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MATHEMATICS

(Report B 122 of the Compuiation Depar tinenc of the Mathematical Centre, Amsterdum)

(Communicated by Prof. B. van pez Por at the mecting of Septemnber 26, 1953)

1. Introduction

In recent years several authors paid attention to properties and the
computation of the Fourier coefficients of the modular invariant J(z).
H. 8. Zuckeryax [i?]‘, showed a relationship with the partition function,
which enabled him to compute the first 24 coefficients with relative easc,
thus extending considerably the first tabulation by W. E. IL. Berwick [1],
who gave the first 7 coeflicients. In order to proceed in this way one
necds, however, first tables of the partition functien that go further than
the existing ones of H. Guera [2], [3]. D. H. Lenyer [4] proved several
congruences and relations between the coefficients themselves and between
the coefficients, the divisor functions and Ramanujan’s tau function, and
computed, nioreover, the 23-th coefficient. B. vax per Porn [7] gave also
many relations of that last type, and relations between J(r) and the
theta funetions. In his paper also values of the next three coefficients are
given that were computed by the author of this paper, the last of which
being erroneous due to a regrettable coincidence. In the present paper a
table of the first 100 coefficients is given, together with some new pro-
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perties, found empirically and proved afterwards.

The author is indebted to professor vax pEr Por for many substantial
contributions and to Miss (. BorrErwre, Miss H. C. Hacgevaar and

Mr W. KrEiy for their share in the numerical work.

2. Relations between thela functions and J(t)

Let M; be a function of the integer k and the three numbers , y and z

defined by
(2.1)

so that always
(2.2)

Then we have
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M,

M, = a* + y* + 2F,
= 3, and let, moreover, z, ¥ and z be such that

M, = 0.

!

= 2?4 y2 4 22 —2(vy + yz + zx),
= g% 4 93 + 2% = 3ayz
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80 that
Yo My My = ayz (2 4 y* + 28,
1/2 ﬂ[z ['lllk-i-l = (xy + bz + Z:C) (:vk-}l + ylhll + 2k+1))
from which it follows by addition, and taking into account (2.1) and (2.2)
(2.3) Mg =1y My M, ) 4+, M, M,

The solution of this recurrence rclation that satisfies (2.2) can be written
down in explicit form.
Introducing

(2.4) I = (Y, D)3 (1, D y)=2
one finds after some tedious arithmetic
My=3, M, =0,
My, — (V M) ]%j el ("2;’1) I k>o,

(2.5)

[k—1/3] D71 —
Moy =(, Myye+te J='la S 2k 1 ( L

,_I .
o kI 2]&#-1) I, k>0,
AL N .EI—'/-?I k fe—2h VIV 2N
‘,l 111_k=(1/2—112) -2“']:}:0 (_)hm< B )]./zk h, s o0

Inspecting the exponents of I/, 2 and 7 in these formulae it appears that
the product 3, M_, takes a particularly simple form. In effect

MoMy =9, M M_, —o,

. [k/3]
_ 2k (k—h\ .
M M — Jh—IR/3]—(27/3] [ki31=1
ol g =1 ,go k—h ( 2L )]

{2H3] 2k /2k—2h
. Y 2%/31—h
(2.6) 2 () gy 5 )I[ k>0

L 131 2k+1 / k—h
M / k—[k—1/8]-[2k+1/3 k—1/3]—h
ok I_LM Oh+1) = it /81— /31 ( . ) Jlk—1/3]

(2% +1/3] X ' ;
LS ()t 2k+1 v 2’”‘““%) JEE+UBI=R
P by ity 2 A

Hence, M, 31 _, is a polynomial in 7 of degree [k/2] with integer coeffi-
cients, that for 7 = 0 takes the value 9 if } — (mod 3) and vanishes if
k £ 0 (mod 3). More specifically

