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1 Introduction

Brother Alfred has characterized primes dividing every Fibonacci sequence [2] based on
their period and congruence class mod 20. More recently, in [4] Ballot and Elia have
described the set of primes dividing the Lucas sequence, meaning they divide some term
of the sequence. Our purpose here is to extend the results of the former paper utilizing
the methods of the latter. In particular we will investigate primes dividing “half of all
Fibonacci sequences,” defined in our case via their index rather than period. We will
establish a simple criterion for determining whether or not such a prime divides a given
Fibonacci sequence based on whether or not the norm of that sequence is a quadratic
residue modulo the prime.

The discussion is organized as follows. We begin by giving a concise development of
the Wythoff array, in which we adopt a novel approach and provide new proofs of well-
known properties. In the following section we define the norm of a Fibonacci sequence,
so-named because this value is given by the algebraic norm of the element of the ring of
integers Z[ϕ] used to generate that sequence. After presenting several properties of the
norm we define the index of a prime p relative to the Fibonacci sequence and relate this
notion to the multiplicative index of the element −ϕ2 modulo a prime over p in Z[ϕ]. We
next employ these ideas to prove the criterion for when a Fibonacci sequence is divisible
by a prime of index 2, then conclude with several observations and examples.

Finally, before beginning we acknowledge the many results that have already been
found regarding divisibility of Fibonacci sequences by primes, as presented in [5], [6], [8],
[11], and [12], for instance.

2 The Wythoff Array Revisited

For our purposes, a Fibonacci sequence will refer to any nonzero, doubly infinite sequence
of integers in which each term is the sum of the previous two. To begin, we reimagine the
Wythoff array, defined by Morrison in [10], as the natural arrangement of all Fibonacci
sequences. This is accomplished via the following two observations.

Proposition 1 Let {ak}k∈Z be a Fibonacci sequence and let ϕ = 1
2 (1 +

√
5). Then we

have 1
ϕ < ak+1 − akϕ ≤ ϕ for a unique k ∈ Z.
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Proof: Define δk = ak+1 − akϕ, and note that δk 6= 0 for any k. We find that

ϕδk+1 = ak+2ϕ− ak+1ϕ
2 = (ak + ak+1)ϕ− ak+1(1 + ϕ) = akϕ− ak+1 = −δk. (1)

Therefore δk+1 = − 1
ϕδk. Since the values of δk alternate sign and decrease in magnitude

by a factor of 1
ϕ for successive values of k, the claim follows. �

By reindexing if necessary, we can assume that δ0 = a1− a0ϕ falls in the given range.
In what follows we will always number Fibonacci sequences in this manner. We next
identify all pairs of integers satisfying this condition.

Proposition 2 For a0, a1 ∈ Z we have 1
ϕ < a1−a0ϕ ≤ ϕ if and only if a1 = b(a0 +1)ϕc.

Proof: Suppose that 1
ϕ < a0 − a1ϕ ≤ ϕ for a0, a1 ∈ Z. Rearranging yields

(a0 + 1)ϕ− 1 < a1 ≤ (a0 + 1)ϕ. (2)

Since a1 is an integer within this interval of unit length, we must have a1 = b(a0 + 1)ϕc.
These steps are clearly reversible, completing the argument. �

It follows that there exists a unique Fibonacci sequence corresponding to each a0 ∈ Z,
which provides a natural means for ordering the set of all such sequences. Arranging
them as an array of integers with the values of a0 above one another yields the Wythoff
array, displayed in Fig. 1. The obvious candidates for the central row and column are
the Fibonacci numbers and the integers, shown in boldface. The Beatty sequence for ϕ
appears to the right of the central column.

The preceding discussion also implies that every nonzero pair of integers (m,n) appears
exactly once as adjacent terms in the array, since each pair generates a Fibonacci sequence.
For instance, the pairs (1, n) for −4 ≤ n ≤ 5 are visible in Fig. 1. In fact, it is possible to
pinpoint the precise location of a given pair without much difficulty. Let us number the
rows by the value of a0 and number the columns according to their location relative to
the central column. Given a pair (m,n), determine the integer t for which

1
ϕ
<
n−mϕ
(−ϕ)t

≤ ϕ, (3)

so advancing t places within the Fibonacci sequence containing (m,n) brings us to a0. By
a well-known formula a0 = Ft−1m + Ftn, giving the row number of the sequence, while
the column is just −t. To illustrate, let us ascertain the location of the pair (1492, 2013)
within the Wythoff array. One calculates

2013− 1492ϕ
(−ϕ)13

≈ 0.7699, 1492F12 + 2013F13 = 683877.

