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In Tate’s thesis [30], Hecke L-functions are studied by means of the local
integrals

C(s,v, f) = /f(a:) v(z)|z]® d”z,
P

wheref is an element of the Schwartz spag€f’) on a local field?’, and
v is a character of"*. Weil [35] defined a representation = w,; of the

metaplectic grouﬁ‘f@, F)onS(F).We consider the restriction afto the

special orthogonal groupO (2) of SL(2, F'), corresponding to the quadratic
form 22 4+ 2. If —1 is not a square i, this representation is multiplicity
free, andS(F') decomposes into a direct sum of one-dimensional invariant
subspaces. Thieocal Riemann Hypothesis the assertion that if lies in

one of these spaces, then the zeros of the local intégsat, f) lie on the

line re(s) = % (We refer to the text for the correct statement-if is a
square.) This is proved in a substantial number of cases, in this paper and
its companion piece by Kurlberg [19].

If F' = R, we will prove an extension of this result to the harmonic
oscillator inn-dimensions. This result may be formulated in a way that
makes sense overzaadic field, though we have not investigated this yet.
In this connection, we also haveaeciprocity lawfor the values at negative
integers of the Laguerre polynomials, and a geometrical interpretation of
these values.
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We will also state a certain conjecture, that if the spherical Whittaker
function of a spherical representation®f.(n, R) which is a functorial lift
from GL(2,R) vanishes anywhere on the group, then the representation
is tempered. This generalizes a theorem oOlyR on the zeros of Bessel
functions.

We would like to thank Antonia Bluher, David Cardon, Paul Cohen,
Steve Kudla, Dipendra Prasad, Steve Rallis, Karl Rumelhart, Tonghai Yang
and Steve Zelditch for useful conversations or communications. We patrtic-
ularly thank Jeffrey Hoffstein and Eugene Ng for helping to investigate this
problem. This work was supported by grants from the NSF, DMS-9622556
(Vaaler) and DMS-9531957 (Bump).

1. The zeros of the Mellin transforms of Hermite polynomials

For the quantum mechanical harmonic oscillator see Weyl [36], and Cartier
[7].

We recall the result of Bump and Ng [5], showing that the Mellin trans-
forms of the Hermite functions have their zeros on the lirf@)re= 5. (At
first Bump and Ng considered the casé®fwith n even, and Vaaler pointed
out that the case odd could be added.)

Our normalizations will be different than in [5]. Let

falz) =272 H, (V27 z) e
where the Hermite polynomials are defined by
2 dn 2
Hn = (—=1)" % %"
() = (-1 e e

The f,, are the eigenfunctions of the Hamiltoniah— ﬁ % of the quan-
tum mechanical harmonic oscillator. That is, they satisfy the @tihger

equation
1 d? 2n + 1
2 _
G‘qﬂmﬂﬁ— o I

Define polynomialg,, by

M, (s) = 7521 (3) puls) if n is even;
M) Gt 0/2 P (55L) B pa(s) if nis odd.

where the Mellin transform
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We have

ua(o) = (VEre - = 4 o),

and consequently, integrating by parts, we have

Mo1(s) = V21 M(s + 1) + S\/g: Mo(s — 1),

This implies that

(8) _ pn(s + ]-) +pn(5 - 1) if nis even,;
Pl = Y spu(s + 1)+ (s — D pa(s — 1) if nis odd.

The polynomials,, have certain properties in common with the Riemann
zeta function. We have the functional equation

pn(s)  if n=0, 1 mod4;
Pa(l—s) = N
—pn(s) if n =2, 3mod4.

Moreover

Theorem 1.The zeros op,, lie on the linere(s) = 5.
We give two proofs of this. Another proof may be found in Bump and Ng

[5].
First proof. We recall a familiar classical fact, thatthogonal polymomials
have real zerodMore precisely, lej: be a positive Borel measure &) and
assume thatis not supported on any finite set. We may apply Gram-Schmidt
process to the sequengk z, 22, - - - } and obtain a sequence of polynomials
Py, P, Py, --- such that the degree @1, is n, which are orthogonal with
respecttq:. The zeros of these are real and simple. Indeed, after multiplying
the polynomialsP,, by suitable constants, they’ll have real coefficients. If
ry,--- ,7 are the zeros of,, which have odd multiplicity, ift < n we
could expand)(z) = [[,(z — r;) in terms of P; with i < n, so@ would
be orthogonal td>,; but patentlyQ) P, > 0, so this is a contradiction.

