[go: up one dir, main page]

login
Search: a005897 -id:a005897
     Sort: relevance | references | number | modified | created      Format: long | short | data
Integers n such that A005897(n) is the sum of two positive cubes.
+20
0
5, 11, 17, 28, 37, 81, 87, 107, 141, 178, 200, 205, 229, 296, 301, 377, 385, 395, 427, 497, 511, 595, 613, 641, 660, 907, 914, 921, 955, 975, 983, 991, 1043, 1129, 1265, 1343, 1369, 1382, 1409, 1537, 1552, 1601, 1819, 1838, 1839, 1917, 1922, 1979, 2205, 2299, 2381, 2581, 2649, 2663
OFFSET
1,1
COMMENTS
The number of unit cubes on the surface of an n X n X n cube is given by sequence A005897.
With a pair of scales, one might incorrectly think a single cube could be equal to the sum of two cubes. However, we know this is impossible because of Fermat's Last Theorem.
But we can put a 6 X 6 X 6 cube containing only surface unit cubes on one scale: there are 152 unit cubes. In other side of the scale we can put a 3 X 3 X 3 cube and a 5 X 5 X 5 cube, so there are 27 unit cubes and 125 unit cubes, and the two pans balance.
EXAMPLE
5 is a term because A005897(5) = 152 = 3^3 + 5^3.
11 is a term because A005897(11) = 728 = 6^3 + 8^3.
17 is a term because A005897(17) = 1736 = 2^3 + 12^3.
MATHEMATICA
Select[Range@ 2700, Length[PowersRepresentations[6 #^2 + 2, 2, 3] /. {0, _} -> Nothing] > 0 &] (* Michael De Vlieger, Feb 01 2016 *)
PROG
(PARI) T = thueinit('z^3+1);
is(n) = #select(v->min(v[1], v[2])>0, thue(T, n))>0;
a(n) = if(n, 6*n^2+2, 1);
for(n=0, 1e4, if(is(a(n)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Jan 31 2016
STATUS
approved
Integers n such that A005897(n) is the sum of two nonzero squares.
+20
0
1, 2, 4, 6, 7, 8, 9, 12, 15, 16, 20, 22, 23, 26, 28, 30, 34, 36, 40, 41, 44, 47, 49, 50, 54, 55, 56, 57, 58, 63, 64, 65, 68, 70, 78, 82, 84, 86, 89, 94, 97, 98, 102, 103, 104, 105, 106, 111, 112, 113, 118, 120, 126, 127, 132, 135, 142, 143, 145, 146, 148, 151, 152, 153, 154, 156
OFFSET
1,2
COMMENTS
Integers n such that number of points on surface of a 3-dimensional cube in which each face has a square grid of dots drawn on it (with n+1 points along each edge, including the corners) is the sum of two nonzero squares.
EXAMPLE
1 is a term because A005897(1) = 8 = 2^2 + 2^2.
2 is a term because A005897(2) = 26 = 1^2 + 5^2.
4 is a term because A005897(4) = 98 = 7^2 + 7^2.
6 is a term because A005897(6) = 218 = 7^2 + 13^2.
PROG
(PARI) is_a000404(n) = {for( i=1, #n=factor(n)~%4, n[1, i]==3 && n[2, i]%2 && return); n && ( vecmin(n[1, ])==1 || (n[1, 1]==2 && n[2, 1]%2))}
a005897(n) = if(n, 6*n^2+2, 1);
for(n=0, 200, if(is_a000404(a005897(n)), print1(n, ", ")));
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Altug Alkan, Feb 04 2016
STATUS
approved
Erroneous version of A005897.
