[go: up one dir, main page]

login
A240876
Expansion of (1 + x)^11 / (1 - x)^12.
11
1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, 3248227095, 5812626185, 10113604735, 17152640321, 28418229623, 46082942185, 73265596607, 114375683009
OFFSET
0,2
COMMENTS
Also 11-dimensional centered hyperoctahedron numbers (see Deza in References) or Crystal ball sequence for 11-dimensional cubic lattice.
This is row/column 11 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Peter Munn, Jan 05 2023
REFERENCES
E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 230 (paragraph 3.6.6).
LINKS
D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17.
OEIS Wiki, Centered orthoplex numbers, see Table of formulas and values (row 11).
Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
FORMULA
G.f.: (1 + x)^11 / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12), with initial values as shown.
a(n) = (2*n + 1)*(2*n*(n + 1)*(n^2 + n + 5)*(2*n^2 + 2*n + 51)*(n^4 + 2*n^3 + 68*n^2 + 67*n + 537)/155925 + 1).
a(n) = A008421(n) + 2*Sum_{i=0..n-1} A008421(i) for n > 0, a(0) = 1.
Sum_{n >= 0} 1/a(n) = 1.047847848425287358769594801715758965260...
a(n) = Sum_{k = 0..min(11,n)} 2^k*binomial(11,k)*binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
MATHEMATICA
CoefficientList[Series[(1 + x)^11/(1 - x)^12, {x, 0, 30}], x]
LinearRecurrence[{12, -66, 220, -495, 792, -924, 792, -495, 220, -66, 12, -1}, {1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719}, 30] (* Harvey P. Dale, Apr 15 2018 *)
PROG
(PARI) Vec((1+x)^11/(1-x)^12+O(x^30))
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^11/(1-x)^12));
(Maxima) makelist(coeff(taylor((1+x)^11/(1-x)^12, x, 0, n), x, n), n, 0, 30);
(Sage)
m = 30; L.<x> = PowerSeriesRing(ZZ, m)
f = (1+x)^11/(1-x)^12
print(f.coefficients())
CROSSREFS
Row/column 11 of A008288.
Cf. similar sequences with g.f. (1+x)^m/(1-x)^(m+1): A005408 (m=1), A001844 .. A001849 (m=2..7), A008417 (m=8), A008419 (m=9), A008421 (m=10), this sequence (m=11), A053805 (m=12).
Subsequence of the odd numbers, A005408.
Sequence in context: A125411 A140620 A002681 * A142220 A257930 A142027
KEYWORD
nonn,easy
AUTHOR
Bruno Berselli, Apr 16 2014
EXTENSIONS
Edited by M. F. Hasler, May 07 2018
STATUS
approved