[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a005798 -id:a005798
Displaying 1-7 of 7 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A000521 Coefficients of modular function j as power series in q = e^(2 Pi i t). Another name is the elliptic modular invariant J(tau).
(Formerly M5477 N2372)
+10
334
1, 744, 196884, 21493760, 864299970, 20245856256, 333202640600, 4252023300096, 44656994071935, 401490886656000, 3176440229784420, 22567393309593600, 146211911499519294, 874313719685775360, 4872010111798142520, 25497827389410525184, 126142916465781843075 (list; graph; refs; listen; history; text; internal format)
OFFSET
-1,2
COMMENTS
"The most natural normalization [of the j function] is to set the constant term equal to 24, the number given by Rademacher's infinite series for coefficients of the j function". [Borcherds]
Changing the term 744 to 24 gives A007240, the McKay-Thompson series of class 1A for Monster simple group.
sigma_3(n) is the sum of the cubes of the divisors of n (A001158).
Klein's absolute invariant J=j/1728 is Gamma-modular.
(n+1)*A000521(n)/24 yields integral values - see A161395. - Alexander R. Povolotsky, Jun 09 2009
The Mathematica implementation of KleinInvariantJ[] (versions 6 to 8) had bugs giving wrong value for a[7], a[9], a[11] and other values. - Michael Somos, Mar 07 2012
It is an open question if there are infinitely many k such that a(k) is prime. The known such indices are listed in A339429. See the paper by Fredrik Johansson. - Peter Luschny, May 05 2021
REFERENCES
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 115.
H. Cohen, A Course in Computational Algebraic Number Theory, Springer, 1996, pp. 376ff.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 20.
Evans, David E., and Yasuyuki Kawahigashi. "Subfactors and mathematical physics." Bulletin of the American Mathematical Society, 60:4, (2023), 459-482 (see page 472).
M. Kaneko, Fourier coefficients of the elliptic modular function j(tau) (in Japanese), Rokko Lectures in Mathematics 10, Dept. Math., Faculty of Science, Kobe University, Rokko, Kobe, Japan, 2001.
M. J. Knopp, Rademacher on J(tau), Poincare series of nonpositive weights and Eichler cohomology, Notices Amer. Math. Soc., 37:4 (1990), 385-393.
S. Lang, Introduction to Modular Forms, Springer-Verlag, 1976, p. 12.
B. Schoeneberg, Elliptic Modular Functions, Springer-Verlag, NY, 1974, p. 56.
J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer, see p. 482.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Seiichi Manyama, Table of n, a(n) for n = -1..10000 (terms -1..1000 from N. J. A. Sloane)
Hans-Fredrick Aas, Congruences for the Coefficients of the Modular Invariant j(tau), Mathematica Scandinavica, vol.15, pp. 64-68, 1964.
D. Alexander, C. Cummins, J. McKay, and C. Simons, Completely replicable functions, in Groups, Combinatorics & Geometry, (Durham, 1990), pp. 87--98, London Math. Soc. Monograph No. 165.
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely replicable functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
H. Baier and G. Koehler, How to compute the coefficients of the elliptic modular function j(z), Experimental Mathematics 12 (2003).
R. E. Borcherds, Review of "Moonshine Beyond the Monster ..." (Cambridge, 2006), Bull. Amer. Math. Soc., 45 (2008), 675-679.
J. H. Conway and S. P. Norton, Monstrous Moonshine, Bull. Lond. Math. Soc. 11 (1979) 308-339.
John Cremona, Home page
W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. 42 (2005), 137-162.
Andreas Enge, William Hart, and Fredrik Johansson, Short addition sequences for theta functions, arXiv:1608.06810 [math.NT], 2016-2018.
Steven R. Finch, Modular forms on SL_2(Z), December 28, 2005. [Cached copy, with permission of the author]
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra 22, No. 13, 5175-5193 (1994).
Y.-H. He and V. Jejjala, Modular Matrix Models, arXiv:hep-th/0307293, 2003.
Yang-Hui He and John McKay, Moonshine and the Meaning of Life, arXiv:1408.2083 [math.NT], 2014.