+20
0
1, 4, 26, 56, 98, 152, 218, 296, 386, 488, 602, 728, 866, 1016, 1178, 1352, 1538, 1736, 1946, 2168, 2402, 2648, 2906, 3176, 3458, 3752, 4058, 4376, 4706, 5048, 5402, 5768, 6146, 6536, 6938, 7352, 7778, 8216, 8666, 9128, 9602, 10088
OFFSET
1,2
FORMULA
a(n) = 6*n^2 - 12*n + 8 = A005897(n-1) for n > 2.
a(n) = n^3 - (n-2)^3 for n > 2. - Joerg Arndt, Jun 06 2016
KEYWORD
dead
AUTHOR
STATUS
approved
Coordination sequence T1 for Zeolite Code ABW and ATN.
+10
793
1, 4, 10, 21, 36, 54, 78, 106, 136, 173, 214, 256, 306, 360, 414, 477, 544, 610, 686, 766, 844, 933, 1026, 1116, 1218, 1324, 1426, 1541, 1660, 1774, 1902, 2034, 2160, 2301, 2446, 2584, 2738, 2896, 3046, 3213, 3384, 3546, 3726, 3910, 4084, 4277, 4474, 4660
OFFSET
0,2
REFERENCES
W. M. Meier, D. H. Olson and Ch. Baerlocher, Atlas of Zeolite Structure Types, 4th Ed., Elsevier, 1996
FORMULA
a(3m)=19m^2+2, a(3m+1)=19m^2+13m+4, a(3m+2)=19m^2+25m+10, for m>0. [N. J. A. Sloane]
G.f.: (1+3*x+6*x^2+9*x^3+9*x^4+6*x^5+3*x^6+x^7)/((1-x)^3*(1+x+x^2)^2). [Vladimir Joseph Stephan Orlovsky]
MATHEMATICA
CoefficientList[Series[(-z^7 - 3 z^6 - 6 z^5 - 9 z^4 - 9 z^3 - 6 z^2 - 3 z - 1)/((z - 1)^3 (z^2 + z + 1)^2), {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 27 2011 *)
PROG
(PARI) a(n)=if(n, my(m=divrem(n, 3)); 19*m[1]^2+if(m[2], if(m[2]==1, 13*m[1]+4, 25*m[1]+10), 2), 1) \\ Charles R Greathouse IV, Jun 28 2011
(Magma) I:=[1, 4, 10, 21, 36, 54, 78, 106]; [n le 8 select I[n] else Self(n-1)+2*Self(n-3)-2*Self(n-4)-Self(n-6)+Self(n-7): n in [1..50]]; // Vincenzo Librandi, Jun 10 2013
KEYWORD
nonn,easy
STATUS
approved
Centered cube numbers: n^3 + (n+1)^3.
(Formerly M4616)
+10
112
1, 9, 35, 91, 189, 341, 559, 855, 1241, 1729, 2331, 3059, 3925, 4941, 6119, 7471, 9009, 10745, 12691, 14859, 17261, 19909, 22815, 25991, 29449, 33201, 37259, 41635, 46341, 51389, 56791, 62559, 68705, 75241, 82179, 89531, 97309, 105525, 114191, 123319, 132921
OFFSET
0,2
COMMENTS
Write the natural numbers in groups: 1; 2,3,4; 5,6,7,8,9; 10,11,12,13,14,15,16; ..... and add the groups, i.e., a(n) = Sum_{j=n^2-2(n-1)..n^2} j. - Klaus Strassburger (strass(AT)ddfi.uni-duesseldorf.de), Sep 05 2001
The numbers 1, 9, 35, 91, etc. are divisible by 1, 3, 5, 7, etc. Therefore there are no prime numbers in this list. 9 is divisible by 3 and every third number after 9 is also divisible by 3. 35 is divisible by 5 and 7 and every fifth number after 35 is also divisible by 5 and every seventh number after 35 is also divisible by 7. This pattern continues indefinitely. - Howard Berman (howard_berman(AT)hotmail.com), Nov 07 2008
n^3 + (n+1)^3 = (2n+1)*(n^2+n+1), hence all terms are composite. - Zak Seidov, Feb 08 2011
This is the order of an n-ball centered at a node in the Kronecker product (or direct product) of three cycles, each of whose lengths is at least 2n+2. - Pranava K. Jha, Oct 10 2011
Positive y values of 4*x^3 - 3*x^2 = y^2. - Bruno Berselli, Apr 28 2018
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Pranava K. Jha, Perfect r-domination in the Kronecker product of three cycles, IEEE Trans. Circuits and Systems-I: Fundamental Theory and Applications, vol. 49, no. 1, pp. 89 - 92, Jan. 2002.