Let us show that the polynomiajs;, (3 + it) form an orthogonal fam-
ily with respect to a suitable measure. Indeed, the even Hermite functions
fon, are eigenfunctions of a self-adjoint differential operator (the oscilla-
tor Hamiltonian), so they form an orthogonal family on the half-live,
which we parametrize exponentially. Thus, consider the functigiis) =
fon(e?™) e™ . These are orthogonal with respect to Lebesgue measure on
R. The Fourier transform od,, is 27TM2n(% + it), so by the Plancherel
theorem these are orthogonal:

/ Moy, (3 +it) Moy, (3 +it) dt =0

—0o0
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if m # n. Thus the polynomialpgn(% + z‘t) form an orthonormal family,
with respect to the measufE (§ + %) |? dt.

Similarly, the polynomial®.,, 1 are orthogonal with respect W(%
2|2 dt. They must therefore all have real zeros. O

Second prool et f be an eigenfunction of the oscillator Hamiltonian. Thus,
f satisfies the Scbdinger equation

2 LN, A
(m An? dx? f_27rf

for some value of\. Define the Mellin transform

) = /Oof@c)x dr
0

Integrating the above Sabdinger equation by parts gives

1
M(s+2) — (s — 1) (s — 2) M(s — 2) = 2 M(s).
47 27
We have either

~fr2r(5) p(s) or
M(S)—{ (s+1/2p( 1) \/ﬂp()

with p(s) a polynomial, according ag = +f or f = +if (i.e., according
asf = f, with n even orn odd.) We have therefore either
Ap(s) =sp(s+2) = (s —1)p(s — 2),
or
Ap(s) =(s+1)p(s+2)—(s—2)p(s —2).

The situation will be more symmetrical if we make the substitution =
p(s + %) Thus, we wish to show the zeros @fre purely imaginary, and
we have

Aq(s)=(s+a)qg(s+2)—(s—a)q(s—2),
witha = = or a= § . The theorem now follows from the following

Lemma. Letq(s) be a polynomial, and assume that the zerog(ej lie in
the closed strigre(s) € [—c¢, c|} with ¢ > 0. Then ifa > 0, the zeros of

r(s)=(s+a)q(s+2)—(s—a)q(s—2)

lie in the open strip{re(s) € (—c,¢)}.
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To prove this, suppose that(,¢ > ¢, yetr(s) = 0. We will obtain a
contradiction. (The case (€ < —c may be handled similarly.) Let(s) =
c[Liey(s —m). If r(s) = 0, then

(s +a)q(s +2)| = |(s —a) q(s — 2)],

SO
‘3+G|H‘3+2—7’i!=|8—a\ H|s—2—m.

Now since rés) > 0, a > 0, we havels + a| > |s — a|; moreover, since

Ire(ri)| < ¢, re(s) > ¢, we have rés — r;) > 0, and so|s + 2 — r;| >

|s—2—7;|. Multiplying these inequalities together, we obtain a contradiction.
O

The preceeding proof is similar to the original proof dilya of an
interesting property of the K-Bessel functions, namely, his theorem that if
y > 0 and K,(y) = 0, thenv is purely imaginary. Blya’s proof [23]
depends on the recurrence identity (Watson [34], 3.71)

20 Ky(z) = 2 (Ky1(z) — Ky—1(w)).

The operator which takes an even functign) and replaces itby " (¢(v+
1) — g(v — 1)) has the property (like the operatgr— r in the Lemma)
of moving the zeros of a function closer to the imaginary axis, and so an
eigenfunction of this operator should have its zeros on the imaginary axis.
Sincer — K, (x) is not a polynomial function, making this argument
rigorous requires care. An easier (but arguably less insightful) proof may be
found in Titchmarsh [31], Sect. 10.23.

Polya connects his result with the Riemann hypothesis by arguing that

2 (K%+%(27r) + K%_%(zﬂ))

has analytic properties similar ths(s — 1) 7=%/2I'($) ¢(s), with s =

% + it. (Actually this value, taken from Titchmarsh [31], seems to us to be
off by a constant, but this is unimportant.) This function also has its zeros
on the line rés) = 1.