Yang-Hui He and John McKay, Sporadic and Exceptional, arXiv:1505.06742 [math.AG], 2015.
M. Jankiewicz and T. W. Kephart, Transformations among large c conformal field theories, Nucl. Phys. B 744 (2006) 380-397 Table 6.
Fredrik Johansson, Computing isolated coefficients of the j-function, arXiv:2011.14671 [math.NT], 2020.
J. Jorgenson, L. Smajlovic, and H. Then, Kronecker's limit formula, holomorphic modular functions and q-expansions on certain moonshine groups, arXiv preprint arXiv:1309.0648 [math.NT], 2013.
M. Kaneko, The Fourier coefficients and the singular moduli of the elliptic modular function j(tau), Memoirs Faculty Engin. Sci., Kyoto Inst. Technology, 44 (March 1996), pp. 1-5.
M. Kaneko and D. Zagier, Supersingular j-invariants, hypergeometric series and Atkin's orthogonal polynomials, pp. 97-126 of D. A. Buell and J. T. Teitelbaum, eds., Computational Perspectives on Number Theory, Amer. Math. Soc., 1998.
Masao Koike, Modular forms on non-compact arithmetic triangle groups, Unpublished manuscript [Extensively annotated with OEIS A-numbers by N. J. A. Sloane, Feb 14 2021. I wrote 2005 on the first page but the internal evidence suggests 1997.]
K. Mahler, On a class of non-linear functional equations connected with modular functions, J. Austral. Math. Soc. Ser. A 22 (1976), no. 1, 65--118. MR0441867 (56 #258)
J. McKay and H. Strauss, The q-series of monstrous moonshine and the decomposition of the head characters, Comm. Algebra 18 (1990), no. 1, 253-278.
William Stein, Database
Valdo Tatitscheff, A short introduction to Monstrous Moonshine, arXiv:1902.03118 [math.NT], 2019.
J. G. Thompson, Some numerology between the Fischer-Griess Monster and the elliptic modular function, Bull. London Math. Soc., 11 (1979), 352-353.
Jan Vonk, Overconvergent modular forms and their explicit arithmetic, Bulletin of the American Mathematical Society 58.3 (2021): 313-356.
Eric Weisstein's World of Mathematics, j-Function
Eric Weisstein's World of Mathematics, Monstrous Moonshine
A. van Wijngaarden, On the coefficients of the modular invariant J(tau), Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 56 (1953), 389-400 [ gives 100 terms ].
A. van Wijngaarden, On the coefficients of the modular invariant J(tau), Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen, Series A, 56 (1953), 389-400 [gives 100 terms]. [Annotated scanned copy]
Herbert S. Zuckerman, The computation of the smaller coefficients of J(tau), Bull. Amer. Math. Soc. 45 (1939), 917-919.
FORMULA
G.f.: A007245(q)^3/q; or (1 + 240 Sum_{k>0} sigma_3(k) q^k )^3 / (q Product_{k>0} (1-q^k)^24 ).
It appears that -n * a(n) = A035230(n). - Gerald McGarvey, Dec 21 2006
2 * a(2) = A028520(3). 2 * a(4) + a(1) = A028520(4). 2 * a(6) = A028520(5). - Gerald McGarvey, Dec 21 2006
Expansion of 128 * (theta_2(q)^8 + theta_3(q)^8 + theta_4(q)^8) * (theta_2(q)^-8 + theta_3(q)^-8 + theta_4(q)^-8) in powers of q^2. - Michael Somos, Oct 02 2007
a(n) ~ exp(4*Pi*n^(1/2))/(2^(1/2)*n^(3/4)) [Petersson (1932), Rademacher (1938)]. - Gheorghe Coserea, Oct 09 2015
a(n) = (1/n)*(Sum_{r in Z} A027652(n - r^2) + Sum_{r>0, r odd} ((-1)^n * A027652(4*n - r^2) - A027652(16*n - r^2))) for n > 0. - Seiichi Manyama, Jun 11 2017
a(n) = (1/(n+1))*Sum_{k=1..n+1} (504*A001160(k) - 240*(n-k) * A001158(k)) * a(n-k), a(-1) = 1. - Seiichi Manyama, Jul 12 2017
G.f.: 256*(1 - lambda + lambda^2)^3/(lambda^2 * (1 - lambda)^2) where lambda is the elliptic modular function (A115977). - Seiichi Manyama, Jul 30 2017
EXAMPLE
j = 1/q + 744 + 196884*q + 21493760*q^2 + 864299970*q^3 + 20245856256*q^4 + ...