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
Michael Penn, what's the pattern, Kenneth?, YouTube video, 2021.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
Eric Weisstein's World of Mathematics, Centered Cube Number
D. Zeitlin, A family of Galileo sequences, Amer. Math. Monthly 82 (1975), 819-822.
FORMULA
a(n) = Sum_{i=0..n} A005897(i), partial sums. - Jonathan Vos Post, Feb 06 2011
G.f.: (x^2+4*x+1)*(1+x)/(1-x)^3. - Simon Plouffe (see MAPLE section) and Colin Barker, Jan 02 2012; edited by N. J. A. Sloane, Feb 07 2018
a(n) = A037270(n+1) - A037270(n). - Ivan N. Ianakiev, May 13 2012
a(n) = A000217(n+1)^2 - A000217(n-1)^2. - Bob Selcoe, Mar 25 2016
a(n) = A005408(n) * A002061(n+1). - Miquel Cerda, Oct 05 2016
From Ilya Gutkovskiy, Oct 06 2016: (Start)
E.g.f.: (1 + 8*x + 9*x^2 + 2*x^3)*exp(x).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). (End)
a(n) = (A081435(n))^2 - (A081435(n) - 1)^2. - Sergey Pavlov, Mar 01 2017
MAPLE
A005898:=(z+1)*(z**2+4*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
a[n_]:=n^3; Table[a[n]+a[n+1], {n, 0, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 03 2009 *)
CoefficientList[Series[(1 + 5 x + 5 x^2 + x^3)/(1 - x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Dec 16 2015 *)
PROG
(Sage) [i^3+(i+1)^3 for i in range(0, 39)] # Zerinvary Lajos, Jul 03 2008
(Python)
A005898_list, m = [], [12, -6, 2, 1]
for _ in range(10**2):
A005898_list.append(m[-1])
for i in range(3):
m[i+1] += m[i] # Chai Wah Wu, Dec 15 2015
(Magma) [n^3+(n+1)^3: n in [0..40]]; // Vincenzo Librandi, Dec 16 2015
(PARI) a(n)=n^3 + (n+1)^3 \\ Anders Hellström, Dec 16 2015
CROSSREFS
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005897.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy
STATUS
approved
Centered octahedral numbers (crystal ball sequence for cubic lattice).
(Formerly M4384 N1844)
+10
93
1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
OFFSET
0,2
COMMENTS
Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = A005408(n) * A097080(n-1) / 3. - Reinhard Zumkeller, Dec 15 2013
a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Bela Bajnok, Additive Combinatorics: A Menu of Research Problems, arXiv:1705.07444 [math.NT], May 2017. See Section 2.3.
D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Milan Janjic, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010) # 10.7.8.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
G. Kreweras, Sur les hiérarchies de segments, Cahiers Bureau Universitaire Recherche Opérationnelle, Cahier 20, Inst. Statistiques, Univ. Paris, 1973.
G. Kreweras, Sur les hiérarchies de segments, Cahiers du Bureau Universitaire de Recherche Opérationnelle, Institut de Statistique, Université de Paris, #20 (1973). (Annotated scanned copy)
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (10).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
R. G. Stanton and D. D. Cowan, Note on a "square" functional equation, SIAM Rev., 12 (1970), 277-279.
Eric Weisstein's World of Mathematics, Haüy Construction
Eric Weisstein's World of Mathematics, Octahedral Number
FORMULA
G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
First differences of A014820(n). - Alexander Adamchuk, May 23 2006
a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
From Luciano Ancora, Jan 08 2015: (Start)
a(n) = 2 * A000330(n) + A000330(n+1) + A000330(n-1).