[RI2]
(2.7) , S = 3 my () 17,
n=0

where the coefficients tig(iw) for k= 0 (1)13 are given in the following
table:
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& \ m;(0) \ (1) l my2) | m3) | ‘ my(5) | m,(6)
K [ L | 1
1 0 ‘
o \ 0 5 | | l
3 9 | s | '; |
4 ‘ 6 | — 8 2 L |
| o5 | — 5 | |
6 |- 9 — 12 | = 9 | 2 | |
7 0 ’ — 49 49— T
8 0 96 | — 40 | — 8 2
9 | 9 — 27 | —135 7 | — 9
10 0 — 150 355 | —100 | — 5 2
11 « 0 242 | — 121 942 | 110 | — U
12 P9 — 48 — 828 \ 892 — 201 — 0 2
13 | o | —338 1521 | —3507 | —338 143 — 13

[N

Now, introducing the Jacobian theta functions?)
611 = 0;((1) = {D/D: 01 (Z’ Q)}:-'-Ov 6}' = 6)(‘]) = Oi(or Q) (7 = 27 3: 4):

it is scen from the first of the two fundamental relations

(2.8) 0y 05+ 04=-0, 07 =06:0504

that a set of 2, 7 and 2 satisfying (2.2) is siven by @ = 6l y = D% 2 = 0.
Accordingly

(2:9) M, = 08 + (= 0+ 0

and, (confer [7]),
(2.10) 1 =2"23J (7).

Hence, the equations (2.6) or (2.7) are as many relations between theta
functions and the absolute modular invariant J(z). Most of these results
can be found in [7]. They are given here because of the explicit form into
which they have been brought, and, moreover, because slight errors in
the values of some coefficients oceur in formula (28) of [7], however
without any further consequences.

3. Relations between theta functions and the genmerating functions of the
partition functions
Some classical results are needed for our purpose. Be p(n) the number
of partitions of the natural number 7 into the sum of natural numbers
without restrictions. If restrictions are imposed it is denoted by an index.

1) Here, and in what follows, ¢ is considered as argument rather than 7 (g = "),

since ouly arithmetical properties are examined. The argument is, moreover, Sup-
presecd cverywhere when it is ¢, but only nsed in eases like 0,(¢"), where others might
profer 6,(0,47). 1t seemed too hard to be consistent and to denote by J or J(g) rather
than by J{7) a function that owes its name to its modular properties.
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The following scheme is proposed. Restrictions on the character of the
terms are denoted by a lower index, restrictions on the number of terms
by an upper index, Moreover, ¢ stands for even, o for odd, d for different,
s for same, p for prime. A number, if need be together with algebraical
symbols, has an obvious meaning, and other symbols may be introduced
by additional conventions. Hence, p,(n) is the number of partitions of n
into different (unequal) terms; pg,(n) is the number of partitions of n
into unequal odd terms; pa(n) is the number of partitions of » into an
odd number of unequal terms; Pi-¢(n) is the number of partitions of 7 into
three unequal terms each greater than six; p7(22) > 0, n > 1, expresses
the conjecture of GorpepacH, and so on. By definition, a value is attributed
to a partition function of the argament 0, viz. the one that suits its
generating function.
Some generating functions are in elassical notation

%o =4%(@) =11 (1—g™) = 3 () guan+v,
n=1 n=—oxx

=0 =TT +¢) =3 pa(n) g%,

(31) n;l ﬂ=l)oo

2= ¢0(0) =TT (1 +¢* 1) = 3 p. (n) g7,
n=1 n=_

T =q3(q) =[] (1—¢g>-1) = ZO(—)” Par (1) ¢,
n=1 "=

where apparently by definition Pal0) = pu(0) = 1.
From the product expansions of the theta functions it follows that

00 =2q"q3,  0,=2g"¢q,q2,

3.2 5 .
(3:2) 363:‘]09-2 ) 94=909§-_

Again, the functions of section 2 take the following form

My =295 7828 2 g3 + 1), My = —213 q¢i2,

(33) 3] — 9-8 q_g q1—24 (28 qz qf-l + 1)3’

whereas the relations (2.8) read

(3.4) P9t = -0} qig.05=1.
From (3.1) and (3.4) one derives easily

% (4% = (D% (D) = 40 (39) ¢, (i),
2% =4 (9),  ¢:(¢) =g (g).
Hence, from (3.2) and (3.5) it follows

(3.5)

(3.6) 05(9%) = g0 (iq) g7 (i), 05(4%) = 20 (9) 97 *(q).