From Seiichi Manyama, Jun 11 2017: (Start)
a(1) = (1/1)*(A027652(0) + A027652(1) + A027652(0) + (-A027652(3) - A027652(15) - A027652(7))) = (1/1) * 196884 = 196884.
a(2) = (1/2)*(A027652(1) + A027652(2) + A027652(1) + (A027652(7) + A027652(-1) - A027652(31) - A027652(23) - A027652(7))) = (1/2) * 42987520 = 21493760.
a(3) = (1/3)*(A027652(-1) + A027652(2) + A027652(3) + A027652(2) + A027652(-1) + (-A027652(11) - A027652(3) - A027652(47) - A027652(39) - A027652(23) - A027652(-1))) = (1/3) * 2592899910 = 864299970. (End)
If J_n := j(sqrt(-n))^(1/3), then J_1 = 12, J_2 = 20, J_4 = 66, J_77 = 255. - Michael Somos, Oct 31 2019
MAPLE
with(numtheory): TOP := 31;
g2 := (4/3) * (1 + 240 * add(sigma[ 3 ](n)*q^n, n=1..TOP-1));
g3 := (8/27) * (1 - 504 * add(sigma[ 5 ](n)*q^n, n=1..TOP-1));
delta := series(g2^3 - 27*g3^2, q, TOP);
j := series(1728 * g2^3 / delta, q, TOP);
MATHEMATICA
CoefficientList[Normal[Series[1728*KleinInvariantJ[z], {z, 0, 30}]*Exp[ -2*I*Pi/z]] /. E^(Pi*Complex[0, n_]/z) -> t^(-n/2), t] (* Artur Jasinski, Dec 20 2008, after Daniel Lichtblau, corrected by Vaclav Kotesovec, Jul 07 2020 *)
a[ n_] := With[ {tau = Log[q] / (2 Pi I)}, SeriesCoefficient[ Series[ 1728 KleinInvariantJ[ tau], {q, 0, n}], {q, 0, n}]]; (* Michael Somos, Nov 20 2011 *)(* Since V7 *)
a[ n_] := With[ {e1 = DedekindEta[ Log[q] / (2 Pi I)]^24, e2 = DedekindEta[ Log[q] / (Pi I)]^24}, SeriesCoefficient[ Series[ (e1 + 256 e2)^3 / (e1^2 e2), {q, 0, n + 1}], {q, 0, n}]]; (* Michael Somos, Mar 09 2012 *)
a[ n_] := With[ {L = ModularLambda[ Log[q] / (2 Pi I)]}, SeriesCoefficient[ Series[ 256 (L^2 - L + 1)^3 / (L (1 - L))^2, {q, 0, 2 n + 3}], {q, 0, n}]]; (* Michael Somos, Mar 09 2012 *)
a[ n_] := If[ n < -1, 0, With[ {E4 = 1 + 240 Sum[ DivisorSigma[ 3, k] q^k, {k, n + 2}], E6 = 1 - 504 Sum[ DivisorSigma[ 5, k] q^k, {k, n + 2}]}, SeriesCoefficient[ Series[ 1728 E4^3 / (E4^3 - E6^2), {q, 0, n}], {q, 0, n}]]]; (* Michael Somos, Mar 09 2012 *)
CoefficientList[Series[(65536 + x*QPochhammer[-1, x]^24)^3 / (16777216 * QPochhammer[-1, x]^24), {x, 0, 20}], x] (* Vaclav Kotesovec, Sep 23 2017 *)
a[n_] := SeriesCoefficient[With[{L = InverseEllipticNomeQ[rootQ]}, 256 (L^2 - L + 1)^3/(L (1 - L))^2], {rootQ, 0, 2n}]; (* Jan Mangaldan, Jul 07 2020, after Michael Somos; corrected by Leo C. Stein, Feb 25 2024 *)
a[n_] := SeriesCoefficient[ 12^3 KleinInvariantJ[Log[q]/(2 Pi I)], {q, 0, n}] (* Leo C. Stein, Feb 25 2024 *)
PROG
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^(2*n + 2) * O(x); A = x * (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8; polcoeff( subst( 256 * (1 - x + x^2)^3 / (x - x^2)^2, x, 16*A), 2*n))}; /* Michael Somos, Apr 30 2004 */
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^(5*n + 5) * O(x); A = (eta(x + A) / eta(x^5 + A))^6 / x; polcoeff( subst( (x^2 + 10*x + 5)^3 / x, x, A), 5*n))}; /* Michael Somos, Apr 30 2004 */