a(n) = A005900(n) + A005900(n+1).
a(n) = A005900(n) + A000330(n) + A000330(n+1).
a(n) = A000330(n-1) + A000330(n) + A005900(n+1). (End)
a(n) = A002412(n+1) + A016061(n-1) for n > 0. - Bruce J. Nicholson, Nov 12 2017
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024
MATHEMATICA
Table[(4 n^3 - 6 n^2 + 8 n - 3)/3, {n, 100}] (* Vladimir Joseph Stephan Orlovsky, Jan 15 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 7, 25, 63}, 40] (* Harvey P. Dale, Jun 05 2013 *)
CoefficientList[Series[(1 + x)^3/(-1 + x)^4, {x, 0, 20}], x] (* Eric W. Weisstein, Sep 27 2017 *)
PROG
(PARI) a(n)=(2*n+1)*(2*n^2+2*n+3)/3 \\ Charles R Greathouse IV, Dec 06 2011
(Haskell)
a001845 n = (2 * n + 1) * (2 * n ^ 2 + 2 * n + 3) `div` 3
-- Reinhard Zumkeller, Dec 15 2013
CROSSREFS
Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row/column 3 of A008288.
KEYWORD
nonn,easy,nice
STATUS
approved
Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.
(Formerly M4898)
+10
86
1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
OFFSET
0,2
COMMENTS
Called "magic numbers" in some chemical contexts.
Partial sums of A005901(n). - Lekraj Beedassy, Oct 30 2003
Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - Gary W. Adamson, Aug 01 2008
Crystal ball sequence for A_3 lattice. - Michael Somos, Jun 03 2012
REFERENCES
H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Bjornholm, Clusters, condensed matter in embryonic form, Contemp. Phys. 31 1990 pp. 309-324.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Nicolas Gastineau, Olivier Togni, Coloring of the d-th power of the face-centered cubic grid, arXiv:1806.08136 [cs.DM], 2018.
D. R. Herrick, Home Page (displays these numbers as sizes of clusters in chemistry)
Xiaogang Liang, Ilyar Hamid, and Haiming Duan, Dynamic stabilities of icosahedral-like clusters and their ability to form quasicrystals,>, AIP Advances 6, 065017 (2016).
T. P. Martin, Shells of atoms, Phys. Reports, 273 (1996), 199-241, eq. (11).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
FORMULA
a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
For n > 0, n*a(n) = (Sum_{i=0..n-1} a(i)) + 2*A005891(n)*A000217(n). - Bruno Berselli, Feb 02 2011
a(-1 - n) = -a(n). - Michael Somos, Jun 03 2012
From Indranil Ghosh, Apr 08 2017: (Start)
G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
(End)
a(n) = A100171(n+1) - A008778(n-1) = A100174(n+1) - A000290(n) = A005917(n+1) - A006331(n) = A051673(n+1) + A000578(n). - Bruce J. Nicholson, Jul 05 2018
EXAMPLE
a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - Gary W. Adamson, Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
MAPLE
A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* Robert G. Wilson v, Feb 02 2011 *)
LinearRecurrence[{4, -6, 4, -1}, {1, 13, 55, 147}, 50] (* Harvey P. Dale, Oct 08 2015 *)
CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh, Apr 08 2017 *)
PROG
(PARI) {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos, Jun 03 2012 */
(PARI) x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh, Apr 08 2017
(Magma) [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel, Dec 01 2017
(Python)
def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 13 2021
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy,nice
STATUS
approved
Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0).
