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Voice leading is closely connected with homotopy, the exploration of 
paths in higher-dimensional configuration spaces.  Musicians explored 
these spaces centuries before mathematicians developed tools for 
describing them.  In this paper we analyze the group structure of these 
contrapuntal paths, generalize traditional music-theoretical vocabulary 
for representing voice leading, and ask which paths are realizable given 
our generalized vocabulary. 

1.   Introduction 

Intuitively, a voice leading is a way of moving from one chord to 
another.  Formally, it can be represented as a vector or path in the 
configuration space of possible chords (Callender, Quinn, and Tymoczko 
2008, Tymoczko 2016).  The collection of all bijective voice leadings 
from a chord to itself is the orbifold fundamental group, a generalization 
of the fundamental group to singular quotient spaces (Hughes 2015).  
This can be extended to the voice-leading group, modeling the bijective 
voice leadings linking transpositionally related chords within some scale 
(or, in the limit, continuous unquantized chord space); a further extension 
allows us to consider nonbijective voice leadings in which one or more 
notes are doubled.  In each case, voice leading is closely analogous to 
homotopy, an exploration of loops and paths in an abstract configuration 
space.  Contemporary mathematics provides tools for describing these 
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loops, allowing us to understand the contrapuntal routes from a chord to 
itself, or from one chord to another. 

For centuries keyboard players have employed simple physical 
heuristics to accomplish a similar purpose.  David Heinichen, in his 
Generalbass, recommended that improvising keyboardists keep their 
right hand in “close position” when playing triads (Figure 1, Buelow 
1992).   These close-position voice leadings comprise an important 
subgroup of the three-note voice-leading group, containing voice 
leadings with no crossings in pitch-class space (Tymoczko 2008, 2011).  
(Note that in this context, a keyboard player cannot physically 
differentiate between registrally equivalent arrangements of voices, such 
as those in Figure 2; this limitation that will remain in force throughout 
this paper.)  This subgroup is the quotient of the voice-leading group by 
the voice exchanges, a normal subgroup generated by those voice 
leadings that swap two adjacent pitch classes along equal and opposite 
paths (Figure 3).  Thus musicians long ago identified simple, physically 
realizable gestures that generate a mathematically interesting subset of 
contrapuntal possibilities—namely those without voice crossings in pitch 
class space. 
 In this paper we develop this connection between the practical 
and the theoretical, asking how musicians might understand and 
manipulate the large number of voice leadings theoretically available to 
them.  We begin by analyzing the structure of the voice-leading group.  
We then generalize the notion of “close position” to five physical 
configurations—registral arrangements of upper voices, all musically 
familiar and common in many contrapuntal genres.  We then ask “what 
portion of the theoretically possible voice-leadings are reachable using 
these configurations?”  Our main result is that these generalized 
configurations allow composers to reach a substantial proportion of the 
“nearby” possibilities, including all of those with less than four voice 
crossings in pitch-class space.  
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2.   The voice leading group and its extensions. 

A path in pitch class space is an ordered pair whose first element is a 
pitch class (point on a circle) and whose second is a real number 
(element of the tangent space at that point) representing how the note 
moves (Tymoczko 2011, 2016).  In this context there is an isomorphism 
between elements of the tangent space and homotopy classes of paths in 
the circle, so we can conceive of paths in pitch-class space as motions in 
the circle.  A voice leading is a multiset of paths in pitch-class space, 
representing motion from one chord to another.  Voice leadings can be 
transposed and inverted in the obvious way: transposition acts on a voice 
leading’s pitch classes while leaving its real numbers unchanged; 
inversion inverts the pitch classes while multiplying the real numbers by 
–1 (Tymoczko 2011). 

