 40] (* Harvey P. Dale, May 23 2014 *)
PROG
(PARI) a(n)=3*fibonacci(n-1)+fibonacci(n) \\ Charles R Greathouse IV, Jun 05 2011
(Magma) [Fibonacci(n-1) + Lucas(n): n in [0..40]]; // G. C. Greubel, May 29 2019
(Sage) ((3-2*x)/(1-x-x^2)).series(x, 40).coefficients(x, sparse=False) # G. C. Greubel, May 29 2019
(GAP) a:=[3, 1];; for n in [3..40] do a[n]:=a[n-1]+a[n-2]; od; a; # G. C. Greubel, May 29 2019
CROSSREFS
Cf. Other Fibonacci-type sequences: A000045, A000032, A013655. Other related sequences: A001906, A013655, A089270, A103343, A103344.
Wythoff array: A035513.
Essentially the same as A000285.
KEYWORD
nonn,easy
AUTHOR
Casey Mongoven, Mar 08 2005
EXTENSIONS
Name changed by Wolfdieter Lang, Jun 17 2019
STATUS
approved
A119286 Alternating sum of the fifth powers of the first n Fibonacci numbers. +10
9
0, -1, 0, -32, 211, -2914, 29854, -341439, 3742662, -41692762, 461591613, -5122467836, 56794896388, -629924960005, 6985721085652, -77473909014348, 859194263419359, -9528629686028398, 105674040835291026, -1171943417651373875, 12997050199917354250, -144139501695851560726, 1598531543102764228825, -17727986584911448406232, 196606383515036414871336, -2180398207207766329269289 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Natural bilateral extension (brackets mark index 0): ..., 3402, 277, 34, 2, 1, 0, [0], -1, 0, -32, 211, -2914, 29854, ... This is A098531-reversed followed by A119286.
LINKS
FORMULA
Let F(n) be the Fibonacci number A000045(n).
a(n) = Sum_{k=1..n} (-1)^k F(k)^5.
Closed form: a(n) = (-1)^n (1/275)(F(5n+1) + 2 F(5n+3)) - (1/10) F(3n+2) + (-1)^n (2/5) F(n-1) - 7/22; here F(5n+1) + 2 F(5n+3) = A001060(5n+1) = A013655(5n+2).
Recurrence: a(n) + 7 a(n-1) - 48 a(n-2) - 20 a(n-3) + 100 a(n-4) - 32 a(n-5) - 9 a(n-6) + a(n-7) = 0.
G.f.: A(x) = (-x - 7 x^2 + 16 x^3 + 7 x^4 - x^5)/(1 + 7 x - 48 x^2 - 20 x^3 + 100 x^4 - 32 x^5 - 9 x^6 + x^7) = -x(1 + 7 x - 16 x^2 - 7 x^3 + x^4)/((1 - x)(1 + x - x^2)(1 - 4 x - x^2)(1 + 11 x - x^2)).
MATHEMATICA
a[n_Integer] := If[ n >= 0, Sum[ (-1)^k Fibonacci[k]^5, {k, 1, n} ], Sum[ -(-1)^k Fibonacci[ -k]^5, {k, 1, -n - 1} ] ]
LinearRecurrence[{-7, 48, 20, -100, 32, 9, -1}, {0, -1, 0, -32, 211, -2914, 29854}, 30] (* Harvey P. Dale, Jun 24 2018 *)
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Stuart Clary, May 13 2006
STATUS
approved
A332938 Indices of the primitive rows of the Wythoff array (A035513); see Comments. +10
8
1, 2, 6, 7, 8, 10, 11, 12, 14, 17, 18, 20, 21, 23, 24, 26, 27, 30, 32, 33, 36, 37, 38, 39, 40, 42, 44, 46, 48, 49, 50, 53, 54, 59, 60, 62, 63, 64, 65, 66, 68, 69, 70, 72, 74, 75, 76, 79, 80, 81, 84, 85, 86, 88, 90, 92, 94, 95, 98, 100, 101, 102, 104, 107 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
In a row of the Wythoff array, either every two consecutive terms are relatively prime or else no two consecutive terms are relatively prime. In the first case, we call the row primitive; otherwise, the row is an integer multiple of a tail of a preceding row. Conjectures: the maximal number of consecutive primitive rows is 5, and the limiting proportion of primitive rows exists and is approximately 0.608.