(Formerly M3380)
+10
84
1, 4, 10, 20, 34, 52, 74, 100, 130, 164, 202, 244, 290, 340, 394, 452, 514, 580, 650, 724, 802, 884, 970, 1060, 1154, 1252, 1354, 1460, 1570, 1684, 1802, 1924, 2050, 2180, 2314, 2452, 2594, 2740, 2890, 3044, 3202, 3364, 3530, 3700, 3874, 4052, 4234
OFFSET
0,2
COMMENTS
Number of n-matchings of the wheel graph W_{2n} (n > 0). Example: a(2)=10 because in the wheel W_4 (rectangle ABCD and spokes OA,OB,OC,OD) we have the 2-matchings: (AB, OC), (AB, OD), (BC, OA), (BC,OD), (CD,OA), (CD,OB), (DA,OB), (DA,OC), (AB,CD) and (BC,DA). - Emeric Deutsch, Dec 25 2004
For n > 0 a(n) is the difference of two tetrahedral (or pyramidal) numbers: binomial(n+3, 3) = (n+1)(n+2)(n+3)/6. a(n) = A000292(n+1) - A000292(n-3) = (n+1)(n+2)(n+3)/6 - (n-3)(n-2)(n-1)/6. - Alexander Adamchuk, May 20 2006; updated by Peter Munn, Aug 25 2017 due to changed offset in A000292
Equals binomial transform of [1, 3, 3, 1, -1, 1, -1, 1, -1, 1, ...]. Binomial transform of A005893 = nonzero terms of A053545: (1, 5, 19, 63, 191, ...). - Gary W. Adamson, Apr 28 2008
Disregarding the terms < 10, the sums of four consecutive triangular numbers (A000217). - Rick L. Shepherd, Sep 30 2009
Use a set of n concentric circles where n >= 0 to divide the plane. a(n) is the maximal number of regions after the 2nd division. - Frank M Jackson, Sep 07 2011
Euler transform of length 4 sequence [4, 0, 0, -1]. - Michael Somos, May 14 2014
Also, growth series for affine Coxeter group (or affine Weyl group) A_3 or D_3. - N. J. A. Sloane, Jan 11 2016
For n > 2 the generalized Pell's equation x^2 - 2*(a(n) - 2)y^2 = (a(n) - 4)^2 has a finite number of positive integer solutions. - Muniru A Asiru, Apr 19 2016
Union of A188896, A277449, {1,4}. - Muniru A Asiru, Nov 25 2016
Interleaving of A008527 and A108099. - Bruce J. Nicholson, Oct 14 2019
REFERENCES
N. Bourbaki, Groupes et Algèbres de Lie, Chap. 4, 5 and 6, Hermann, Paris, 1968. See Chap. VI, Section 4, Problem 10b, page 231, W_a(t).
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #28.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Steven Edwards and William Griffiths, On Generalized Delannoy Numbers, J. Int. Seq., Vol. 23 (2020), Article 20.3.6.
J. M. Grau, C. Miguel, and A. M. Oller-Marcén, Generalized Quaternion Rings over Z/nZ for an odd n, arXiv:1706.04760 [math.RA], 2017. See Theorem 1, p. 10.
Milan Janjić, Hessenberg Matrices and Integer Sequences , J. Int. Seq. 13 (2010), Article 10.7.8.
M. O'Keeffe, N-dimensional diamond, sodalite and rare sphere packings, Acta Cryst., A 47 (1991), 749-753.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
Reticular Chemistry Structure Resource, sod.
Aditya Sivakumar and Dmitri Tymoczko, Intuitive Musical Homotopy, 2018.
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558. DOI: 10.1021/ic00220a025.
FORMULA
G.f.: (1 - x^4)/(1-x)^4.