The collection of bijective voice leadings from a chord to itself 
form a group, the orbifold fundamental group for the configuration space 
of n-note chords, Tn/Sn. This can be written as Sn ! Zn, with Sn factor 
permuting the chord’s notes and the Zn factor displacing them by octaves 
(Hughes 2015).  We will find it useful to rewrite this as Z ! (Sn ! Zn–1), 
with Z the crossing-free subgroup and (Sn ! Zn–1) the subgroup of voice 
exchanges.  As mentioned, the voice exchanges are generated by the n 
pairwise swaps that exchange adjacent notes in pitch-class space; 
together, they span an n–1 dimensional subspace of the configuration 
space of possible chords (Callender, Quinn, and Tymoczko 2008).  For a 
nondegenerate chord (i.e. chord whose pitch classes are all distinct), the 
voice-exchange subgroup is independent of the structure of the chord or 
the scale it is in; it depends only on the chord’s cardinality.  The voice 
exchanges contain all and only those bijective voice leadings X→X 
whose paths sum to 0, while the paths in the crossing-free subgroup sum 
to an integral number of octaves.  From this it follows that xyx–1 ∈ (Sn ! 
Zn–1) for x ∈Z and y ∈(Sn ! Zn–1), and hence that Sn ! Zn–1 is normal.  
This mathematical result underwrites the common musical practice of 
ignoring or “factoring out” voice crossings and voice exchanges 
(Tymoczko 2011, Forte and Gilbert 1982).  
 The voice-leading group connects transpositionally equivalent 
chords, with voice leadings acting in the natural way: if V(a) is any voice 
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leading from a to one of its transpositions, then V(Tn(a)) is defined as 
Tn(V(a)) (Tymoczko 2011), where T is the transposition operator.  We 
can represent these voice leadings as abstract schemas such as “keep the 
root of the major triad fixed, move its third up by semitone, and its fifth 
up by two semitones,” descriptions that will be unambiguous so long as 
the chord is not transpositionally symmetrical and contains no duplicate 
pitch classes.   We can write the voice-leading group as (Z  × Cgcd(c, n)) ! 
(Sn ! Zn–1), with C the cyclic group and gcd(c, n) the greatest common 
divisor of the size of the chord (n) and the size of the enclosing scale (c).a  
This decomposition can be represented graphically as shown in Figure 4, 
with a line winding n times around the circular dimension of an annulus, 
the c transpositions of the chord equally spaced along it.  Chords sharing 
the same angular coordinate have pitch classes summing to the same 
value.  The counterintuitive n-fold winding is a manifestation of the 
chord’s n inversions, which are equivalent only assuming octave 
equivalence; in continuous space one can move orthogonally to the line 
of transposition between these n inversions, along a series of paths in 
pitch class space summing to 0.   

Crossing-free voice leadings are represented by homotopy 
classes of paths in the annulus.  To understand their structure it is useful 
to adopt the conception of a scale as a metric, described in Chapter 4 of 
Tymoczko 2011; this allows us to use scale-degree numbers even in 
continuous pitch-class space. Angular motion along the line corresponds 
to transposition along the scale, with clockwise motion 1/x of the way 
around the circle transposing downward by 1/nx steps, and radial motion 
between adjacent lines representing the “diagonal action” that transposes 
the notes of the chord up 1/n of an octave while transposing the notes of 
the chord down one chordal step, thus leaving the sum of its pitch classes 
unchanged.  The resulting chord will not in general lie in the same scale.  
However, by modeling scales as metrics we can conceive of these chords 
as points in continuous space, labeled with scale-degree numbers. 

The subgroup Cgcd(c, n) contains all the crossing-free voice 
leadings whose paths sum to zero; it is the only finite, crossing-free 