Hence 1492 and 2013 appear as terms −13 and −12 of row 683877.
Recall that given a Fibonacci sequence {ak}k∈Z we set δk = ak+1−akϕ and index the

terms so that 1
ϕ < δ0 ≤ ϕ. The proof of Proposition 1 demonstrates that

−1 ≤ δ1 < −
1
ϕ2
, − 1

ϕ2
≤ δ3 < −

1
ϕ4
, − 1

ϕ4
≤ δ5 < −

1
ϕ6
, . . . ,
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−4 0 −4 −4 −8 −12 −20 −32 −52 −84 −136 −220
−5 1 −4 −3 −7 −10 −17 −27 −44 −71 −115 −186
−3 0 −3 −3 −6 −9 −15 −24 −39 −63 −102 −165
−4 1 −3 −2 −5 −7 −12 −19 −31 −50 −81 −131
−5 2 −3 −1 −4 −5 −9 −14 −23 −37 −60 −97
−3 1 −2 −1 −3 −4 −7 −11 −18 −29 −47 −76
−4 2 −2 0 −2 −2 −4 −6 −10 −16 −26 −42
−5 3 −2 1 −1 0 −1 −1 −2 −3 −5 −8
−3 2 −1 1 0 1 1 2 3 5 8 13
−4 3 −1 2 1 3 4 7 11 18 29 47
−2 2 0 2 2 4 6 10 16 26 42 68
−3 3 0 3 3 6 9 15 24 39 63 102
−4 4 0 4 4 8 12 20 32 52 84 136
−2 3 1 4 5 9 14 23 37 60 97 157
−3 4 1 5 6 11 17 28 45 73 118 191
−1 3 2 5 7 12 19 31 50 81 131 212
−2 4 2 6 8 14 22 36 58 94 152 246

Figure 1: The Wythoff array

1
ϕ3

< δ2 ≤
1
ϕ
,

1
ϕ5

< δ4 ≤
1
ϕ3
,

1
ϕ7

< δ6 ≤
1
ϕ5
, . . . . (4)

In other words, a pair of integers (m,n), not both zero, appear as consecutive, positively
indexed terms of a Fibonacci sequence precisely when −1 ≤ n − mϕ ≤ 1

ϕ . This fact
supplies a neat explanation of one of the most striking features of the Wythoff array.

Theorem 3 With the exceptions of 0 and −1, every integer appears exactly once in the
portion of the Wythoff array consisting of columns two and greater.

Proof: A given integer n occurs within this part of the array once for each integer m such
that (m,n) are consecutive, positively indexed terms within some Fibonacci sequence. As
demonstrated above, we obtain such a pair for each integer m satisfying −1 ≤ n−mϕ ≤ 1

ϕ .
Rearranging gives

n

ϕ
− 1
ϕ2
≤ m ≤ n

ϕ
+

1
ϕ
. (5)

Therefore m is confined to a closed interval of length one. Hence in general there will be
a unique integral solution for m, unless the endpoints of the interval are integers. This
occurs when 1

ϕ (n + 1) ∈ Z, which is only possible for n = −1, in which case there are
two solutions for m. The only other exception arises when n = 0, since the corresponding
solution is m = 0, giving the only pair of values we must avoid. In summary, every
integer n appears exactly once to the right of the vertical bar in Fig. 1 except for −1,
which occurs twice, and 0, which is missing. �

As indicated earlier, these results—aside from the technique for locating pairs (m,n)
within the Wythoff array—are known (see [10] or [7]); however, the sequence of ideas and
method of proof are new.
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3 The Norm of a Fibonacci Sequence

Let us say that a prime p divides a certain Fibonacci sequence if that sequence contains a
multiple of p. For instance, it is known that 7 divides every Fibonacci sequence. Certain
other primes, such as 13, 17, 29, 37 and 41, seem to divide only half of all such sequences.
Our purpose in this section is to define an integer associated with a Fibonacci sequence,
called the norm, that will provide a means for ascertaining which sequences are divisible
by primes such as the ones just listed.