a(n) = A071619(n-1) + A071619(n) + A071619(n+1), n > 0. - Ralf Stephan, Apr 26 2003
a(n) = binomial(n+3, 3) - binomial(n-1, 3) for n >= 1. - Mitch Harris, Jan 08 2008
a(n) = (n+1)^2 + (n-1)^2. - Benjamin Abramowitz, Apr 14 2009
a(n) = A000217(n-2) + A000217(n-1) + A000217(n) + A000217(n+1) for n >= 2. - Rick L. Shepherd, Sep 30 2009
a(n) = 2*n^2 - 0^n + 2. - Vincenzo Librandi, Sep 27 2011
a(0)=1, a(1)=4, a(2)=10, a(3)=20, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Feb 26 2012
a(n) = A228643(n+1,2) for n > 0. - Reinhard Zumkeller, Aug 29 2013
a(n) = a(-n) for all n in Z. - Michael Somos, May 14 2014
For n >= 2: a(n) = a(n-1) + 4*n - 2. - Bob Selcoe, Mar 22 2016
E.g.f.: -1 + 2*(1 + x + x^2)*exp(x). - Ilya Gutkovskiy, Apr 19 2016
a(n) = 2*A002522(n), n>0. - R. J. Mathar, May 30 2022
From Amiram Eldar, Sep 16 2022: (Start)
Sum_{n>=0} 1/a(n) = (coth(Pi)*Pi + 3)/4.
Sum_{n>=0} (-1)^n/a(n) = (cosech(Pi)*Pi + 3)/4. (End)
Empirical: Integral_{u=-oo..+oo} sigmoid(u)*log(sigmoid(n * u)) du = -Pi^2*a(n) / (24*n), where sigmoid(x) = 1/(1+exp(-x)). Also works for non-integer n>0. - Carlo Wood, Dec 04 2023
Let P(k,n) be the n-th k-gonal number. Then P(a(k),n) = (k*n-k+1)^2 + (k-1)^2*(n-1). - Charlie Marion, May 15 2024
EXAMPLE
G.f. = 1 + 4*x + 10*x^2 + 20*x^3 + 34*x^4 + 52*x^5 + 74*x^6 + 100*x^7 + ...
MAPLE
A005893:=-(z+1)*(1+z^2)/(z-1)^3; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Join[{1}, Table[2*(n + 1)^2 + 2, {n, 0, 200}]] (* Vladimir Joseph Stephan Orlovsky, Jul 10 2011 *)
Join[{1}, LinearRecurrence[{3, -3, 1}, {4, 10, 20}, 50]] (* Harvey P. Dale, Feb 26 2012 *)
a[ n_] := SeriesCoefficient[ (1 - x^4) / (1 - x)^4, {x, 0, Abs@n}]; (* Michael Somos, May 14 2014 *)
a[ n_] := 2 n^2 + 2 - Boole[n == 0]; (* Michael Somos, May 14 2014 *)
PROG
(Magma) [2*n^2-0^n+2: n in [0..60]]; // Vincenzo Librandi, Sep 27 2011
(PARI) a(n)=2*n^2-0^n+2 \\ Charles R Greathouse IV, Sep 24 2015
CROSSREFS
Cf. similar sequences listed in A255843.
The growth series for the affine Coxeter groups D_3 through D_12 are A005893 and A266759-A266767.
For partial sums see A005894.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy,nice
STATUS
approved
Number of points on surface of octahedron; also coordination sequence for cubic lattice: a(0) = 1; for n > 0, a(n) = 4n^2 + 2.
(Formerly M4115)
+10
75
1, 6, 18, 38, 66, 102, 146, 198, 258, 326, 402, 486, 578, 678, 786, 902, 1026, 1158, 1298, 1446, 1602, 1766, 1938, 2118, 2306, 2502, 2706, 2918, 3138, 3366, 3602, 3846, 4098, 4358, 4626, 4902, 5186, 5478, 5778, 6086, 6402, 6726, 7058, 7398, 7746, 8102, 8466
OFFSET
0,2
COMMENTS
Also, the number of regions the plane can be cut into by two overlapping concave (2n)-gons. - Joshua Zucker, Nov 05 2002
If X is an n-set and Y_i (i=1,2,3) are mutually disjoint 2-subsets of X then a(n-5) is equal to the number of 5-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Binomial transform of a(n) is A055580(n). - Wesley Ivan Hurt, Apr 15 2014
The identity (4*n^2+2)^2 - (n^2+1)*(4*n)^2 = 4 can be written as a(n)^2 - A002522(n)*A008586(n)^2 = 4. - Vincenzo Librandi, Jun 15 2014
Also the least number of unit cubes required, at the n-th iteration, to surround a 3D solid built from unit cubes, in order to hide all its visible faces, starting with a unit cube. - R. J. Cano, Sep 29 2015
Also, coordination sequence for "tfs" 3D uniform tiling. - N. J. A. Sloane, Feb 10 2018
Also, the number of n-th order specular reflections arriving at a receiver point from an emitter point inside a cuboid with reflective faces. - Michael Schutte, Sep 18 2018
REFERENCES
H. S. M. Coxeter, "Polyhedral numbers," in R. S. Cohen et al., editors, For Dirk Struik. Reidel, Dordrecht, 1974, pp. 25-35.
