[ et [ e k- [ :‘ E= =t e
B6s6 TL276 905 0
Zeitschrift fiir Kristallographie 210, 905-908 o 0 “ %PFE 905
(CJR OLDENBOURG VERLAG GE

¢ by R. Oldenbourg Verlag, Viiinchen 1995

J e

Coordination sequences for lattices

M. O’Keeffe

Arizona State University, Department of Chemistry, Tempe, AZ 85287, USA

Received January 1, 1995; accepted June 1, 1995

Lattices | Sphere packings | Coordination sequences

Abstract. Coordination sequences for five 3-dimen-
sional, ten 4-dimensional and eleven higher-dimensional
lattices have been determined and all but one can be
expressed as simple polynomials. Some regularities in
these polynomials are observed. The correlation between
topological and geometric density is demonstrated for
4-dimensional lattices. It is conjectured that hexagonal
closest packing is topologically the densest packing in
three dimensions.

Introduction

Considerable attention has been devoted to the ge-
ometrical properties of lattice sphere packings (Conway,
Sloane, 1988). Here I discuss a topological property of
these structures — their coordination sequences. If we
consider the centers of spheres in a sphere packing to be
vertices, and contact between two spheres to correspond
to an edge joining the two vertices, a sphere packing can
be considered as an infinite net. A kth topological
neighbor of a given vertex in a net is one for which the
shortest path to the reference vertex consists of k edges.
The coordination sequence (CS) associated with a vertex
is the sequence of numbers n, of kth neighbors of that
vertex (Brunner, 1979 and references therein). Obviously
for lattices the coordination sequence is the same for
every point. The coordination sequence is in a sense
analogous to the theta series (Conway, Sloane, 1988) of
a lattice which provides information about numbers of
geometrical neighbors. Just as for theta series, the lattice
defines the CS but not vice versa.

Coordination sequences for the primitive hypercubic
lattices, ZV, were reported (O’Keeffe, 1991a) for N (the
dimension of the space) < 10. In that work it was shown
that the coordination sequence could be expressed as a
simple polynomial in k. I have now determined coordina-
tion sequences for lattice sphere packings in two to four
dimensions and a few higher-dimensional lattices and
find the same behavior which is reported here. It should
be emphasized that the coordination sequences were
found simply by counting neighbors using a computer,
but that large numbers (about 10°) of neighbors were
enumerated and the polynomials found by inspection of
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the results. The algorithm used is an adaptation™of one
designed for three dimensions and rapidly becomes
inefficient for large N. Counting neighbors proceeds
rapidly on a microcomputer, but because (as imple-
mented) one needs to keep track of vertices counted, the
amount of memory available restricts the number of shells
counted and precludes investigation of high-dimensional
structures. It would possibly be rewarding to derive the
polynomials directly (analytically) as this might lead to
deeper insights into the nature of lattices and related
structures.

~

Two dimensions

In two dimensions there are just two lattice sphere (circle)
packings: the square and hexagonal lattices with coordi-
nation numbers z = 4 and 6 respectively and n, = zk.
In two dimensions, one already learns that coordination
sequences do not uniquely determine a structure, thus
n, = 4k for the Archimedian tesselation 3.4.6.4 as well
as for 4*. For the tesselation 63, which may be considered
as the net formed by the holes of 3°, n, = 3k.

Three dimensions

Three dimensional lattice sphere packings (Table 1) are
¢F = face-centered cubic (z = 12), tI = body-centered
tetragonal, with ¢/a = lﬂ2/3) (z = 10), hP = hexagonal,
with ¢/a = 1 and ¢l = body-centered cubic (both with

Table 1. Properties of three-dimensional lattices. The g;; are the
components of the (symmetric) metric matrix of the primitive cell
with g; = 1 (appropriate for packings of unit spheres), z is the
coordination number, and r is the number of points per unit volume.
The polynomial under n, is the expression for the coordination
sequence.