Given a Fibonacci sequence generated by a0 and a1 = b(a0 + 1)ϕc, one may solve the
recurrence ak+1 = ak + ak−1 to obtain the closed-form expression

ak =
αϕk − αϕk√

5
, α = a1 − a0ϕ, (6)

where ϕ = 1
2 (1−

√
5) and α has conjugate α = a1−a0ϕ. Note that αϕk = δ0(− 1

ϕ )k = δk,
so (6) may be recast as ak = 1√

5
(δk−δk), which makes sense considering δk = ak+1−akϕ.

Each α ∈ Z[ϕ]∗ gives rise to a Fibonacci sequence via (6). Recall that the ring

Z[ϕ] = {c+ dϕ | c, d ∈ Z} (7)

is a unique factorization domain having units ±ϕk for k ∈ Z. Its nonzero elements Z[ϕ]∗

form a multiplicative group having subgroup B = {ϕk | k ∈ Z}. Replacing α by αϕk

amounts to simply reindexing the sequence corresponding to α, so we have a bijection
between the elements of Z[ϕ]∗/B and the set of all Fibonacci sequences.

With these preliminaries in mind, we define the norm of the Fibonacci sequence given
by ak = 1√

5
(αϕk − αϕk), indexed according to our convention, to be N = αα. Since

α = δ0 we have
N = αα = δ0δ0 = a2

1 − a1a0 − a2
0. (8)

Therefore the norm of row r of the Wythoff array is

N = b(r + 1)ϕc2 − rb(r + 1)ϕc − r2. (9)

The manner in which we index a sequence affects the sign of the norm, since shifting the
numbering by one place gives norm (αϕ)(αϕ) = −αα = −N .

We remark that the norm is positive for rows r ≥ 0 and negative when r < 0. This
occurs because the final expression in (8) will be positive when a1 > a0ϕ, which is easily
shown to be the case for r ≥ 0 since

b(r + 1)ϕc > (r + 1)ϕ− 1 = rϕ+ (ϕ− 1) > rϕ. (10)

In a similar fashion one finds that the norm is negative when r < 0. Thus the sign of
the norm agrees with the eventual sign of the terms of a Fibonacci sequence. We also
observe that the magnitude of the norm may be found from any two consecutive terms
of a Fibonacci sequence by computing |a2

k+1 − akak+1 − a2
k|. This is so because

|a2
k+1 − akak+1 − a2

k| = |δkδk| =
∣∣∣∣δ0δ0 1

(ϕϕ)k

∣∣∣∣ = |αα| = |N |. (11)
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For instance, 20132−2013 ·1492−14922 = −1177291. Hence the norm of the row contain-
ing 1492 and 2013 as consecutive terms is ±1177291. This observation also demonstrates
the equivalence of our definition of the norm of a Fibonacci sequence with that of the
“D-value” given in [1].

Finally, we point out that the norm measures how well the ratios of consecutive terms
within a Fibonacci sequence come to approximating the golden ratio by comparing the
difference between ak+1

ak
and ϕ with the square of the denominator ak. More precisely, we

are led to consider the product

a2
k

∣∣∣∣ak+1

ak
− ϕ

∣∣∣∣ = ak|ak+1 − akϕ|. (12)

Proposition 4 Let {ak}k∈Z be the Fibonacci sequence given by ak = 1√
5
(αϕk − αϕk).

Then we have
lim
k→∞

√
5 ak〈akϕ〉 = N, (13)

where 〈x〉 is the distance from x to the nearest integer and N = αα.