- ——

DR —

e



. 393

At last a special combination will be examined, viz.

6% (q) + 6:%(iq) = 272 ¢ 2 q5 (q){ S(q) — g7 % (i9)}
=27%¢72¢q7%(¢% {43 (¢®) — 43 (¢®)}
= - 2700 (%) () = — 27465 (Y,

whence
(3.7) 6;8(g%) = — 24 {053 (q) + 022 (ig)}.

4, The cocfficients of J(z)
As well known, the coefficients ¢(n) in the expansion

o0
(4.1) ) =281 =122J(7) = 3 c(n)q™
n=-=1
. ) <
are integers. There are many ways to compute the coefficients, each of one
resulting in rather lengthy calculations if » is not very small. This is
rather natural since the coefficients grow very rapidly with =, and the
digits have to come from somewhere. LEm:yER [4] has derived multi-
_ plicative relations that for special values of n involve a moderate amount
‘ of arithmetical operations but all on large numbers. Leuver [4] and
vaX DER Por [7] have given rceurrence relations implying divisor functions
and Ramanujan’s tau-function. Typical examples are the following ones
([7], formula 34a)

n—1 2

‘1

C

> ck)r(n—-k) = {91 o,y (n) 4 600 7 (n)},
(4.2) .
k; ke (k) T(n—k) = 24 oy5(n).

Here 7(r) is Ramanujan’s function and ¢,,,,(n) is the sum of the (2m+-1)th
powers of the divisors of =, if m =1,2,3, ..., whereas by definition
Oom-1(0) = 12(1 — 2m) = — B,,,[(4m) and By, are the Bernoullian numbers,
B,=1, B,=1/6, B, = —1/30 .... The v-function is well tabulated and
the o-functions are easily computed. Moreover, they arc not very large.
From both formulae ¢(n) is found by repeating the same procedure. The
second formula has moreover an advantage over the first one in that it
yields (n — 1)c(n — 1), whereas the first one yields c¢(n — 1) directly
(z(1) = 1), so that in the second case one has an important numerical
check in the remainderless division by »n — 1.

Yet, another type of formulae exists, one of which will be investigated
now. The third formula (2.7) together with (4.1) yields

(4.3) jr) =2" M, M _,.
L_ Now, M, is a very simple function. In effect (confer [7])

(4.4) M, = 480 > a4(n) ¢™",
: . n=1
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where it should be remembered that 03(0) = 1/240. Be analogously

(4.5) M_y =078+ 058 4678 = 2-8 2 d (n) ¢*

where all d(n) are positive integers (n —1). Also,

(4.6) E (n) q*, 1
where s(0) = 2-1and s(n) is a positive integer for n > 0. Since 0,(¢) = 0,(—q), !
also

(4.7) 65— 215 (- |
Similarly o ;
(4.8) 6;8 = —2-3 Ylt(7z) 7, !
where all #(n) are integers (n > —1) with alternating signs. Hence

(4.8) d(n) = 2135(2n) — t(n), n = —1,

where, of course, s(—2) = 0.
The coefficients s(n) and {(n) can be found from the expansions

P ——

o0 oo

(+9) f= 24" 3 g, 0= 3 (pg,

n=0 n=—00

by applying the fo]lo“ ing well known artifice. Be a(n) given cocfficients
for m > 0, and «(0) 5= 0. Then the coefficients b(n) satisfying

©
z b(n) ot = { Z‘ “ (?’1) Q»n}m—l
n=0

can be found by differentiating logarithmically, multiplying by the
arising denominators and equating the coefficients of equal powers of .
Then one gets the recurrence relation :

a(0)b{n) = i (mk—n) a(k)b(n—k), n >0, b(0)=a(0)"1,

k=1

This device is particularly useful if the a(n) form a lacunary sequence. In
this way one obtains the recurrence relations