/

L~

lattice L™ f81a '8y Z r ny

cF Y2 200212 Y2 = 1414 10k7 + 2
(o <13 i egdiio 43 - =1333 8k + 2
ol BOC i~18 =13 =138 Y274 = 1299 6k*F+2
hP <12 T D R IS e LIS - 60
cP T, ae. Dokt 4k + 2

~9527
5397




ﬂ_id i; li |H l-, (e v v e cwm 0 —

906

M. O'Keeffe

Table 2. Properties of four-dimensional lattice sphere packings.
Entries for each lattice are on two rows. The lattice is identified by
the name and number of Wondratschek, Biilow and Neubiiser
(1971). The g;; are the components of the (symmetric) metric matrix
of the primitive cell with g; = 1 (appropriate for packings of unit
diameter spheres), z is the coordination number. and r is the number
of points per unit cell volume. The polynomial under n, is the
expression for the coordination sequence.

lattice z B

g12 £13 814 g23 824 824 ny

64. Z-centered hypercubic

25 () 172 51720 20 =ail0
62. SN-centered icosahedral 20 4/)/5 = 1789 i
| el i o i P P A f (35K + 25k)/3
59. RR-centered di-isohexagonal 18 16/9 = 1.778
orthogonal
1/4 —-1/2 —1/2 —-1/2 —1/2 1/4 11k* + Tk
54*. F-centered cubic orthogonal 14 ]/5 = 1414
0 0 0 112 e 72 0 =12 (20k* + 22k)/3
60. Primitive di-isohexagonal 12 4/3 = 1.333
orthogonal
-12 0 0 0 0o -12 6k> + 6k
31*. I-centered tetragonal orthogonal 12 4/3 = 1.333

0 0 0 —1/4 —1/4 —1/2 (16k> + 20k)/3
61. Primitive icosahedral 10 16/5 [5 = 1431
= 1/4" AT = A 14 N /4 5k® + 5k )
52*. I-centered cubic orthogonal 10 ) 27/4 = 1.299

0 0 0o -1/3 —-1/3 —-1/3 4k® + 6k
46*. Primitive hexagonal tetragonal 10 2/) 3 = 1.155
-1/2 0 0 0 0 0 4k3 + 6k
63. Primitive hypercubic 8 1

0 0 0 0 0 0 (8k* + 16k)/3

* lattice parameters not all determined by symmetry

z = 8) and ¢P = primitive cubic (z = 6). For all these
lattices, n, = (z — 2) k* + 2 (cf. Brunner, 1979): a result
that is easy to derive in each case (cf. Williams, 1972). It
is interesting that the same expression also holds for the
body-centered cubic lattice if connections to both first
and second geometric neighbors are counted as edges
(z=28+ 6 =14, n, = 12k*> + 2). This last result has
been known for a long time (Marvin, 1939).

The expression n, = (z — 2)k* + 2 also holds
(O'Keeffe, 1991b) for the sodalite net (lattice complex
W*) for which z = 4. The vertices of the net are in the
(tetrahedral) holes of the cI lattice. The same expression
holds again for the net with vertices in the centers of the
trigonal prismatic holes of the hP lattice with ¢/a = 1/ £F:
This arrangement of prismatically stacked 6° nets (lattice
complex G with specialized metric) corresponds to a
sphere packing with z = 5. Unfortunately higher dimen-
sions arc not quite so simple.

It should be remarked that ¢F appears to be the least
dense twelve-coordinate structure in the topological
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sense. For hexagonal closest packing (/icp) the CSis given

by:

hep: ny =:21k3/2| + 2.

Here | | indicates rounding down to the nearest integer.
For all of the many intermediate packings (such as he,
hee, etc.) that 1 have investigated n, is intermediate
between that for ¢F and hep and in fact the sequence
provides an easy way for computer recognition of such
packings, and is in fact so used.

Four dimensions

Ten four-dimensional lattice sphere packings have been
identified and investigated. These are listed in Table 2
using the names and numbering of Wondratschek, Biilow
and Neubiiser (1971). In the same way as, in three
dimensions, the body-centered tetragonal lattice becomes
a ten-coordinated sphere packing and the primitive
hexagonal lattice becomes an eight-coordinated sphere
packing for a special value of ¢/a, so some of these lattice
packings correspond to special values of the lattice
parameters not determined by symmetry. These are
identified by an asterisk in the table. The coordination
sequences given in the table can all be expressed as
n, = ak® + (z — a) k, but a does not depend only on z.