(PARI) {a(n) = my(A); if( n<-1, 0, A = x^2 * O(x^n); A = x * (eta(x^2 + A) / eta(x + A))^24; polcoeff( (1 + 256*A)^3 / A, n))}; /* Michael Somos, Jul 13 2004 */
(PARI) q='q+O('q^66); Vec(ellj(q)) \\ Joerg Arndt, Apr 24 2016
(PARI) {a(n) = if( n<-1, 0, polcoeff( ellj(x + x^3 * O(x^n)), n))}; /* Michael Somos, Dec 25 2016 */
CROSSREFS
Reversion gives A091406 or A066396.
Cf. A106205 (24th root).
Cf. also A161361, A161362, A161395, A178451, A339429 (indices with prime values).
KEYWORD
easy,nonn,nice,core
AUTHOR
EXTENSIONS
Expanded the definition to include additional search terms. - N. J. A. Sloane, Nov 30 2019
STATUS
approved
A115977 Expansion of elliptic modular function lambda in powers of the nome q. +10
22
16, -128, 704, -3072, 11488, -38400, 117632, -335872, 904784, -2320128, 5702208, -13504512, 30952544, -68901888, 149403264, -316342272, 655445792, -1331327616, 2655115712, -5206288384, 10049485312, -19115905536, 35867019904, -66437873664 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, eq. (37).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Elliptic Lambda Function
Wolfram Research Basic Algebraic Identities Relations involving squares, 1st formula
FORMULA
Expansion of Jacobi elliptic parameter m = k^2 = (theta_2(q) / theta_3(q))^4 in powers of the nome q.
Expansion of 16 * q * (psi(q^2) / phi(q))^4 = 16 * q * (psi(q^2) / psi(q))^8 = 16 * q * (psi(q) / phi(q))^8 = 16 * q * (psi(-q) / phi(-q^2))^8 = 16 * q / (chi(q) * chi(-q^2))^8 = 16 * q * (f(-q^4) / f(q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of 16 * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^8 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * (1 - v)^2 - 16 * v * (1 - u).
lambda( -1 / tau ) = 1 - lambda( tau ) (see A128692).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692.
G.f.: 16 * q * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^8.
a(n) = 16 * A005798(n). a(n) = -(-1)^n * A014972(n) unless n=0.
a(n) = -(-1)^n * A132136(n). - Michael Somos, Jun 03 2015
Empirical: Sum_{n>=1}(exp(-2*Pi)^n*a(n)) = 17 - 12*sqrt(2). - Simon Plouffe, Feb 20 2011
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - Vaclav Kotesovec, Apr 06 2018
The g.f. A(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... satisfies A(q) + A(-q) = A(q)*A(-q). - Peter Bala, Sep 26 2023
EXAMPLE
G.f. = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + 11488*q^5 - 38400*q^6 + 117632*q^7 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ @ x, {x, 0, n}];
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ ModularLambda[ Log[q] / (Pi I)], {q, 0, n}]];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q])^4, {q, 0, n}];
a[ n_] := SeriesCoefficient[ 1/16 (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q^2])^8, {q, 0, n}]; (* Michael Somos, May 26 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); 16 * polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 09 2006
STATUS
approved
A005797 Expansion of Jacobi nome q in terms of parameter m/16.