= -2 Z o (n 4 Tk?) s(n—k?), n >0, s(0)=2"%, s

(4D tm)=—3 [0+ 1+ 7—(5;—”} t{nf—&ﬂJ, n>—1, #(=1) = —1,

k=1

(4.10)

where k takes such values that n — k2 > 0 resp. n — k(k -+ 1 )2 =
Both formulae allow numerical checks by the division by n, resp. n —[~ 1.
Having obtained s(n) and ¢(n), d(n) follows from (4.8) and hence c(n)
from (4.3), (4.4) and (4.3)

n+1

(4.11)  ¢(n) = 240 503 kyd{n—k)=d(n) + 24()”5:103(1»')(1(%—];). —_ "7,? (%

k=1
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The final summation is therefore rather simple, all terms being
and gy(k) being only a small factor. Of course, first s(n), #(n) and J
to be computed but these functions are of some interest in th'
Moreover it will be shown that s can be expressed in ¢ To that end ou,.
combines (3.7) with (4.6) and (4.8):

07%(g%) = 24 3 s(n) g*,

n=>0

@) + 05 = =2 (3t g+ 3 (- )
= — 270 3 1(2m) g,
whence "
(4.12) s(n) = 278 ¢(2n), n =0,
or together with k4.8)
(4.13) d(n) = 25 {(4n) — i(n),

so that the computation of ¢(n) may be completely based on that of ¢(n)
and gyg(n). In actual practice, if one wants to compute ¢(n) up to a fixed
upper value of #, N say, it is easier to compute #(n) for —1 << n < V and
s(n) for N/2 < m < 2N directly from (4.10) than to compute ¢(n) for
—1 <n <4V and then to apply (+.12).

Actually (4.12) was found empirically. From the conjecture that it
should hold followed then (3.7) which was proved afterwards in the given
way.

This method of computing ¢(n) has the disadvantage, however, that
after the formation of s() and {(n) no internal checks occur in the formulae.
It is therefore advisable to have an efficient numerical check on the values
of ¢(n) for all values of n.

5. Congruences satisfied by c(n)

One knows many congruences satisfied by the coefficients ¢(n). LEEMER
[4] proved (more than) that

(5.1) (1) ¢(n) =0 (mod 24),
(5.2) ¢(n) =0 (mod 3) if n =4 2 (mod 5).
J. LEuNER [5], [6] proved that

¢(n) =0 (mod 25¥+8 3203 5 +1 70 1 1#) if | < 5 = 0 (mod 2% 37 5779 11¢);

5.
(5.3) o, By, 6>=1, e=1,2 3.

Moreover he remarked that from the numerical values of ¢(n) available to
him (n < 25) followed that in the case that = is one of the five primes
2, 3,5, 7and 11 or a power of one of these primes (thus if n = 2, 3, 4, 3,
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7, 8,9, 11, 16, 25), the congruences (5.3) predict the exact power of tﬂhat
prime dividing c(n), (n < 25).

We shall now prove some other remarkable congruences. From the
formulae of section 2 it follows that )

J(r) =1, M3 e — Yo (M3 M) M;s — 9232 M3 My 228-1,
Combining this with the formulae of section 3 one gets
J(7) + 22374 = 92 3-2 M3 My = 2710 3-5 97 (g — g — 235 9 q7%),

and after introduciug (4.1), with ¢(—1) =1, ¢(0) = 744,
B e 9]
HEBCE BT 348 o) ) — 1y (422 — gy — a9 o e
n=1

Now, in virtue of (3.1) it holds

W=n@ 0D =00 0™ (mod 1), (b 12,3),

and morcover 295 — (mod 71), so that

THE+ 3 e(n) ¢ =1y, {g,(q) g, (g7) — 73(9) 23(7™)}
' 0D (7)) (mod 71).

