[go: up one dir, main page]

login
A299279
Coordination sequence for "reo" 3D uniform tiling.
51
1, 8, 30, 68, 126, 180, 286, 348, 510, 572, 798, 852, 1150, 1188, 1566, 1580, 2046, 2028, 2590, 2532, 3198, 3092, 3870, 3708, 4606, 4380, 5406, 5108, 6270, 5892, 7198, 6732, 8190, 7628, 9246, 8580, 10366, 9588, 11550, 10652, 12798, 11772, 14110, 12948, 15486, 14180
OFFSET
0,2
COMMENTS
First 20 terms computed by Davide M. Proserpio using ToposPro.
REFERENCES
B. Grünbaum, Uniform tilings of 3-space, Geombinatorics, 4 (1994), 49-56. See tiling #7.
LINKS
Reticular Chemistry Structure Resource (RCSR), The reo tiling (or net)
FORMULA
G.f.: (4*x^7 - 3*x^6 + 39*x^4 + 44*x^3 + 27*x^2 + 8*x + 1) / (1 - x^2)^3.
From Colin Barker, Feb 11 2018: (Start)
a(n) = 8*n^2 - 2 for even n > 1.
a(n) = 7*n^2 + 5 for odd n > 1.
a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6) for n>7. (End)
E.g.f.: 3 - 4*x + (8*x^2 + 7*x - 2)*cosh(x) + (7*x^2 + 8*x + 5)*sinh(x). - Stefano Spezia, Jun 06 2024
PROG
(PARI) Vec((1 + 8*x + 27*x^2 + 44*x^3 + 39*x^4 - 3*x^6 + 4*x^7) / ((1 - x)^3*(1 + x)^3) + O(x^60)) \\ Colin Barker, Feb 11 2018
CROSSREFS
See A299280 for partial sums.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Sequence in context: A074670 A092277 A008469 * A184323 A004639 A317637
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Feb 10 2018
STATUS
approved