LINKS
EXAMPLE
The Wythoff array begins:
1 2 3 5 8 13 21 34 55 89 144 ...
4 7 11 18 29 47 76 123 199 322 521 ...
6 10 16 26 42 68 110 178 288 466 754 ...
9 15 24 39 63 102 165 267 432 699 1131 ...
12 20 32 52 84 136 220 356 576 932 1508 ...
14 23 37 60 97 157 254 411 665 1076 1741 ...
17 28 45 73 118 191 309 500 809 1309 2118 ...
19 31 50 81 131 212 343 555 898 1453 2351 ...
22 36 58 94 152 246 398 644 1042 1686 2728 ...
Row 1: A000045 (Fibonacci numbers, a primitive row)
Row 2: A000032 (Lucas numbers, primitive)
Row 3: 2 times a tail of row 1
Row 4: 3 times a tail of row 1
Row 5 4 times a tail of row 1
Row 6: essentially A000285, primitive
Row 7: essentially A022095, primitive
Row 8: essentially A013655, primitive
Row 9: 2 times a tail of row 2
Thus first five terms of (a(n)) are 1,2,6,7,8.
MATHEMATICA
W[n_, k_] := Fibonacci[k + 1] Floor[n*GoldenRatio] + (n - 1) Fibonacci[k]; (* A035513 *)
t = Table[GCD[W[n, 1], W[n, 2]], {n, 1, 160}] (* A332937 *)
Flatten[Position[t, 1]] (* A332938 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Mar 03 2020
STATUS
approved
A100545 Expansion of (7-2*x) / (1-3*x+x^2). +10
7
7, 19, 50, 131, 343, 898, 2351, 6155, 16114, 42187, 110447, 289154, 757015, 1981891, 5188658, 13584083, 35563591, 93106690, 243756479, 638162747, 1670731762, 4374032539, 11451365855, 29980065026, 78488829223, 205486422643, 537970438706, 1408424893475, 3687304241719, 9653487831682, 25273159253327 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
A Floretion integer sequence relating to Fibonacci numbers.
Inverse binomial transform of A013655; inversion of A097924.
LINKS
Mark W. Coffey, James L. Hindmarsh, Matthew C. Lettington, John Pryce, On Higher Dimensional Interlacing Fibonacci Sequences, Continued Fractions and Chebyshev Polynomials, arXiv:1502.03085 [math.NT], 2015 (see p. 31).
Tanya Khovanova, Recursive Sequences
FORMULA
a(n-1) = 4*Fibonacci(2*n) + Fibonacci(2*n-1) + Fibonacci(2*n+1).
a(n) + a(n+1) = A055849(n+2).
a(n) = 3*a(n-1) - a(n-2) with a(0)=7 and a(1)=19. - Philippe Deléham, Nov 16 2008
a(n) = (2^(-1-n)*((3-sqrt(5))^n*(-17+7*sqrt(5)) + (3+sqrt(5))^n*(17+7*sqrt(5)))) / sqrt(5). - Colin Barker, Oct 14 2015
From G. C. Greubel, Jan 17 2020: (Start)
a(n) = Fibonacci(2*n+4) + Lucas(2*n+3).
E.g.f.: 2*exp(3*t/2)*(cosh(sqrt(5)*t/2) + (4/sqrt(5))*sinh(sqrt(5)*t/2)). (End)
MAPLE
F := proc(n) combinat[fibonacci](n) ; end: A100545 := proc(n) 4*F(2*(n+1)) + F(2*n+1)+F(2*n+3) ; end: for n from 0 to 30 do printf("%d, ", A100545(n)) ; od ; # R. J. Mathar, Oct 26 2006
MATHEMATICA
Table[Fibonacci[2*(n+2)] + LucasL[2*n+3], {n, 0, 30}] (* G. C. Greubel, Jan 17 2020 *)
PROG
(PARI) Vec((7-2*x)/(1-3*x+x^2) + O(x^30)) \\ Michel Marcus, Feb 11 2015
(Magma) [Fibonacci(2*n+4) +Lucas(2*n+3): n in [0..30]]; // G. C. Greubel, Jan 17 2020
(Sage) [fibonacci(2*n+4) +lucas_number2(2*n+3, 1, -1) for n in (0..30)] # G. C. Greubel, Jan 17 2020
(GAP) List([0..30], n-> Fibonacci(2*n+4) +Lucas(1, -1, 2*n+3)[2] ); # G. C. Greubel, Jan 17 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Creighton Dement, Dec 31 2004
EXTENSIONS
Corrected and extended by T. D. Noe and R. J. Mathar, Oct 26 2006
STATUS
approved
A230871 Construct a triangle as in the Comments, read nodes from left to right starting at the root and proceeding downwards. +10
6
0, 1, 1, 3, 2, 2, 4, 8, 3, 5, 3, 5, 7, 9, 11, 21, 5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55, 8, 12, 10, 18, 12, 16, 18, 34, 8, 12, 10, 18, 12, 16, 18, 34, 18, 26, 24, 44, 22, 30, 32, 60, 30, 46, 36, 64, 50, 66, 76, 144, 13, 19, 17, 31, 17, 23 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
The rule for constructing the tree is the following:
.....x
.....|
.....y
..../ \
..y+x..3y-x
and the tree begins like this:
.........0......