Writing, for a moment, ¢'(n) = ¢(n) if » # 0, ¢'(0) = 1, then together
with (3.1) again, one gets

2 ¢'(n) g3 = 1, {2 pas(n) " 3 2, (0) g
n=1 n=0 n=0
- EO(‘)”%O(”') 75 2 (=)" pg, (n) g
n= n=0Q
= 4% 3 py(n) > 2 Pa(n) gt (mod 71).
n=0 n=0

By equating the coefficients of the terms containing ¢2*+3 one finds then
at last

[27 +3/71] (n—3/71]

+3/71
s )= 2 W p sy Y
(".').4) k=0 k=0

(mod 71), n =0,

The two partition functions Pa(n) and p,,(n) have been tabulated by
G. N. Warsox (8], up to n = 400. They are, moreover, easily computable
and relatively small numbers. The right hand side of (5.4) contains only
very few terms, even less than it appears at first sight since p,,(2) = 0.
For instance, for » < 109, (5.4) runs in full

¢(n) = pa, (20 + 3) + p,, (20 + 3=T1) =py(n—3)—p, (n—3-71)
(mod 71), 05 < 109.
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For # = 100, for instance, one has
¢(100) = 354357 + 14157 — 345856 — 165 = 22493 = 57 (mod 71),

which involves really small numbers only in comparison to ¢(100) itself
which is a number of 33 decimal digits.

In the derivation of (53.4) M, was introduced. If instead one introduces
M, and proceeds along the same lines one gets the analogous congruence

[2n+2/47] [n—2/47] .
S = ) a2+ 24TH) 5 S pall) pan—2—4TH
(5.5) k=0
( _ (mod 47), n 7 0.

The analogous congruence modulo 23 is more complicated and will be
omitted. From the numerical data it appears that similar congruences
must exist modulo 41 and modulo 59. Actually the existence of (5.4) and
(5.5) was also first found empirically.

6. The compulation of c(n)

The coefficients c(n) were compoted for n = — 1(1)100 from vax
per Pol’s formula [7, (38)]
(6.1) I (1) = o (03 + 65+ 03) (6° +057° +6.7°),

What is the explicit form of (4.3), using the methods described in
section 4.
The function s(rn) was computed for n = 0(1)200 and the function Hn)

for m = —1(1)100 by means of the sclfchecking relations (4.10). They
were checked moreover by means of (4.12). From (+.8) and (+.11) followed
d(n) and c¢(n) for n = —1(1)100. This whole part was checked by dupli-

V= vesm——

cation. Next ¢(n) was computed from the second selfchecking equation
(+.2) for n = 1(1)30 as an independent check. At last all values of c(n)
were submitted to the congruence-checks (3.4) and (3.3). Tor special
values of n the congruences (5.2) and (5.3) were used as checks. The
congruence (5.1), although valid for all n, was of little use since in both
ways of computing the c(n) the factor 24 plays a role.

With regard to the remark following (5.3), it is interesting to see
whether Lehner’s statement also applies to the new powers of primes
(< 13) that are available now (viz. n = 27, 32, 49, 64, 81). This appears
%0 be the case indeed. This phenomenon is rather interesting. In order to
have a further check, ¢(128) was calculated modulo 2% from Lehmer’s
duplication formula [4]. It was found that ¢(128) = 2% (mod 2%°) so that
also in this case Lehner’s statement holds.