                                                        
a For continuous space this becomes R  × Cn. 
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subgroup of the voice-leading group.b When n divides c there are n 
distinct copies of the chord at each radial position, related by 
transposition 1/n, as in Figure 4a; here the subgroup  Cgcd(c, n) is the 
quotient of the crossing-free subgroup by transpositional voice leadings.  
When n and c share a common factor, there are gcd(c, n) copies of the 
chord sharing the same pitch-class sum, as shown in Figure 4b; here we 
quotient out just some of the scale’s transpositions.  And when the sizes 
of chord and scale are relatively prime, the crossing-free subgroup is just 
Z, whose generator is Hook’s “signature transform” (Figure 4c, Hook 
2008, 2013, Tymoczko 2013).  In this case, the voice-leading group is 
isomorphic to the orbifold fundamental group, even though it relates a 
larger collection of transpositionally related chords.  Figure 5 shows a 
variety of graphs for chords and scales of various sizes, all clearly 
similar.  
 The annular structure of all of these graphs reflects the topology 
of the underlying orbifold Tn/Sn, whose nonsingular interior is the 
twisted product of a n–1 simplex with a circle.  Angular motion on our 
graphs corresponds to motion along the circular dimension of Tn/Sn.  A 
voice leading that makes a complete circle in this dimension acts as a 
“transposition along the chord,” moving voices by the same number of 
steps along the chord itself—for example, from C up to E, from E up to 
G, and from G up to C in the major chord {C, E, G}.  The radial 
dimension of the annular graph collapses the n–1 dimensions of the 
simplex; consequently, a sequence of purely radial motions 
x1→x2→…→x1 will leave all voices where they began.  Radial paths are 
therefore contractible whereas complete angular circles are not—as we 
can see both on the annular graphs and by the topology of the orbifolds 
they model.   

A characteristic difference between the theory of voice leading 
and the earlier “transformational theory” is that the former emphasizes 
the nontrivial effect of these noncontractible circles—representing 
nontrivial voice leadings from a chord to itself.  Traditional 

                                                        
b It is clear that any finite subgroup must have paths summing to zero, since we can 
iterate any voice leading with sum x to obtain an infinite collection of voice leadings 
whose sums are ix, for i ∈Z. 
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“transformational” models sometimes incorporate these facts in a tacit or 
unrecognized way.  For instance, an “LP cycle” on the familiar Tonnetz 
leaves voices unchanged, whereas a “PR cycle” acts as a one-step scalar 
transposition; this difference is evident when Tonnetz-motions are 
translated into music, even while remaining obscure in the geometry of 
the Tonnetz itself. (See Figure 6 and Cohn 1997, pp. 35–36).  The theory 
of voice leadings helps explain these puzzles: the LP cycle links C, E, 
and Af major triads, forming a contractible circle in the orbifold T3/S3, 
and represented solely by radial motion on Figure 5a, whereas the PR 
cycle links C, Ef, Gf, and A major triads, traversing a noncontractible 
circle in chord space—represented on Figure 5a by a full clockwise turn.  
This distinction is obscured by the common belief that the Tonnetz is a 
torus with two distinct noncontractible axes; cf. Tymoczko 2012.  Many 
other transformational models are similar to the Tonnetz in implicitly 
encoding the structural relationships that emerge explicitly in the 
geometrical approach—details that, in the earlier theory, sometimes 
become evident only when we translate the model’s abstract geometrical 
motions into actual musical notation. 

We can extend the voice-leading group to include non-bijective 
voice-leadings, or voice leadings with doublings.  For instance, consider 
the group of four-voice voice leadings that connect triads in the C major 
scale, with one note of each chord doubled.  Here there are three possible 
doublings corresponding to the three notes of the chord: for each 
particular doubling we have a subgroup of the four-note voice-leading 
group Z  ! (S4 × Z3), equivalent to Figure 5a.c  To these possibilities we 
need to add the voice leadings that move the doubling from one chordal 
element to another.  A natural choice here are the zero-sum, crossing-free 
voice leadings that move the doubling from root to third to fifth and back 
(Figure 7).  This gives us the four-voice triadic voice-leading group (Z  × 
C3)  ! (S4 × Z3).  Extending this construction to arbitrary chords in 
arbitrary scales is an interesting problem which we leave for the future, 
as it is not relevant to what follows. 

                                                        
c This is a subgroup because of the degenerate voice leadings that swap identical pitch 
classes.   
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3.   Five registral configurations  

We are interested in the connection between simple physical heuristics, 
such as “keep the chords in close position,” and the voice leading group.  
Specifically, we ask “what proportion of the theoretically possible voice 
leadings are performable with a given set of physical gestures?”  We are 
not, for the purposes of this paper, interested in forbidden parallels or the 
avoidance of second-inversion triads: our only question is which voice 
leadings can be realized given a set of physical options.  (The 
acceptability of those voice leadings, according to the tradition, is a 
separate question.)  Furthermore, in keeping with Figure 3, our notion of 
“performability” is keyboard-based, forbidding crossings between 
registrally indistinguishable chords.  