Itis worth pointing out that there is another more “philosophical” way of
connecting Blya’s result on the Bessel functions with the Riemann hypoth-
esis. We begin by noting that itimplies a Riemann hypothesis for the Fourier
coefficients of Eisenstein series. Consider the classitq®, Z) Eisenstein
series

s

—s Yy
E(z,s) = %W I'(s) ZW,
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where the summation is over nonzero pairs of integer). Itis well known
that if n # 0, then then-th Fourier coefficient

1
/0 Bz + iy) 7 dz = 20> V2 01 _gu(n]) /7 K1 o (2nlnly).

(See Bump [2] Sect. 1.6.) Both the divisor functien_os(|n|) and thek-
Bessel functionk,_; ;, have their zeros on the line (kg = % Now if,

on the other hand, we consider the Eisenstein series of half-integral weight
(see Maass [20], Shimura [28] and Goldfeld and Hoffstein [13]), the Fourier
coefficients are quadratic L-functions. So the analogous assertion—that the
Fourier coefficients of the Eisenstein series satisfy a Riemann hypothesis—
in the case of the Eisenstein series of half-integral weight, should reduce to
the classical Riemann hypothesis.

One may be a bit more careful here. Actually the Fourier coefficients
of these Eisenstein series are the products of quadratic L-functions with
certain finite Dirichlet polynomials, and one would like to assert that these
polynomials themselves have their zeros on the lirfe)re= 1/2. David
Cardon has looked at the case of Eisenstein series on the double cover of
GL(2) over a rational function field, and his work suggests that the correct
formulationis thathe Whittaker coefficients in the modified sense of Gelbart,
Howe and Piatetski-Shapiro [11] should satisfy the Riemann hypothesis.

We propose here a conjectural generalization @f/&s result on the
zeros of the Bessel functidii, . Let 7 be a spherical principal series repre-
sentation ofPGL(2,R), and letW be theSO(2)-fixed vector (determined
up to constant multiple) in its Whittaker model with respect to the additive
character)(r) = €2™@ of R. Then

12, -1/2 .
W<<y xyy_1/2 ) k> _ \/@KV(QW?/) e27rzm,

whenk € SO(2), for some complex nhumber. So Flya’s result may be
formulated as saying thdtthe SO(2)-fixed Whittaker vector in a spherical
principal series representation vanishes anywheré’6al.(2, R), then the
representation is tempered.

More generally, letr be a spherical principal series representation of
PGL(n,R), and assume that is a symmetricn — 1-st power lifting of
a spherical principal series representatiorPef L(2, R). This means that
thereisa quasicharacteof R* /{+1} suchthatris obtained by normalized
parabolic induction from the character

Y1 ok -k

Ya oovo ¥ )n—l )n—3.”

= x(y1 X (12

Yn
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Let W be theSO(n)-fixed vector in the Whittaker model af, determined
up to constant multiple.

Conjecture. In this setting, ifiV’ vanishes anywhere dAL(n,R), thenw
is tempered (i.ey is unitary).

We will offer three pieces of evidence for this statement.

Firstly, it is true whem = 2 by Pblya’s result.

Secondly, for one particular nontempered spherical Whittaker function
(which is a symmetric square lift fro¥L(2)) on GL(3,R) we can verify
this claim—uwe recall that the spherical Whittaker functions(éh(3, R)
andGL(3,C) are the same, and that for one particular principal series rep-
resentation, corresponding to the cubic theta functionGdrn(3, C), the
Whittaker function can be expressed in terms of the Bessel funéfiog,
so the asserted nonvanishing follows fromlyR's result. See Bump and
Friedberg [3] and Bump and Huntley [4].

And thirdly, an analogous statement is true for spherical Whittaker func-
tions onPGL(n, F'), whenF' is a nonarchimedean local field. Letbe a
spherical principal series representation with Satake paranagters , «,.