A simple 16-coordinated sphere packing in four di-
mensions is derived by placing sphere centers in the holes
of D,. Referred to a hypercubic cell (with lattice points
at 0,0,0,0 and 1/2, 1/2, 1/2, 1/2) vertices are at the six
distinct permutations of 1/2, 1/2, 0. 0. This is in fact the
regular honeycomb {3, 4, 3, 3} (Coxeter, 1963). After the
experience with two and three dimensions. it was thought
that this structure might also have a simple CS. In fact
it is slightly more complicated: after n, = 16 one has for
k even, n, = 12k + 8k — 8 and for k odd, n, = 12k*

+ 4k + 8. k‘ ‘0079\

Higher dimensions

Polynomials for n, for the primitive hypercubic lattices
for N dimensions (N < 10) and for a generalization of
the sodalite net (the net formed by the holes of the lattice
A¥) for N < 6 have been given earlier (O'Keeffe, 1991a).
Here some other well known lattices (Conway, Sloane,
1988) are considered.

The family of lattices A% are simply defined in terms
of the metric matrix of the primitive cell, which has (for
unit lattice vectors) all diagonal terms equal to 1 and all
off-diagonal terms equal to —1/N. The coordination
number is z = 2N + 2. The three-dimensional example
is ¢l (Table 1) and the four-dimensional example is
number 61 (Table 2). For dimensions five to seven one

has:
A%: - om, = 5k*/2 + 15k/2 + 2. Ags 33
A¥: n, = 7k3/6 + 35k3/6 + Tk . l(’\ ?g%%
& b .6 ,4/9 e /
A¥: n, = 7k°/18 + 35k*/9 + 175k=/18 + 2. '/]'g‘ggs’
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Another simple family consists of the lattices Ay (recipro-
cal to AY) with coordination number N(N + 1). For these
lattices the off-diagonal terms in the metric matrix of the
primitive cell are all equal to 1/2. The three-dimensional
exampleis cF (Table 1) and the four-dimensional example
is number 62 (Table 2). For dimensions five to seven |
find:

A n, = 21k*/2 + 35k%[2 +.2.
A n, = 77k3/10 + 49k3/2 + 49k/5 .
A.: n, = 143k°/30 + 77k*/3 + 707k%/30 + 2.

Another family studied is that of the “checkerboard™
lattices D, D is again ¢F and D is number 64 in Table 2.
D; is the densest five-dimensional sphere packing (40-
coordinated). For D5 and D, the CS are:

5 n, = 18k* + 20k% + 2.

B n, = 232k%/15 + 104k*/3 + 148k/15.

6 k
The lattices reciprocal to Dy are not new topologically.
D* is the same as D, and for N > 5,D¥is 2N coordinated
and hence topologically equivalent to 7
In six-dimensions the densest lattice sphere packing
corresponds to the 72-coordinated lattice E, (Conway
and Sloane 1988). For this lattice:

E;: = 117k%/5 + 36k> + 63k/5. S

7
The reciprocal lattice of Eg is 54-coordinat%.%tias

a particularly simple CS: g
Ef:  n, = 18k° + 30K + 6k. 3%(-{)[

The example of E, can serve to illustrate whyL'I have
not explored higher dimensions. For this lattice there are
5276898 points in the first ten topological coordination
shells of a given lattice point compared with only 3870
for ¢F (the densest three-dimensional lattice). The “ob-

Table 3. Coordination sequence for Eg. For the first four shells.
coordinates of neighbors of (0%) = 0,0.0.0,0,0.0,0 are given in
multiples of 1/4, and all permutations and sign combinations are
to be taken except a prefix “e” (or “0”) means only even (or odd)
numbers of positive and negative signs arc to be used.