(Formerly M4561)
+10
13
0, 1, 8, 84, 992, 12514, 164688, 2232200, 30920128, 435506703, 6215660600, 89668182220, 1305109502496, 19138260194422, 282441672732656, 4191287776164504, 62496081197436736, 935823746406530603, 14065763582458332888, 212122153814497767004, 3208590886304243284640 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
For a faster convergent series see A002103, where k' = sqrt(1 - k^2). - Wolfdieter Lang, Jul 14 2016
The Ansatz technique of A308835, A308836, and A308837 also works to produce the coefficients of this sequence from the ODE: T-d/dx(4*(1-x)*x*dT/dx)=0. - Bradley Klee, Jul 03 2019
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
B. C. Berndt, Ramanujan's theory of theta-functions, Theta functions: from the classical to the modern, Amer. Math. Soc., Providence, RI, 1993, pp. 1-63. MR 94m:11054.
C. L. Mallows, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
FORMULA
G.f.: q = q(m) = Sum_{n>=0} a(n) * (m/16)^n.
G.f.: exp( -Pi * agm(1, sqrt(1 - 16 * x) ) / agm(1, sqrt( 16*x ) ) ).
EXAMPLE
G.f. = x + 8*x^2 + 84*x^3 + 992*x^4 + 12514*x^5 + 164688*x^6 + 2232200*x^7 + ...
Given g.f. A(x), then q = exp(-Pi sqrt(6)) = A( m/16 ) where m = ((2-sqrt(3))*(sqrt(3)-sqrt(2)))^2. - Michael Somos, Oct 30 2019
MAPLE
a:= n-> coeff(series(EllipticNome(4*sqrt(x)), x, n+1), x, n):
seq(a(n), n=0..17); # Thomas Richard, Aug 03 2022
MATHEMATICA
a[ n_] := SeriesCoefficient[ EllipticNomeQ[ 16 x], {x, 0 , n}] (* Michael Somos, Jul 11 2011 *)
PROG
(PARI) {a(n) = if( n < 1, 0, polcoeff( serreverse( x * prod(k=1, n-1, (1 + x^k)^(-1)^k, 1 + x * O(x^n))^8), n))} /* Michael Somos, Jul 19 2002 */
(PARI) {a(n) = my(A, m); if( n < 1, 0, m=1; A = x + O(x^2); while( m < n, m*=2; A = sqrt( subst(A, x, x^2)); A /= (1 + 4*A)^2); polcoeff( serreverse(A), n))} /* Michael Somos, Mar 18 2003 */
CROSSREFS
Reversion of A005798. Cf. A002639. Other nomes: A308835, A308836, A308837.
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
A014972 Expansion of (theta_3(q) / theta_4(q) )^4 in powers of q; also of 1 / (1 - lambda(z)). +10
11
1, 16, 128, 704, 3072, 11488, 38400, 117632, 335872, 904784, 2320128, 5702208, 13504512, 30952544, 68901888, 149403264, 316342272, 655445792, 1331327616, 2655115712, 5206288384, 10049485312, 19115905536, 35867019904, 66437873664 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The relation with A092877 is equivalent to eta(q^2)^24 = eta(q)^16 * eta(q^4)^8 + 16 * eta(q)^8 * eta(q^4)^16. - Michael Somos, Apr 11 2004
REFERENCES
J. H. Conway and N. J. A. Sloane, "Sphere Packings, Lattices and Groups", Springer-Verlag, p. 102.
LINKS
Eric Weisstein's World of Mathematics, Elliptic Lambda Function
FORMULA
Expansion of 1 / (1 - lambda(t)) = 1 / lambda(-1 / t) in powers of q = exp(Pi i t).