Let

Y1
h =

Yn

be a dominant element of the diagonal subgroup, so thatsfthe valuation

of y;, we haveh; > Ay > ... > )\, > 0. Let s, be the Schur polynomial
corresponding to the partitioh = (A, --- , \,), @ Symmetric polynomial

in n variables (Macdonald [21]). According to Shintani [29] and Casselman
and Shalika [8], the valuB/ (k) of the normalized Whittaker function with
respect to an additive charactemwhose conductor is the ringof integers

in F equalsi(h)/? sy(aq,--- , ay), wheres is the modular quasicharacter
of the Borel subgroup of:L(n, F'). Now suppose that is a symmetric

n — 1-st power lift fromG L(2). Thus we assume that there exists a complex
numbera such that

(ala"'van):(a , (O y

Proposition. In this situation, ifiW (k) = 0 for A dominant, thenr is
tempered.

Proof. We haves) (a”,a""2,---  a~™) = 0, and we will show thata| =
1. Indeed, by homogeneity of the Schur polynomial, we have*" 2,
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a2 ... 1) = 0. We recall that
a>\1+n—1 a%q-i-n—l ai\ll—i-n—l
Ao4+n—2 Ao+n—2 Ao+n—2
aj a; e

( L aw o a
sxlag, - ,an) = — —
A 1 n a?;ag;agfl
al fah” an—2
1 1 1
Substituting(a?*2,a?"=* ... 1) for (o, - -, ay), the numerator here
becomes
511—1 5?—2 1
;—1 ;L—2 T
: = 11 - 85,
- W<
B tByee 1
wheres; = o?Ai+7=9)_|f this is zero, then somg; = ;, which implies
thato is a root of unity. Thusa| = 1, sor is tempered. O

2. The metaplectic representation

Witten, Brekke, Freund and Olsen in [1], [10] and [9] considepeatlic
analogs of bosonic string theory. This led Ruelle, Thiran, Verstegen and
Weyers [27] to consider the-adic harmonic oscillator, also studied in the
recent book of Vladimirov, Volovich and Zelenov [32]. Thaadic harmonic
oscillator may be understood in terms of the restriction of the metaplectic
representation of the double coverti (2, R) on L?(R) to the grougs O(2)
of symmetries of the Hamiltonian of a single particle moving in a quadratic
potential field. In this formulation, there is no obstacle to repladirizy an
arbitrary local field, and this is the point of view we will take.

Let F' be a local field of characteristic not equabtd_et ( , ) denote the
Hilbert symbol of F'. Let ) denote a nontrivial additive character©6f Let
dz denote the measure dnwhich is self-dual with respect to the Fourier
transform; thus if

f(a) = / £(y) $(2ey) dy,
F

dz is self-dual it f(z) = f(—z). If t € F*, let
y(t) = [tV | y(ta?) da.
/
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This oscillatory integral is conditionally convergentin an obvious sense. The
absolute value of equalsl—indeed it is an eight-th root of unity—and

v(a)v(b) = (a,b) y(ab) v(1).
Furthermore, we have
(0% a) =v(a),  y(—a) =(a)

Let G = SL(2,F), and letG be the metaplectic double cover of
SL(2, F) defined by Kubota’s cocycle : G x G — po = {£1}. Thusin
terms of the Hilbert symbol,

(X))  X(g2)
o(g1,92) = (X(glgg)’ X(9192)> ,

ab c ifc#0;
X = .
cd d otherwise.

Lets : G — G be the standard section, so that

where

s(g1)s(g2) = (91, 92) s(9192)-
We will also use the notation

ol =o((ea) <@

The metaplectic representation= w, is an action ofG on the Schwartz
spaceS(F). Itis given on generators by

('] ) @ = v o)

(v 1] #) @ = feo
(o] 4] £) @ = 1012 205 (e

(a)
See Weil [35] and Gelbart and Piatetski-Shapiro [12].