Gmelin Handbook of Inorg. and Organomet. Chem., 8th Ed., 1994, TYPIX search code (225) cF8
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tilings #16 and #22.
R. W. Marks and R. B. Fuller, The Dymaxion World of Buckminster Fuller. Anchor, NY, 1973, p. 46.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Barry Balof, Restricted tilings and bijections, J. Integer Seq. 15 (2012), no. 2, Article 12.2.3, 17 pp.
J. H. Conway and N. J. A. Sloane, Low-Dimensional Lattices VII: Coordination Sequences, Proc. Royal Soc. London, A453 (1997), 2369-2389 (pdf).
Pierre de la Harpe, On the prehistory of growth of groups, arXiv:2106.02499 [math.GR], 2021.
R. W. Grosse-Kunstleve, G. O. Brunner and N. J. A. Sloane, Algebraic Description of Coordination Sequences and Exact Topological Densities for Zeolites, Acta Cryst., A52 (1996), pp. 879-889.
Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908.
M. O'Keeffe, Coordination sequences for lattices, Zeit. f. Krist., 210 (1995), 905-908. [Annotated scanned copy]
Carlos I. Perez-Sanchez, The Spectral Action on quivers, arXiv:2401.03705 [math.RT], 2024.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Reticular Chemistry Structure Resource (RCSR), The pcu tiling (or net)
Reticular Chemistry Structure Resource (RCSR), The tfs tiling (or net)
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985),4545-4558.
N. J. A. Sloane, Illustration of a(0)=1, a(1)=6, a(2)=18 (from Teo-Sloane 1985)
FORMULA
G.f.: ((1+x)/(1-x))^3. - Simon Plouffe in his 1992 dissertation
Binomial transform of [1, 5, 7, 1, -1, 1, -1, 1, ...]. - Gary W. Adamson, Nov 02 2007
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), with a(0)=1, a(1)=6, a(2)=18, a(3)=38. - Harvey P. Dale, Nov 08 2011
Recurrence: n*a(n) = (n-2)*a(n-2) + 6*a(n-1), a(0)=1, a(1)=6. - Fung Lam, Apr 15 2014
For n > 0, a(n) = A001844(n-1) + A001844(n) = (n-1)^2 + 2n^2 + (n+1)^2. - Doug Bell, Aug 18 2015
For n > 0, a(n) = A010014(n) - A195322(n). - R. J. Cano, Sep 29 2015
For n > 0, a(n) = A000384(n+1) + A014105(n-1). - Bruce J. Nicholson, Oct 08 2017
a(n) = A008574(n) + A008574(n-1) + a(n-1). - Bruce J. Nicholson, Dec 18 2017
a(n) = 2*d*Hypergeometric2F1(1-d, 1-n, 2, 2) where d=3, n>0. - Shel Kaphan, Feb 16 2023
a(n) = A035597(n)*3/n, for n>0. - Shel Kaphan, Feb 26 2023
E.g.f.: exp(x)*(2 + 4*x + 4*x^2) - 1. - Stefano Spezia, Mar 08 2023
Sum_{n>=0} 1/a(n) = 3/4 + Pi *sqrt(2)*coth( Pi/sqrt 2)/8 = 1.31858... - R. J. Mathar, Apr 27 2024
MAPLE
A005899:=n->4*n^2 + 2; seq(A005899(n), n=0..50); # Wesley Ivan Hurt, Apr 15 2014
MATHEMATICA
Join[{1}, 4Range[40]^2+2] (* or *) Join[{1}, LinearRecurrence[{3, -3, 1}, {6, 18, 38}, 40]] (* Harvey P. Dale, Nov 08 2011 *)
PROG
(PARI) Vec(((1+x)/(1-x))^3 + O(x^100)) \\ Altug Alkan, Oct 26 2015
(Magma) [4*n^2 + 2 : n in [0..50]]; // Wesley Ivan Hurt, Oct 26 2015
CROSSREFS
Partial sums give A001845.