For any chord in any scale, close-position voicings suffice to 
generate all the crossing-free bijective voice leadings between 
nondegenerate chords of any cardinality.  We can extend this result, in 
the triadic case, by adding the well-known “open” position, which 
separates the notes of triad so there are two triadic steps between 
registrally adjacent notes (Figure 8).  Moving from close to open position 
involves one pairwise voice exchange; furthermore, any pairwise voice 
exchange can be represented in this way by placing the relevant notes in 
the top and bottom voice.  Thus, the second physical configuration 
expands our contrapuntal range: a composer who uses only close and 
open positions can access all and only those bijective, triadic voice 
leadings with at most one crossing. 

We now describe a collection of possible configurations for the 
upper voices in four-voice triadic counterpoint, in which every sonority 
is a complete and exactly two voices sound the same pitch class.  If we 
require that voices be separated by an octave or less, then there are just 
the five possibilities in Figure 9: “doubled interval,” where two voices 
sound the same note and the third less than an octave away; “close 
position” where the voices sound three different pitches spanning less 
than an octave;  “half-open,” where the outer voices are octave apart and 
the middle voice is between them; “open position,” where the voices 
sound a complete triad spanning more than an octave but with adjacent 
notes separated by less than an octave; and “open octave,” where two 
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adjacent voices are an octave apart, the third less than an octave away 
from its nearest neighbor.  These are arranged here in order of increasing 
separation between voices, so that the “half-open” can genuinely be said 
to lie between close and open.  Clearly, there are two categories here, the 
complete triadic voicings (C and O) and those with doublings (DI, H, 
OO).  Figure 10 shows that these are related by octave displacements: we 
can turn DI into H, C into O, and H into OO, by transposing the middle 
voice up by octave.  Since we require that all triads be complete, the 
pitch class of the fourth voice is determined by the content of the upper 
voices in DI, H, and OO position; in C or O position, the bass voice can 
sound any tone. 

Figure 11 shows the distribution of upper-voice configurations in 
Bach’s chorales and the four-voice passages of Palestrina’s masses.  
Palestrina’s upper voices are generally close together, concentrated 
toward the left side of the graph, while Bach features the C↔H↔O 
subsystem.  (This may reflect the greater importance of voice-crossings 
in Palestrina’s style, and their almost total absence from the chorales.)  
Figure 12 shows the most popular triadic transitions in the chorales: 
almost a third of the voice leadings connect close-position triads, with 
another 10% connecting open position to open position; the seven next-
most popular patterns connect adjacent positions on the model.  Note the 
frequency of direction motion between C and O, which is slightly more 
popular than motion to and from the open-octave position.  These 
common motions are modeled by the lines on Figure 11. 

Teachers can use these five positions to provide students with a 
simple and symmetrical set of contrapuntal guidelines: DI goes to C, C 
goes anywhere except OO, H goes either to C or O, O goes anywhere 
except DI, and OO goes to O.d  Together, these rules cover about 85% of 
the four-voice triadic voice leadings in the Bach chorales and about 75% 
of those in Palestrina’s masses, with Palestrina’s greater use of pitch-
space voice crossings (e.g. Figure 3) accounting for much of the 
difference.  The approach simplifies the long lists of voice leadings 
sometimes found in textbooks (McHose 1947, Kostka and Payne 2003), 

                                                        
d Note that H→H voice leadings will have parallel octaves unless the doubled notes stay 
fixed. 
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allowing students to produce idiomatic part-writing quickly and with a 
minimum of pain: the focus on upper-voice configurations helps them 
avoid parallels, encourages them to emphasize spacing, and gives them a 
positive set of options to think about. (They know, for example, that if 
they are in H position then they will be moving to either C or O on the 
next chord; furthermore they know that it is impossible for upper voices 
to form parallel octaves following these rules, and unlikely for them to 
form parallel fifths.e)  It can also be useful to have students label the 
configurations in pre-existing music, so that they can see for themselves 
how they typically behave. 