k ny coordinates of topological neighbors

1 240
2 9120

(220%) e(1%)

(420°) (4220%) (407) e(2%) (2°0%) (2*0%)
o(317) e(371°)

(620°) (6420%) (6230%) (620°) (4°0°) ¢(472°)
(422+0%) (42°0) (42*0%) (4%220%) o(2%)

e(521°) e(5321%) 0(531°) e(517) e(3%) e(3°1 2
0(351%) e(3*1%) 0(3°1%)

(820°) (8620°) (8420°) (842%0%) (840°) (82*0°)
(220) (807) (6240°%) e(632°) (6°2°0) (6°2°0%)
¢(6422%) (642230) (64220%) (642°0) (642°0%)
(627) (62°0) c(4%) e(4°2) ¢(4°03) (4°220)
0(430%) (442%) (4*2207) (470%) (432°0) (472°0%)
0(4%29)

e(721°) ¢(7531%) 0(751°) e(73*1*) 0(73%1°)
e(731°) o(717) e(521%) e(5%3°) e(523*1%)
0(5%3°1%) ¢(52321%) 0(5°31%) ¢(53°1) 0(53°1?)
e(53* 1) e(5331H) o371

3 121680

- 863168

4093232
14823904
44288636

114514688

~Na W

>

vious™ general algorithms for enumerating CS’s either
are quick but require a lot of memory, or have modest
demands on memory but are slow. Six dimensions
appears to be the practical limit for small computers
unless one exploits the symmetry of the lattice.

E,. which is important in many different contexts. is
an example of a high-symmetry lattice. Referred to a
centered hypercubic cell with a =]/ 2 (appropriate for
a packing of unit diameter spheres). lattice points are at
(a) all combinations of even numbers of 0 and 1/2. (b)
all combinations of even numbers of 1/4 and 3/4 (a total
of 256 per cell). The nearést neighbors of the point at
0.0.0.0.0,0.0.0 are (a) all 112 combinations of
+1/2, +1/2, 0,0,0,0,0,0 and (b) all 128 combinations
with an even number of plus signs of +1/4, +1/4, + 1/4,
+1/4, +1/4, +1/4, +£1/4, + 1/4. Coordinates of points in
the next three shells and my results for the CS out to ng
are given in Table 3. No simple pattern has been discerned
in the CS in this instance.

Topological and geometrical density

The topological density has been defined (cf. O’Keeffe,
1991b) as

g
Ox = (Z n,-) k> .
i=1

The limit as k goes to infinity is ¢,.. Foran N-dimensional
net with a CS given by a power series, n, = ak® ™" + ...,
one simply has ¢, = a/N.

There is some interest in the correlation of topological
and geometrical density (Stixrude, Bukowinski, 1990;
O’Keeffe, 1991b). Fig. I shows the correlation for the
four-dimensional lattices of Table 2. Clearly the correla-
tion, while not perfect, is very strong.

Remarks
For all lattice sphere packings studied other than Eg (two

for N = 2, five for n = 3, ten for N = 4, and eleven for
N > 4. a total of 28), the coordination sequence, n;, is

Fig. 1. The topological density o, = a/4. for the four-dimensional
lattice sphere packings discussed in the text, plotted against the
geometrical density, r, expressed as the number of unit diameter
spheres per unit volume. The line is a quadratic fit to guide theeve.
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given by a polynomial in k. Furthermore, only odd powers
of k are involved for even N and only even powers of k
for odd N. The coefficient of k° is always 2. The CS for
the five generalized sodalite nets behave similarly. These
observations suggest that it should be possible, at least
in some cases, to derive the polynomials analytically
rather than empirically (as here).

Other structures (compare the four-dimensional
honeycomb {3,4,3,3} discussed above) generally do
not have a CS that is a simple polynomial although
use of the round-down function (as for hcp given
above) allows expression of CS’s for some apparent-
ly complex structures. For example, the topologically
very different four-connected three-dimensional nets
of the zeolites type A and rho (Wells, 1984) with 24
vertices in the repeat unit both have the CS:
n, = | .8k? + 14)/5].
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