.........|......
.........1......
......./ \....
......1.....3....
...../ \.../ \...
....2...2.4...8..
and so on.
Column 1 : 0, 1, 1, 2, 3, 5, 8, ... = A000045 (Fibonacci numbers).
Column 2 : 3, 2, 5, 7, 12, 19, 31, ... = A013655.
Column 3 : 4, 3, 7, 10, 17, 27, 44, ... = A022120.
Column 4 : 8, 5, 13, 18, 31, 49, 80, ... = A022138.
Column 5 : 7, 5, 12, 17, 29, 46, 75, ... = A022137.
Column 6 : 9, 7, 16, 23, 39, 62, 101, ... = A190995.
Column 7 : 11, 7, 18, 25, 43, 68, 111, ... = A206419.
Column 8 : 21, 13, 34, 47, 81, 128, 209, ... = ?
Column 9 : 11, 8, 19, 27, 46, 73, 119, ... = A206420.
The lengths of the rows are 1, 1, 2, 4, 8, 16, 32, 64, 128, 256, ... = A011782 .
The final numbers in the rows are 0, 1, 3, 8, 21, 55, 144, ... = A001906.
The middle numbers in the rows are 1, 2, 5, 13, 34, 89, ... = A001519 .
Row sums for n>=1: 1, 4, 16, 64, 256, 1024, ... = 4^(n-1).
LINKS
EXAMPLE
The successive rows are:
0
1
1, 3
2, 2, 4, 8
3, 5, 3, 5, 7, 9, 11, 21
5, 7, 7, 13, 5, 7, 7, 13, 11, 17, 13, 23, 19, 25, 29, 55
...
MAPLE
T:= proc(n, k) T(n, k):= `if`(k=1 and n<2, n, (d->(1+2*d)*
T(n-1, r)+(1-2*d)*T(n-2, iquo(r+1, 2)))(irem(k+1, 2, 'r')))
end:
seq(seq(T(n, k), k=1..max(1, 2^(n-1))), n=0..7); # Alois P. Heinz, Nov 07 2013
MATHEMATICA
T[n_, k_] := T[n, k] = If[k==1 && n<2, n, Function[d, r = Quotient[k+1, 2]; (1+2d) T[n-1, r] + (1-2d) T[n-2, Quotient[r+1, 2]]][Mod[k+1, 2]]];
Table[T[n, k], {n, 0, 7}, {k, 1, Max[1, 2^(n-1)]}] // Flatten (* Jean-François Alcover, Apr 11 2017, after Alois P. Heinz *)
PROG
(Haskell)
data Dtree = Dtree Dtree (Integer, Integer) Dtree
a230871 n k = a230871_tabf !! n !! k
a230871_row n = a230871_tabf !! n
a230871_tabf = [0] : map (map snd) (rows $ deleham (0, 1)) where
rows (Dtree left (x, y) right) =
[(x, y)] : zipWith (++) (rows left) (rows right)
deleham (x, y) = Dtree
(deleham (y, y + x)) (x, y) (deleham (y, 3 * y - x))
-- Reinhard Zumkeller, Nov 07 2013
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Philippe Deléham, Nov 06 2013
EXTENSIONS
Incorrect fromula removed by Michel Marcus, Sep 23 2023
STATUS
approved
page 1 2 3

Search completed in 0.027 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 11:15 EDT 2024. Contains 375512 sequences. (Running on oeis4.)