Column 2 * 2 of array A188645.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row 3 of A035607, A266213, A343599.
Column 3 of A113413, A119800, A122542.
KEYWORD
nonn,easy,nice
STATUS
approved
Centered tetrahedral numbers.
(Formerly M3850)
+10
71
1, 5, 15, 35, 69, 121, 195, 295, 425, 589, 791, 1035, 1325, 1665, 2059, 2511, 3025, 3605, 4255, 4979, 5781, 6665, 7635, 8695, 9849, 11101, 12455, 13915, 15485, 17169, 18971, 20895, 22945, 25125, 27439, 29891, 32485, 35225, 38115
OFFSET
0,2
COMMENTS
Binomial transform of (1,4,6,4,0,0,0,...). - Paul Barry, Jul 01 2003
If X is an n-set and Y a fixed 4-subset of X then a(n-4) is equal to the number of 4-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
T. P. Martin, Shells of atoms, Phys. Rep., 273 (1996), 199-241, eq. (10).
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014.
B. K. Teo and N. J. A. Sloane, Magic numbers in polygonal and polyhedral clusters, Inorgan. Chem. 24 (1985), 4545-4558.
FORMULA
a(n) = (2*n + 1)*(n^2 + n + 3)/3.
G.f.: (1+x)*(1+x^2)/(1-x)^4.
a(n) = C(n, 0) + 4*C(n, 1) + 6*C(n, 2) + 4*C(n, 3). - Paul Barry, Jul 01 2003
a(n) is the sum of 4 consecutive tetrahedral (or pyramidal) numbers: C(n+3,3) = (n+1)*(n+2)*(n+3)/6 = A000292(n). a(n) = A000292(n-3) + A000292(n-2) + A000292(n-1) + A000292(n). - Alexander Adamchuk, May 20 2006
a(n) = binomial(n+3,n) + binomial(n+2,n-1) + binomial(n+1,n-2) + binomial(n,n-3). (modified by G. C. Greubel, Nov 30 2017)
a(n) = a(n-1) + 2*n^2 + 2, n>=1 (first differences A005893). - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4); a(0)=1, a(1)=5, a(2)=15, a(3)=35. - Harvey P. Dale, Nov 03 2011
E.g.f.: (3 + 12*x + 9*x^2 + 2*x^3)*exp(x)/3. - G. C. Greubel, Nov 30 2017
MAPLE
A005894:=(z+1)*(1+z**2)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
MATHEMATICA
Table[(2n+1)(n^2+n+3)/3, {n, 0, 40}] (* or *) LinearRecurrence[{4, -6, 4, -1}, {1, 5, 15, 35}, 40] (* Harvey P. Dale, Nov 03 2011 *)
PROG
(PARI) a(n)=(2*n+1)*(n^2+n+3)/3 \\ Charles R Greathouse IV, Sep 24 2015
(Magma) [(2*n+1)*(n^2+n+3)/3: n in [0..30]]; // G. C. Greubel, Nov 30 2017
CROSSREFS
(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Cf. A000292.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
KEYWORD
nonn,easy,nice
STATUS
approved

Search completed in 0.204 seconds