4.   Performability of voice leadings 

Suppose a keyboard player is generalizing traditional keyboard practices 
by using their right hand to articulate three voices in some subset of the 
DI, C, H, O, and OO, positions, with their left hand unconstrained.  What 
voice leadings can be reached in this manner?  That is, for a given set of 
upper-voice configurations, which voice leadings can and cannot be 
performed?  In asking this question we will assume that the two hands 
can be separated so that their voices do not cross in pitch space, or 
perhaps played on separate manuals of a multi-manual instrument such 
as an organ; thus there is no question of whether the bass crosses upper 
voices.  We also acknowledge that the performability of the OO voicings 
is somewhat unrealistic, requiring unusually large hands. 
 Our question fundamentally concerns the orbifold fundamental 
group, the collection of voice leadings from a chord to itself.  For 
suppose we have a four-voice voice leading between two distinct triads 
such that its upper three voices are free of crossings while also 
connecting sonorities in the OUCH positions.  First, we can transpose the 
destination chord so that it is equivalent to the starting chord (ignoring 
the doubling) without changing the position of its upper voices, as in 
Figure 13.  Second, we can transform the destination chord so that its 
                                                        
e For example a DI↔C transition can produce fifths only if moving between a close, root 
position triad and a fifth with one note doubled; H↔O transitions can produce fifths only 
between adjacent voices. 
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doubling is equivalent to that of the first chord by transposing all notes 
along the triad, as in Figure 14; this will again preserve the arrangement 
of upper voices, sending DI to DI, C to C, H to H, O to O, and OO to 
OO.  It follows that we can restrict our attention to voice leadings from a 
chord to itself with the very same doublings; in other words we consider 
the voice-leading group from the triadic multiset {C, C, E, G} to itself. 
 These manipulations indicate that we should not focus on the 
absolute distance moved by the voices, since that can be changed by 
adding an arbitrary transposition to the destination chord, but rather the 
number of voice crossings in pitch-class space contained by the voice 
leading.  In pitch space, the number of voice crossings is equal to the 
number of crossed voices, but in pitch-class space two voices can cross 
multiple times: for instance, the voice (D, –14) crosses the voice (C, 1) 
twice.  Geometrically, the number of voice crossings records the number 
of times the voice leading’s path touches the singularities of the orbifold 
Tn/Sn.  In the three-voice context, we have seen that close position by 
itself allows the expression of every voice leading with zero crossings, 
while close and open can express voice leadings with one or fewer 
crossings.  More right hand positions will allow us to perform voice 
leadings with more crossings. 
 Before considering four-voice triadic case, it is worth looking at 
the simpler situation of four-note chords with no doublings, such as 
seventh chords.  Since there are no doublings, the upper three voices can 
be in just two positions: close (spanning less than an octave) and open 
(spanning more than an octave but with less than an octave between 
adjacent notes).  Figure 15 shows that all voice leadings with fewer than 
four crossings are performable, with the number of performable voice 
leadings reaching a maximum of 128.  The total  number of voice 
leadings with n crossings, when divided by four, yields the series 1, 4, 
10, 20, 34, 52, 74, 100 …, or 2n2 + 2 for n > 0. This is the number of 
exterior points on the tetrahedra representing the tetrahedral numbers 1, 
4, 10, 20, 35, 56, 84, 120, 165, 220; our sequence is equal to the nth 
tetrahedral number tn for n < 4, and tn – tn–4 otherwise (Sloane’s 
A005893; see Deza and Deza 2012, p. 126, OEIS Foundation 2017).  
The musical interpretation is as follows: crossing-free voice leadings 
whose paths sum to 0 are represented geometrically by voice leadings 
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within a tetrahedral region that tiles three-dimensional space (the “cross 
section  of four-note chord space” discussed in Tymoczko 2011), which 
contains four “modes” of each sonority, represented on Figure 4a by 
chords sharing the same radial position.  The voice leadings with n 
crossings are found within the tetrahedral regions that can be reached 
from some particular region by exactly n face-preserving reflections.  
These tetrahedral regions themselves form the exterior of a tetrahedron 
isomorphic to that which is used to represent the nth tetrahedral number.f  
 Turning now to four-voice voice leadings between triads: if we 
require that the left hand stay in just the C position (or equivalently, just 
O), then we can obtain three of the four crossing-free voice leadings 
from a doubled triad to itself.  The outlier, shown previously as the 
second voice leading in Figure 13, is what Tymoczko has called a 
nonfactorizable voice leading—that is a voice leading between four-
voice triads that does not contain three voices articulating two complete 
triads (Tymoczko 2011, ch. 7).  If the right hand can use both C and O, 
then we can obtain all the one-crossing voice leadings, but we still 
cannot reach Figure 13’s nonfactorizable voice leading.  (That voice 
leading, in other words, is the only nonfactorizable voice leading with at 
most one crossing.)  If we allow, O, C, and H, then we can perform all 
the voice leadings with at most one crossing, but we cannot perform the 
two-crossing voice leadings in Figure 16.  And if we permit all of the 
five configurations, then we can obtain all the voice leadings with three 
or fewer voice crossings.  Figure 17 shows the total number of voice 
leadings for various numbers of crossings, and the percentage of these 
performable with various upper-voice configurations.  Note that the 
doubling now obscures the connection to the tetrahedral numbers 
discussed earlier.  