Expansion of (phi(q) / phi(-q))^4 = (phi(-q^2) / phi(-q))^8 = (phi(q) / phi(-q^2))^8 = (f(q) / f(-q))^8 = (chi(q)/ chi(-q))^8 = (psi(q) / psi(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of (eta(q^2)^3 / (eta(q^4) * eta(q)^2))^8 in powers of q. - Michael Somos, Apr 11 2004
Euler transform of period 4 sequence [ 16, -8, 16, 0, ...]. - Michael Somos, Apr 11 2004
G.f. A(x) satisfies A(-x) = 1 / A(x). Also 0 = f(A(x), A(x^2)) where f(u, v) = (u - 1)^2 + 16 * u*v * (1 - v). - Michael Somos, Apr 11 2004
G.f.: (Product_{k>0} (1 + x^(2*k - 1)) / (1 - x^(2*k - 1)))^8 = exp( 16 * Sum_{k>0} x^(2*k - 1) * sigma(2*k - 1) / (2*k - 1)). - Michael Somos, Apr 11 2004
a(n) = 16 * A092877(n) unless n = 0. a(n) = A132136(n) unless n = 0. Convolution inverse of A128692.
Empirical : Sum_{n >=1} exp(-2*Pi)^(n-1)*(-1)^(n+1)*a(n) = -16+12*2^(1/2). - Simon Plouffe, Feb 20 2011
a(n) ~ exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - Vaclav Kotesovec, Aug 28 2015
EXAMPLE
G.f. = 1 + 16*q + 128*q^2 + 704*q^3 + 3072*q^4 + 11488*q^5 + 38400*q^6 + 117632*q^7 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 3, 0, q] / EllipticTheta[ 4, 0, q])^4, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
a[ n_] := SeriesCoefficient[ (QPochhammer[ q^2]^3 / (QPochhammer[ q^4] QPochhammer[ q]^2))^8, {q, 0, n}]; (* Michael Somos, Jun 25 2014 *)
nmax=60; CoefficientList[Series[Product[((1+x^(2*k+1))/(1-x^(2*k+1)))^8, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Aug 28 2015 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( exp( 16 * sum( k=1, (n+1)\2, sigma(2*k - 1) / (2*k - 1) * x^(2*k - 1), x * O(x^n))), n))}; /* Michael Somos, Apr 11 2004 */
(PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x^2 + A)^3 / (eta(x + A)^2 * eta(x^4 + A)))^8, n))}; /* Michael Somos, Apr 11 2004 */
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved
A092877 Expansion of (eta(q^4) / eta(q))^8 in powers of q. +10
10
1, 8, 44, 192, 718, 2400, 7352, 20992, 56549, 145008, 356388, 844032, 1934534, 4306368, 9337704, 19771392, 40965362, 83207976, 165944732, 325393024, 628092832, 1194744096, 2241688744, 4152367104, 7599231223, 13749863984 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Harry J. Smith)
Kevin Acres, David Broadhurst, Eta quotients and Rademacher sums, arXiv:1810.07478 [math.NT], 2018. See Table 1 p. 10.
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
FORMULA
Expansion of q * (psi(-q) / phi(-q))^8 = q * (psi(q^2) / psi(-q))^8 = q * (psi(q) / phi(-q^2))^8 = q * (psi(q^2) / phi(-q))^4 = q * (chi(q) / chi(-q^2)^2)^8 = q / (chi(-q) * chi(-q^2))^8 = q / (chi(q) * chi(-q)^2)^8 = q * (f(-q^4) / f(-q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions. - Michael Somos, Jun 13 2011
Euler transform of period 4 sequence [ 8, 8, 8, 0, ...].
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 - v - 16*u*v - 16*v^2 - 256*u*v^2.
G.f.: x * (Product_{k>0} (1 + x^(2*k)) / (1 - x^(2*k - 1)))^8.
G.f.: theta_2^4 / (16*theta_4^4) = lambda / (16 * (1 - lambda)).