Proof: Since δk = ak+1 − akϕ and δk = (− 1
ϕ )kδ0 → 0, we know that from some point

onward the integer nearest to akϕ is ak+1. Therefore for these k we have

〈akϕ〉 = |ak+1 − akϕ| = |δk| =
∣∣∣∣ δ0ϕk

∣∣∣∣ . (14)

But 1
ϕ < δ0 ≤ ϕ, so δ0 is always positive. Using (6) and the fact that δ0 = α we find that

for k sufficiently large

√
5 ak〈akϕ〉 = (αϕk − αϕk) · α

ϕk
= αα−

(
− 1
ϕ2

)k
α2. (15)

Thus taking the limit as k →∞ gives N , as desired. �

4 Determining Divisibility

Our next task is to precisely describe primes such as 13, 17, 29, 37 and 41 that divide only
half of all Fibonacci sequences. It is well-known (see [9]) that a given prime p divides Fh,
where h = p−

(
p
5

)
. Suppose that g is the smallest positive integer for which Fg ≡ 0 mod p.

Then g |h and we define the Fibonacci index of p as indF (p) = h
g . The set of primes that

will concern us are those with indF (p) = 2. Thus indF (17) = 2 since F9 = 34 is the first
multiple of 17, while 17−

(
17
5

)
= 18, so g = 9 while h = 18.

We will ultimately show that a prime p with indF (p) = 2 divides a Fibonacci sequence
of norm N precisely when N is a nonzero square mod p or every term is divisible by p.
We begin by presenting several preliminary notions and results. Recall that in the ring
Z[ϕ] an integer prime p splits as a product p = ππ of two primes when p ≡ ±1 mod 5
while it is inert (remains prime) in Z[ϕ] when p ≡ ±2 mod 5. In the former case there
are p distinct congruence classes mod π. Given α 6≡ 0 mod π the order of α is the least
positive integer n for which αn ≡ 1 mod π, denoted ordπ(α) = n, and the index of α is
the integer indπ(α) = 1

n (p− 1). In the latter case there are p2 congruence classes mod p.
The order ordp(α) = n is defined similarly and indp(α) = 1

n (p2 − 1).
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Proposition 5 We have indπ(−ϕ2) = indF (p) and ordπ(−ϕ2) = (p − 1)/indF (p) when
p = ππ ≡ ±1 mod 5, while indp(−ϕ2) = (p− 1)indF (p) and ordp(−ϕ2) = (p+ 1)/indF (p)
when p ≡ ±2 mod 5.

Proof: To begin, assume that p ≡ ±1 mod 5 with p = ππ and suppose that Fk ≡ 0 mod p,
so that

1√
5

(ϕk − ϕk) ≡ 0 mod π. (16)

Note that
√

5 = ϕ − ϕ ∈ Z[ϕ] and that
√

5 6≡ 0 mod π. Multiplying by (−ϕ)k
√

5 and
rearranging then gives (−ϕ2)k ≡ 1 mod π. These steps are reversible, using the fact
that rational integers congruent mod π are also congruent mod p. Therefore the smallest
index g with Fg ≡ 0 mod p matches the smallest n for which (−ϕ2)n ≡ 1 mod π. Since
h = p−1 we conclude that indπ(−ϕ2) = 1

n (p−1) = h
g = indF (p). The argument is nearly

identical in the case p ≡ ±2 mod 5, except that now h = p + 1 and we finish by stating
that indp(−ϕ2) = 1

n (p2 − 1) = (p− 1)hg = (p− 1)indF (p). The formulas for the order of
(−ϕ2) follow immediately from the definition. �

Proposition 6 Let p be a prime with p ≡ ±2 mod 5 and take any element α ∈ Z[ϕ]∗.
Then αp+1 ≡ N mod p, where N = αα. In particular, ϕp+1 ≡ −1 mod p.

Proof: Write α = c+dϕ, and note that p is a prime in Z[ϕ]. Using the binomial expansion
and Fermat’s Little Theorem we see that

αp ≡ cp + dpϕp ≡ c+ dϕp mod p. (17)

We next use the fact that ϕp = Fp−1 + Fpϕ. When p ≡ ±2 mod 5 it is well-known that
Fp−1 ≡ 1 mod p while Fp ≡ −1 mod p. Therefore

αp ≡ c+ d(1− ϕ) ≡ c+ dϕ ≡ α mod p. (18)

It follows that αp+1 ≡ αα ≡ N mod p. �

Proposition 7 If p is a prime for which indF (p) = 2 then p ≡ 1 mod 4.