We conclude that relatively simple set of physical heuristics, all 
performable at the keyboard and all common in the musical literature, 
allow access to a substantial range of contrapuntal possibilities.  More 
precisely, the five upper-voice configurations of Figure 11 provide a 
conceptual tool sufficient for manipulating the 58 four-voice triadic 

                                                        
f Similarly, the three-voice voice leadings with n crossings correspond to the number 
exterior points on the triangle representing the nth triangular number. 
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voice-leading patterns with the fewest crossings, and about 80% of the 
100 patterns with the next-fewest crossings.  (Recall here that we are 
considering only voice leadings from a chord to itself with the very same 
doubling, as discussed in connection with Figure 14: by allowing the 
position of the doubling to vary, or allowing chords to be transposed, we 
obtain many more possibilities.)  Note furthermore that these voice 
leadings can be performed without voice-crossings in pitch space, such 
as those in Figure 3; in this sense, crossings in pitch space are not 
necessary for exploring a wide-range of voice leadings.  Our 
configurations are simple enough that they can be internalized by any 
musician, regardless of mathematical aptitude.  These schemas thus 
provide a link between the embodied world of practical musicianship and 
the abstract space of topological possibility—showing us exactly what 
proportion of the homotopy group can be easily accessed by 
keyboardists.   

Our approach treats the upper voices as a unit and the bass as an 
independent actor.  An interesting question is whether this division is 
simply a matter of convenience or whether it grounded in identifiable 
features of musical practice.  Historically, these ideas originate in 
figured-bass pedagogy, which described the C, O, and H configurations 
as convenient hand positions allowing keyboardists to generate four-
voice counterpoint in real time; in these styles, the 3+1 division 
represents a genuine fact about the music, which treats of the bass as 
distinct from the chordal upper parts and assigns them to different hands.  
We have generalized the traditional categories of figured-bass pedagogy 
to encompass all possible upper-voice configurations in which the voices 
are registrally ordered and less than an octave apart.  This generalized 
strategy is potentially applicable to any music that limits the distance 
between voices, whether conceived in a 3+1 fashion or not.  It is 
therefore worth asking to what extent different musical repertoires 
support this partitioning into bass and upper voices, or whether it is 
merely an external framework that we have imposed on the music.  

The answer is that the bass typically plays a exceptional role, 
though the degree of independence varies from repertoire to repertoire.  
In the four-voice chords found in Palestrina’s masses, for example, the 
bass is most likely to sound chord roots (69% of all sonorities vs. 25–
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30% for the other voices), most likely to move by fifth (9% of all 
intervals vs. 4–5% for the others), most likely to have its note doubled by 
another voice (32% vs. about 23%) and is separated on average by the 
greatest distance from the nearest voice (by about half a diatonic step 
more than the others).  These subtle asymmetries are larger in other 
genres, not just later music such as Bach’s chorales, but also the more 
chordal genres of the sixteenth century—Frottole, for example, or 
Goudimel’s 1560s harmonizations of the Geneva Psalter.  In this sense, it 
seems that the 3+1 division is not just a mathematical conceit, but a 
distinction supported by even the exemplars of Renaissance polyphony.g  
One might say that it points toward a subtle and implicit precursor to 
later chordal thinking.  