Let
a—b
={()
and letH be the preimage ofl in C?.NLetH’ be the unique maximal compact

subgroup ofH, H'its preimage ind. If —1 is not a square id’, thenH is
compact, so actuallyi’ = H andH’ = H. On the other hand, if1 is a

a,bEF,a2+b2:1},
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square, thell = F'*, so H' is a proper subgroup. The action Bfon the
Schwartz space by means of the metaplectic representation is given by the
following formula:

<w [z _ab] f) (2) = [b|~/2 7 (5) "

oot ) s
F

If —1is not a square, so thaf is compact, then the restriction ©fto H is
multiplicity-free. If I = R, this follows from our proof of Theorem 2 below
(though it was known long before by Howe) Afis p-adic, this follows from

the Howe duality principle for the dual paif(1) x U(1) in SL(2). (Our
group SO(2) is the same a&/(1).) See Howe [16] and Waldspurger [33]
for Howe duality, which is a theorem except in residual characteristic two.
Other papers concerned specifically with the character of the metaplectic
representation restricted 80 (2) in the case of odd residual characteristic
are Moen [22] and Prasad [24]. Tonghai Yang [37] has formulas for the
actual eigenfunctions df (1) acting on the Schwartz space.

In the case of residue characteristic two, the fact that the restriction of
the metaplectic representation to comp&€x(2) is multiplicity-free is still
known. This is implicit in the work of Rogawski [26], which uses global to
local methods, and a purely local proof may be found in Harris, Kudla and
Sweet [14]. Also P. Ruelle, E. Thiran, D. Verstegen and J. Weyers [27] have
calculated the character of the restriction of the metaplectic representation
to tori in the fieldsQ,,, includingQ», and their resultimplies this multiplicity
one statement faQs. B

On the other hand i1 is a square irf, the restriction ofv to H does
not decompose into a direct sum of constituents (though its dual space of
distributions does so decompose). Instead we will consider the g%up
The restriction ofv to this group is not multiplicity free.

The metaplectic cover splits ovéf. Indeed, if—1 is not a squareH? is
contained inSL(2, 0), and an explicit splitting over this maximal compact
subgroup was given by Kubota [18]. If we define

(@ —b\ J—1 ifv(b)isoddanc = —1 modulop;
ba) | 1 otherwise,

then

K(g1) k(g2)

olor.92) = k(g1 92)
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wheng;, g2 € H. (It is worth mentioning that if the valuation(b) > 0,
thena = +1 modulop sincea? + > = 1.) We may therefore define a
representation of the abelian grofpby

((320) )=o) e

X F/w@(awz’ — 2zy + ay2)> fy) dy.

Onthe other hand, if 1 is a square itf’, thenH is conjugate to the diagonal
torusinSL(2), anditis wellknown (and easy to prove from Kubota’s cocycle
formula) that the metaplectic cover splits over this subgroup. Since the cover
splits overH’, we may regard as giving a representation of this group.

Local Riemann hypothesis.Suppose that’ is a local field. Assume that
F is not complex, and that the characteristic Bfis not equal to2. Let
f € S(F) be an eigenfunction of this action éf N K, and letv be a
character of’*. Then the Mellin transform

[ t@yvio) ol @,
F

if not identically zero, has its only zeros on the limgs) = 1.

This assertion is largely proved, in this paper and its companion piece,
Kurlberg [19].

Lt us study what happens when we change the additive charactet. If
F*, lety) be the character — 1 (A\z). Letd,x denote the additive Haar
measure which is self-dual with respecttoThend,, = = [\|'/2 dya. Let
wy, denote the metaplectic representation parametrizegl bly f € S(F'),
let fx(z) = f(A\z). Thenitis easy to see that

wo((3) 1) @ =ws((570) 1) 00

Thus if f is an eigenfunction off under the representatian,, then f, is

an eigenfunction off underwy, ,. The zeros of (s, v, f) and((s, v, f)
are at the same places, so we have the freedom to chatme,- for any
square\?.

Theorem 2.The Local Riemann Hypothesis is trugif= R.
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Proof. We reduce this to Theorem 1. Since we have the freedom to change
1 by a square, we may assume thidt:) = ™, We will assume that
Y(x) = ¢™@; the other case is obtained by replacirzy —i throughout the
following discussion.