G.f.: exp( Integral theta_3(x)^4/x dx ). - Paul D. Hanna, May 03 2010
a(n) = (-1)^n * A005798(n).
a(2*n) = 8 * A014103(n). - Michael Somos, Aug 09 2015
Convolution inverse of A124972, 8th power of A001935, 4th power of A001936, square of A093160. - Michael Somos, Aug 09 2015
a(n) ~ exp(2*Pi*sqrt(n))/(512*n^(3/4)). - Vaclav Kotesovec, Sep 07 2015
a(1) = 1, a(n) = (8/(n-1))*Sum_{k=1..n-1} A046897(k)*a(n-k) for n > 1. - Seiichi Manyama, Apr 01 2017
EXAMPLE
G.f. = q + 8*q^2 + 44*q^3 + 192*q^4 + 718*q^5 + 2400*q^6 + 7352*q^7 + 20992*q^8 + ...
MATHEMATICA
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ -InverseEllipticNomeQ[ -x] / 16, {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ With[ {lambda = ModularLambda[ Log[x] / ( Pi I)]}, lambda / (16 * (1 - lambda))], {x, 0, n}]]; (* Michael Somos, Jun 13 2011 *)
a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^4] / QPochhammer[ q])^8, {q, 0, n}]; (* Michael Somos, Aug 09 2015 *)
a[1] = 1; a[n_] := a[n] = (8/(n-1))*Sum[DivisorSum[k, Identity, Mod[#, 4] != 0&]*a[n-k], {k, 1, n-1}]; Array[a, 26] (* Jean-François Alcover, Mar 01 2018, after Seiichi Manyama *)
eta[q_]:= q^(1/6) QPochhammer[q]; a[n_]:=SeriesCoefficient[(eta[q^4] / eta[q])^8, {q, 0, n}]; Table[a[n], {n, 4, 35}] (* Vincenzo Librandi, Oct 18 2018 *)
PROG
(PARI) {a(n) = if( n<0, 0, polcoeff( x * prod(k=1, (n+1)\2, (1 + x^(2*k)) / (1 - x^(2*k-1)), 1 + x * O(x^n))^8, n))};
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^4 + A) / eta(x + A))^8, n))};
(PARI) a(n)= { local(A); n--; A=x*O(x^n); polcoeff((eta(x^4 + A)/eta(x + A))^8, n); } { for(n=1, 1000, write("b092877.txt", n, " ", a(n)); ); } \\ Harry J. Smith, Jun 21 2009
CROSSREFS
KEYWORD
nonn
AUTHOR
Michael Somos, Mar 19 2004
STATUS
approved
A225915 Expansion of (k(q) / 4)^4 in powers of q where k() is a Jacobi elliptic function. +10
1
1, -16, 152, -1088, 6444, -33184, 153152, -646528, 2533070, -9311664, 32387616, -107299904, 340436664, -1039026144, 3061896704, -8739810688, 24229115109, -65390485328, 172155210320, -442928464640, 1115433685796, -2753362613984, 6670224790272, -15876957230848 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,2
LINKS
FORMULA
Expansion of (eta(q) * eta(q^4)^2 / eta(q^2)^3)^16 in powers of q.
Euler transform of period 4 sequence [-16, 32, -16, 0, ...].
G.f.: q^2 * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^16.
Convolution square of A005798.