Proof: We will handle p ≡ ±1 mod 5 and p ≡ ±2 mod 5 separately. In the former case
write p = ππ in Z[ϕ]. We know that ordπ(−ϕ2) = 1

2 (p− 1) by Proposition 5, so

1 ≡ (−ϕ2)(p−1)/2 ≡ (−1)(p−1)/2ϕp−1 mod π. (19)

But ϕp−1 ≡ 1 mod π, so (−1)(p−1)/2 ≡ 1 mod π also, which forces p ≡ 1 mod 4.
In the same fashion, when p ≡ ±2 mod 5 we have ordp(−ϕ2) = 1

2 (p+ 1), so

1 ≡ (−ϕ2)(p+1)/2 ≡ (−1)(p+1)/2ϕp+1 mod p. (20)

By Proposition 6 we know that ϕp+1 ≡ −1 mod p, hence (−1)(p+1)/2 ≡ −1 mod p as well,
which once again requires p ≡ 1 mod 4. (It is possible for 1 ≡ −1 mod p when p = 2, but
indF (2) = 1, so this exception does not arise.) This completes the proof. �

We are now prepared to state and prove our main result.
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Theorem 8 Let p be a prime for which indF (p) = 2. Then p divides a Fibonacci sequence
with norm N if and only if N is a nonzero square mod p or every term of the sequence
is divisible by p.

Proof: Since indF (5) = 1 we need only consider p ≡ ±1 mod 5 and p ≡ ±2 mod 5. In
the former case write p = ππ and suppose that p divides the term ak in the Fibonacci
sequence given by ak = 1√

5
(αϕk − αϕk). Reducing mod π leads to

αϕk ≡ αϕk mod π. (21)

Multiplying through by α(−ϕ)k we obtain

α2(−ϕ2)k ≡ αα ≡ N mod π. (22)

By Proposition 5 we know that ordπ(−ϕ2) = 1
2 (p − 1). Therefore raising both sides of

the above equality to the power 1
2 (p− 1) gives

N (p−1)/2 ≡ αp−1 mod π. (23)

Now if α 6≡ 0 mod π then αp−1 ≡ 1 mod π and we deduce that N (p−1)/2 ≡ 1 mod p, hence
(Np ) = 1 and N is a nonzero square mod p. On the other hand, if α ≡ 0 mod π then (21)
shows that α ≡ 0 mod π as well; therefore ak ≡ 0 mod π, and thus mod p, for all k.

Conversely, if all terms of a certain Fibonacci sequence are divisible by p then we are
done, so suppose that the norm N is a nonzero square mod p. Thus N ≡ b2 mod p, which
reduces to αα ≡ b2 mod π. Dividing by α2 yields

α

α
≡

(
b

α

)2

mod π. (24)

Since indπ(−ϕ2) = 2 we know powers of −ϕ2 give all squares mod π, thus

α

α
≡ (−ϕ2)k mod π (25)

for some positive integer k. Multiplying through by αϕk gives αϕk ≡ αϕk mod π, which
leads to ak ≡ 0 mod p as above. Therefore p divides this Fibonacci sequence.

Now take p ≡ ±2 mod 5 instead so that p is prime in Z[ϕ], and suppose that p divides
the term ak = 1√

5
(αϕk − αϕk). Rearranging as usual brings us to

α2(−ϕ2)k ≡ αα ≡ N mod p. (26)

This time we raise both sides to the power 1
2 (p+ 1) to obtain

αp+1[(−1)(p+1)/2ϕp+1]k ≡ N (p+1)/2 mod p. (27)

If α ≡ 0 mod p then we may conclude that every term of the sequence is divisible by p
in the same manner as before. So assume that α 6≡ 0 mod p, meaning that N 6≡ 0 mod p
either. Then Propositions 6 and 7 enable us to simplify (27) to

N ≡ N (p+1)/2 mod p, (28)
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or N (p−1)/2 ≡ 1 mod p. Therefore (Np ) = 1 and N is again a nonzero square mod p.
As before, to establish the converse we need only consider the case in which N is a

nonzero square mod p. This implies that N (p−1)/2 ≡ 1 mod p. By Proposition 6 we know
N ≡ αp+1 mod p in Z[ϕ], giving