In this case, the self-dual measure®rtoincides with Lebesgue mea-
sure, and

_ ima? _ 1 —m(t—i)x?
~v(1) / '™ dx tliréi e dx
= lim (t —i)71/2 = i(l —i)
=50+ V2 '

Letgbethe Liealgebradf L(2, R). The exponentialmap— SL(2,R)
lifts to a mapexp : g — G. We then have a representatién of g on S(R)
by

(o X)(1)) (@) = & (&) 1)) =0

LetF : S(R) — S(R) denote the Fourier transforf = F, and letg !
be its inverse:

3 ) = / f(y) €27 gy,

Define “momentum” and “position” operatord and () on the Schwartz
space by

1 d
(PR =5 L@, (@)= f(2).
We have
31025 = P
Indeed,(§ ! Q%3 f)(x) equals
o0 A ' 9 [e.e] R ‘
[ iwermay = [ weay
1 df
=1z @(x)

We now prove that

01 . 2 00 . 2
dw <O 0> =imQ", dw (_1 0> =inP~.
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The first identity follows directly from the definitions:

(e ()= hi )

() (o) (Ba) = (50):
o ()= (L)) (o)) (- [53])

=ir§ Q3.

d e
= e f(x)
= dt

t=0

Since

and so the second identity follows from the first.
Now suppose thaf is an eigenfunction off. Since

!

f is also an eigenfunction of

dw (_01 (1)> = dw <8 (1)) + dw <_01 8) = ir(P? + Q%),

which is (up to constant) the oscillator Hamiltonian. Herfds one of the
functionsf,,.
There are two possibilities far: v(z) = sgnz)?, whereé = 0 or
1. Depending on whethef is even or odd, exactly one of the integrals
[ f(z)v(z)|z|* dz/z will be nonzero, and this one will be just twice the
Mellin transform of f. Consequently, Theorem 2 follows from Theorem 1.
0

We turn now to the case ofiaadic field F. In this case, following some
preliminary investigation by Bump and Hoffstein, Kurlberg [19] has proved:

Theorem 3.The Local Riemann Hypothesis is trué’ifs a nonarchimedean
local field of odd residue characteristic.

On the other hand, Kurlberg has also shown that the Local Riemann
Hypothesis is false if” = C.
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3. Laguerre polynomials, then-dimensional harmonic oscillator
and a reciprocity law

TheLaguerre polynomial¢cf. Rainville [25]) are defined by:

Lg(m)Zi(ZJra) . zn:k' HC; 1+)Z)

k=0

where(a),, = a(a+1) - - - (a+n—1). They satisfy the differential equation
d2

T da?

and the orthogonality relation:

/ 2% e LM (@) LY () da = {9“(1+a+n) 7 "
0 ol

otherwise

L)+ (1+a-a) %L,(f‘)(:v) + L@ (z) = 0,

Let £ (z) = z%/2¢=/2 L) (2). Then theLaguerre functions!®) are
orthogonal with respect to Lebesgue measur@oso). Their Mellin trans-
forms

)(s) = / L) (@) 2t de = 25 D (s + §) PI(s).
0

£ (D (0

Theorem 4.The zeros oP,go‘)(s) lie on the linere(s) = 3.

where

Proof.The first proof of Theorem 1 is easily adapted. Using the orthogonality
of the Laguerre functions, we see that the polynomm§&' (1 + it) are

orthogonal with respect to the meas@teé® |I" (1 + ¢ + it) |* d¢, and their
zeros are therefore real. O

The ponnomiaIsP,(La)(s) satisfy a functional equation:
Pi(s) = (-1)" P{(1 - s).

We may prove this as follows. We start with the generating function for the
Laguerre polynomials (Rainville [25], p. 202):

ZL 1—t) 1-« —:Dt/(l t)
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Taking the Mellin transform in this identity yields

o0

SRt = (L=t (L0,
n=0

whence the functional equation.
Now let us investigate the harmonic oscillatorrirdimensions. Iz =

(z1,-++ ,zn) € R, letr = |z] = /Y, 22 be the radial distance from the

origin, and letA be then-dimensional Laplacialy ", 6?/dx7. Then consider
the Schodinger equation corresponding to a quadratic poteWitja) = .

(4) (~A+71%)¢ = ep.

The eigenvalue is the energy level. The potential is rotationally symmetric
and the Hamiltonian- A +r2 commutes with the orthogonal group. We may
thus restrict ourselves tdwhich lie in an irreducible subspace 6{n).

Theorem 5.Let ¢ be a solution to (4) lying in an irreducible subspace of
O(n). Let X be any radially symmetric function d&", so thatX (tx) =
X (z). Then the Mellin transform

() () X (2) Jz*~2 " da
Rn
has its zeros on the line(s) = 1/2.