Voice leading involves complicated mathematics, groups 
representing homotopy classes of paths in higher-dimensional, singular 
spaces.  These spaces were explored by practical musicians long before 
mathematicians developed the concepts needed to describe them. Upper-
voice configurations are an intuitive tool for manipulating these musical 
possibilities, learned implicitly and deployed not just by keyboard 
players but composers more generally.  Modern music theory allows us 
to connect these two approaches, making explicit the musician’s implicit 
knowledge, giving students new tools, and allowing us to appreciate the 
deep and inherently mathematical knowledge of the practical musician. 
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Fig. 1. In close position, voicings are ordered registrally and span less than an octave. 
 

 

Fig. 2. Keyboard players find it difficult to distinguish situations in which different 
voices articulate registrally equivalent arrangements of notes.  In this paper, we will 
assume that this cannot be done, considering only situations in which voices are ordered 
in register. 

 

Fig. 3. The three pairwise swaps that generate the subgroup of voice exchanges; these 
swap root and fifth, third and fifth, and root and third. 
 

 

Fig. 4. The crossing-free voice leadings for four-note chords in twelve-note, ten-note, and 
seven-note space. 
 
 

 



2 A. Sivakumar and D. Tymoczko 

 

 

Fig. 5. The crossing-free voice leadings for two-note chords in seven-note space, three-
note chords in twelve-note space, and seven-note chords in twelve-note space. 
 

 

Fig. 6. The LP cycle (solid line) and PR cycle (dotted line) look similar on the Tonnetz, 
but are musically very different, the former returning all voices to their starting point and 
the latter acting as a one-step scalar transposition. 
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Fig. 7. A collection of zero-sum voice leadings that move the doubled note from root to 
third to fifth and back. 

 

Fig. 8. An open-position version of the music in Fig. 1. 

 

Fig. 9. Five upper-voice configurations. 

 

Fig. 10. DI can be transformed into H, and H into OO, by moving the middle voice up an 
octave.  The same is true of C and O. 
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Fig. 11. Distribution of upper-voice configurations in Bach (top) and Palestrina (bottom).  
Character size is proportional to frequency of occurrence.  
 
 

Voice leading % of total 
C→C 31.8 
O→O 11.8 
C→H 9.1 
H→C 8.5 
H→O 4.6 
O→H 4.3 
C→DI 3.6 
DI→C 3.5 
H→H 3.3 
O→C 3.1 
C→O 2.8 

OO→O 1.7 
O→OO 1.6 

Fig. 12. The most common 
transitions in the chorales. 

 

 

Fig. 13. We can transpose the source and destination chord to C without changing the 
upper-voice configurations.  
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Fig. 14. We can move the doubling to C without changing the upper-voice configuration.  
 

 
crossings total performable unperformable pct. 

0 4 4 0 100% 
1 16 16 0 100% 
2 40 40 0 100% 
3 80 80 0 100% 
4 136 112 24 82% 
5 208 128 80 62% 
6 296 128 168 43% 
7 400 128 272 32% 
8 520 128 392 25% 
9 656 128 528 20% 

10 808 128 680 16% 

Fig. 15. The number of performable and unperformable voice 
leadings, with various numbers of crossings for a four-note chord 
with no doublings.  

 

Fig. 16. Three two-crossing voice leadings that are not performable using just C, H, and 
O. 
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crossings count C C, O C, H, O all 

0 4 75% 75% 100% 100% 
1 9 22.2 100 100 100 
2 20 10 45 85 100 
3 25 0 16 48 100 
4 44 4.5 13.6 36.4 86.4 
5 59 3.4 10.2 27.1 74.6 
6 85 2.4 9.4 23.5 58.8 
7 109 1.8 7.3 16.5 47.7 
8 140 1.4 5.7 12.9 35.7 
9 175 1.1 4.6 11.4 28.6 

10 216 0.9 3.7 8.3 24.1 

Fig. 17. The proportion of voice leadings with various numbers of 
crossings performable with various upper-voice configurations. 

 
 
 
 
 