α(p2−1)/2 ≡ 1 mod p. (29)

We wish to show that α
α is a power of (−ϕ2) in order to finish as above. By Proposition 5

we know ordp(−ϕ2) = 1
2 (p + 1), so it suffices to show that (αα )(p+1)/2 ≡ 1 mod p. We

compute (
α

α

)(p+1)/2

≡ (αp)(p+1)/2

α(p+1)/2
≡ α(p−1)(p+1)/2 ≡ 1, (30)

using (29) and the fact that α ≡ αp mod p from the proof of Proposition 6. Hence
α
α ≡ (−ϕ2)k mod p for some k, which means that ak ≡ 0 mod p. Therefore p divides this
Fibonacci sequence, and the entire proof is complete. �

5 Concluding Remarks

Although it is true that p2 |N when every term of a Fibonacci sequence is divisible by p,
one cannot restate Theorem 8 in these terms because the value of N does not identify
which sequences are divisible by p when N ≡ 0 mod p. Take p = 11, for example. The
sequences beginning 0, 11, 11, 22, . . . and 7, 17, 24, 41, . . . both have norm N = 121,
but only the former sequence is divisible by 11. Note that this observation does not apply
when p ≡ ±2 mod 5—since p remains prime in Z[ϕ] one can show that if p2 |N then
α, α ≡ 0 mod p, making all terms of the sequence multiples of p. Furthermore, observe
that since the norm N = 121 of the sequence 7, 17, 24, 41, . . . is a perfect square, it
follows from Theorem 8 that this sequence is divisible by every prime of index two.

To illustrate the main result we return to the Fibonacci sequence having consecutive
terms 1492 and 2013 and ask whether any term is divisible by 2017. (We chose 2017
because it is a prime with indF (2017) = 2.) Recall that the sign of the norm depends on
the indexing, so at best we know |N | = |20132 − 1492 · 2013 − 14922| = 1177291. But
according to Proposition 7, primes with indF (p) = 2 satisfy p ≡ 1 mod 4, so the value of
(Np ) does not depend on the sign of N . Therefore we compute ( 1177291

2017 ) = −1, allowing
us to conclude that no term of the Fibonacci sequence containing consecutive terms 1492
and 2013 is divisible by 2017.

Finally, we indicate how these methods extend to primes for which indF (p) 6= 2. We
state the following result without proof; an explanation can be given that proceeds along
the same lines as those of Theorem 8.

Theorem 9 Let p be a prime for which indF (p) = 1. Then p divides every Fibonacci
sequence except those for which the norm N is exactly divisible by an odd power of p.

We remark that indF (p) = 1 only when p = 5 or p ≡ 3, 7, 11, 19 mod 20. This follows from
the fact that either (−ϕ2)(p−1)/2 or (−ϕ2)(p+1)/2 is not congruent to 1, using the methods
of Proposition 7. However, this condition on p is not sufficient: we have indF (47) = 3
and indF (211) = 5, for instance. We also point out that the exact power of p dividing N
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is never odd when p ≡ ±2 mod 5, so those primes with indF (p) = 1 divide every single
Fibonacci sequence.

On the other hand, when indF (p) > 2 the norm no longer, or at best only partially,
distinguishes those Fibonacci sequences divisible by p. For instance, the sequences cor-
responding to α = (3 + ϕ)(4 + ϕ) and α = (3 + ϕ)(4 + ϕ) both have norm N = 11 · 19,
but the former is not divisible by 47 while the latter is. When p = 61 (the smallest prime
for which indF (p) = 4) it turns out that (N61 ) = −1 does imply that no term is divisible
by 61, but nothing can be concluded in the case (N61 ) = 1. Furthermore, there is no
apparent correlation between whether N is a fourth power mod 61 and whether 61 di-
vides a Fibonacci sequence with norm N . These remarks suggest that the norm provides
an effective means of determining divisibility of Fibonacci sequences by primes precisely
when those primes have index 1 or 2; a set of primes having a density of approximately
two-thirds, according to [3].
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