[go: up one dir, main page]

login
A002681
Numerators of coefficients for repeated integration.
(Formerly M5136 N2227)
3
1, -1, 1, -23, 263, -133787, 157009, -16215071, 2689453969, -26893118531, 5600751928169, -3340626516019229, 885646796787371, -859202038021848149, 2766671664340938282413, -319473088311274492668499, 436677987276721765221113, -191960665849028069896950959123
OFFSET
0,4
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Coefficients for repeated integration with central differences, Journal of Mathematics and Physics, 28 (1949), 54-61.
FORMULA
a(n) is the numerator of ((n+1)/2)M(n) + (2n+2)M(n+1), where M(n) = (2/(2n+1)!)*Integral_{t=0..1} (t*Product_{k=1..n} (t^2 - k^2)). - Emeric Deutsch, Jan 25 2005
MAPLE
M:=n->(2/(2*n+1)!)*int(t*product(t^2-k^2, k=1..n), t=0..1): A:=n->((n+1)/2)*M(n)+(2*n+2)*M(n+1): seq(numer(A(n)), n=0..18); # Emeric Deutsch, Jan 25 2005
MATHEMATICA
M[n_] := (2/(2n+1)!) Integrate[t Product[t^2-k^2, {k, 1, n}], {t, 0, 1}];
A[n_] := ((n+1)/2) M[n] + (2n+2) M[n+1];
Table[Numerator[A[n]], {n, 0, 18}] (* Jean-François Alcover, Oct 04 2021, after Maple code *)
CROSSREFS
KEYWORD
sign,frac
EXTENSIONS
More terms from Emeric Deutsch, Jan 25 2005
STATUS
approved