Proof. We make use of spherical coordinates. Thus & R™ is given, we
taker = |z| € Rt and¢ = z/|x| € S"~! as basic coordinates. The group
O(n) acts onL?(S™~1), which decomposes as a direct sum of irreducible
subspaces, each with multiplicity one. Because of this, our assumption that
¢ lies in an irreducible subspace ©f(n) implies thatyp may be written in

the forme¢g () (€), where? lies in one of these irreducible subspaces of
L?(S™1). Sincedr = v~ dr d¢, the integral equals

(6) / ¢ 25+ﬂ—1 d?"

times the inner product of"~! of X and®. In spherical coordinates, the
Laplacian inn dimensions has the form:

0 n-10 1

A= — 4 —— 5 A,

or? + r or +
where/ is the Laplacian oi$”~! (HelgasonGroups and Geometric Anal-
ysisp.16). Moreover, the eigenvalue dfon an element of an irreducible
subspace of” ! is equal to the eigenvalue of the Casimir operator on the
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corresponding irreducible representation, which Helgason shows has the
form —I(I + n — 2), wherel € Z. We thus have the differential equation
(with eigenvalue\ for A):

—1 —I(l+n—2
o+ = ¢6+<(7;1)—r2+6>¢0:0.

r

In order forgy = e"/2 7! L(r2) to satisfy this differential equation, we
need l
L// < 2 _ ) L/ E _ 2 L —
r L7+ (1 + 5 T + 1731

This differential equation has a regular singular point at the origin, and a
solution that is well-behaved there must be a constant multiple ef

Lg+%_1), wherek is an integer, and = 4k + 2] + n. The result now
follows from Theorem 4. O

We note that this setup can be adapted to the metaplectic group by means
of the Weil representation. The eigenfunctions at hand live in irreducible
subspaces for the grodn(2) x O(n), which is a maximal compact subgroup
of the dual paitrSL(2,R) x O(n) in Sp(2n,R), acting onL"(R™) via the
standard polarization in the Weil representation. Expressed this way, the
integrals of Theorem 5 hayeadic analogs, and though we haven't had a
chance to investigate whether these satisfy a Riemann hypothesis, we hazard
to conjecture that they do, at least in the case of anisot@pig.

The ponnomiaIsPT(f") satisfy areciprocity lawrelating their values at
negative integers. We will show that

o (")) = (1) (- 5),
Indeed, the left side equals
- m+ « n—+ « m
kZOZk< m ) <n—k> <kz)’

and the reciprocity law follows from the identity

(m—i—a) <n+a> (m) _ <n+a> (m—i—a) (n) '

m n—=k k n m—k k

We note the special case
(8) PO (—=m) = P (—n).

This identity has an interestirgpmbinatorial interpretation

Theorem 6.P7(LO)(—m) equals the number of lattice points;, - -- ,z,) €
Z" such thaty  |z;| < m.
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Proof.We can countthe number of lattice point&ihsatisfying) _ |x;| < m

as follows. The number of lattice points having exadtlponzero entries

is 2% () () if 0 < k < min(m,n), because there arf§) choices for
which coordinates shall be nonzero; and once this choice is fixed, there are
2% possible distibutions of signs, a@t) possible distributions of absolute
values. Hence the number of lattice points is

min(m,n)

35" (7) (7) = oo

This completes the proof. O

We derive a generating function fdﬁso)(—m). Let a(m,n) be the
number of lattice points satisfying the condition on the theorem. Then
a(m,n) — a(m,n — 1) is the number of lattice points satisfying exactly
> |zi| < m having a nonzero last component. If the last component is
+m — k,with0 < k < m — 1, then the number of possibilities for the first
n — 1 components is(k,n — 1), and so we have

m—1
a(m,n) —a(m,n — 1) 2Zakn—1
k=0

Hence (assuming:, n > 0) we have
a(m,n)—a(m,n—1)—a(m—1,n)+a(m—-1,n—1) =2a(m—1,n—1),

which leads to the recursion

Z Za(m,n)xmy” —(1l-—z—y—azy) L.

The reciprocity law (8) is reflected by the symmetry of the generating func-
tion.
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