a(n) ~ (-1)^n * exp(2*Pi*sqrt(2*n)) / (65536 * 2^(3/4) * n^(3/4)). - Vaclav Kotesovec, Nov 17 2017
EXAMPLE
G.f. = q^2 - 16*q^3 + 152*q^4 - 1088*q^5 + 6444*q^6 - 33184*q^7 + 153152*q^8 + ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ (InverseEllipticNomeQ[ q] / 16)^2, {q, 0, n}];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 2, 0, q^(1/2)])^16, {q, 0, n}];
a[ n_] := SeriesCoefficient[ q ( Product[ 1 - q^k, {k, 4, n - 1, 4}]/
Product[ 1 - (-q)^k, {k, n - 1}])^16, {q, 0, n}];
PROG
(PARI) {a(n) = my(A); if( n<2, 0, n-=2; A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^16, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, May 20 2013
STATUS
approved
A275790 Triangle T(n, m) appearing in the expansion of the scaled phase space coordinate qhat of the plane pendulum in terms of the Jacobi nome q and sin(v) multiplying even powers of 2*cos(v), with v = u/((2/Pi)*K(k)). +10
1
1, 8, 1, -32, 11, 3, -736, -92, 9, 15, 2816, -593, -249, -65, 35, 48976, 6122, 1581, -970, -1295, 315, -951424, 61252, 67791, 46030, 18515, -21735, 3465, -1045952, -130744, -92082, -30445, 14455, 53928, -25179, 3003, 26933248, 1069361, -1666047, -634255, -1167740, -1258236, 1562253, -471471, 45045, 634836808, 79354601, 24881793, 17914550, 30289840, 12635028, -71064609, 42480438, -9594585, 765765 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The dimensionless scaled phase space coordinates of the plane pendulum are (qtilde(tau, k), ptilde(tau, k)) with tau = omega_0*t, omega^2 = g/L (L is the length of the pendulum, g the acceleration), and the energy variable E = 2*k^2 = 2*sin^2(Theta_0/2), with the maximal deflection angle Theta_0 (from [0, Pi/2]). qtilde = Theta/(2*k)) with the deflection angle Theta. Similarly ptilde = (d(Theta)/d(tau))/(2*k).
The exact solution is qtilde(tau, k) = (1/k)*arcsin(k*sn(tau, k)) with Jacobi's elliptic sn function, and ptilde(tau,k) = cn(tau, k) with the elliptic cn function.
Here the expansion in new variables v and q is used where v = tau/((2/Pi)*K(k)) and q = exp(-Pi*K'(k)/K(k)) with the real and imaginary quarter periods K and K'. This leads to qhat(v, q) = qtilde(tau(v, q), k(q)) with tau(v, q) = theta_3^2(0, q)*v. (For theta_3^2(0, q) see A004018.) Because k is actually a function of k^2 one uses the q expansion of (k/4)^2 given in A005798.
Using the result for the sn expansion in q and v from A274662 one obtains qhat(v, q) = sin(v)*Sum_{n >= 0} q^n/L(n)*Sum_{m=0..n} T(n, m)*(2*cos(v))^(2*m) with L(n) = A025547(n+1) = lcm{1, 3, ..., (2*n+1)}.
This entry is inspired by a paper of Bradley Klee giving an approximation to the phase space solution of the plane pendulum (see A273506). Thanks for discussions via e-mail go to him.
LINKS
FORMULA
T(n, m)*(2*cos(v))^(2*m)), n >= 0, m = 0, 1, ..., n, gives the contribution to q^n/L(n) (L(n) = A025547(n+1)) in the rescaled phase space coordinate qhat(v, q) expansion of the plane pendulum. See a comment above for details.
EXAMPLE
The triangle T(n, m) begins:
n\m 0 1 2 3 4 5 ...
0: 1
1: 8 1
2: -32 11 3
3: -736 -92 9 15
4: 2816 -593 -249 -65 35
5: 48976 6122 1581 -970 -1295 315
...
row n=6: -951424 61252 67791 46030 18515 -21735 3465,
row n=7: -1045952 -130744 -92082 -30445 14455 53928 -25179 3003,
row n=8: 26933248 1069361 -1666047 -634255 -1167740 -1258236 1562253 -471471 45045,
row n=9: 634836808 79354601 24881793 17914550 30289840 12635028 -71064609 42480438 -9594585 765765.
...
The corresponding L(n) = A025547(n+1) numbers are 1, 3, 15, 105, 315, 3465, 45045, 45045, 765765, 14549535,...
n=4: the contribution to qhat(v, q) of order q^4 is (q^4/315)*(2816 - 593*(2*cos(v))^2 - 249*(2*cos(v))^4 - 65*(2*cos(v))^6 + 35*(2*cos(v))^8).
CROSSREFS
KEYWORD
sign,tabl
AUTHOR
Wolfdieter Lang, Aug 09 2016
STATUS
approved
page 1

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 29 15:31 EDT 2024. Contains 375517 sequences. (Running on oeis4.)