The values of ¢(n) are given in the following table.
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c(n) ’ n
1| —1
744 0
1 96884 | 1
\ 214 93760 | 2
ﬁ g? 8642 99970 3
2 02438 562506 4
33 32026 40800 5
425 20233 00096 6
4465 69940 71935 7
40149 08866 56000 8
3 17644 02297 84420 9
22 56739 33095 03600 10
146 21191 14995 19294 11
874 31371 96857 75360 | 12
4872 01011 17981 42520 | 13
25407 82738 94105 25184 | 14
1 26142 91646 57818 43075 15
5 93121 77242 14450 58360 16
26 62842 41315 07752 43160 | 17
114 59912 78844 47865 13920 { 18
474 38786 S$0123 41688 13230 | 14
1804 49076 24889 33900 28800 20
7318 11377 31813 75192 45696 21
27406 30712 51362 46549 29920 | 22
99710 41639 93718 26035 33820 | 23
3 53074 53186 56142 70908 77376 | 24
12 18832 84330 42251 04333 51500 25
41 07899 60190 30790 91576 33144 26
135 35633 41518 64657 S6750 77300 27
436 56802 24858 87663 46104 01230 28
1379 £3758 34642 00002 53422 88376 | 29
4978 07822 44213 26256 70582 27200 | 30
13023 36938 25770 20512 80448 73221 \ 31
38960 80061 70995 91180 43000 983060 | 32
1 14632 03936 00S10 63777 96110 90240 | 33
3 31962 77091 30267 16726 36796 06784 ‘ 34
9 46816 61357 02260 43164 62634 38600 | 33
26 61436 38257 53796 20887 21518 75584 | 36
73 77316 909697 25069 76080 17923 54360 | 37
201 76878 99472 28738 64838 00437 76000 38
544 76388 17516 16630 12316 54104 77688 39
1452 68025 44303 62169 79435 54203 76000 | 40
3827 76775 17393 63485 06339 83311 30120 41
0970 41660 02174 43268 73940 99683 24320 42
25683 33470 63954 06994 77401 18663 19670 i 43
65452 36773 14992 68312 17028 36051 44060 | 44
1 63078 82156 SISGl 74782 49628 31551 42200 | 43
4 12189 63080 52167 73430 54445 72343 33696 | 46
10 19253 515%9 15767 91938 63201 10914 378353 47
24 96774 10595 07166 92603 31512 31996 72320 18
60 60374 41541 37209 99342 37822 28126 50032 40
145 81598 43321 50199 97540 30132 61539 84000 ! 50

i ———.

——
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L 399
c(n) r n
347 82074 25351 24906 52111 11193 03264 16268 | 51
822 82309 23604 86379 46346 57066 92508 05760 52
1930 75525 46782 25741 67329 52965 S$7752 61720 53
4494 97224 12333 74771 53078 53776 07541 22752 | 54
10384 83010 387904 97940 68925 15368 59324 33825 } 55
23814 07585 30992 24134 09931 81283 96335 84128 56
54214 49889 870656 47230 "00378 95797 97720 88000 57
1 22353 63475 04082 06615 33516 23305 01637 60000 | 58
2 75134 11002 83948 (4606 92553 08616 87146 59374 59
6 13542 89505 30361 36170 69338 27228 48387 77600 60
13 59250 92428 36550 38007 01809 16661 62804 74163 61
29 92109 83800 07688 36650 74953 85452 33318 70720 62
i 65 45530 43491 65030 30643 85476 04156 09953 653270 63
: 142 31976 35972 71606 23108 02114 65424 36336 81152 64
307 60954 73477 19676 30396 15340 12847 95230 17200 65
661 00917 73782 87162 74439 00215 08064 15860 54240 66
1412 35833 72861 18400 82870 80245 80187 32135 44410 67
3001 00414 97911 12962 58941 10839 46623 40005 18080 | 63
6341 984235 35335 41630 77601 14920 60361 94613 13664 ‘ 63
13331 26252 93210 23532 85518 96736 23687 92334 81600 [
27877 50248 90624 32847 67184 03296 34876 03051 98947 | 71
57998 94663 06862 70977 78971 24287 02702 89346 56000 | 72
1 20064 76859 24154 07996 570067 63561 79539 53481 73320 | 73
; 2 47334 29311 83106 50913 62636 13239 67836 40920 91488 ! e}
L 5 07071 19308 98997 08057 00789 06280 842190 63195 46750 75
10 34690 66403 50426 35622 63163 39259 82257 41159 46496 | 76
21 01594 58102 75143 23069 10380 02482 07991 00864 59520 5
42 49352 00246 86459 96806 93275 41404 17894 12308 69440 | 75
85 53908 18184 24975 89405 37694 48003 79634 9508G 43578 79
171 44484 30238 36632 32303 03070 660626 55430 46332 41600 30
342 15552 55551 89176 73198 38601 23583 94201 19784 93364 l 31
| 679 93684 36672 14052 17195 40980 13582 52260 99440 65120 82
1345 82384 70689 81684 95259 62168 82155 84589 79008 27370 83
2652 88632 13847 03560 25223 21296 59440 09217 23815 83408 34
© 5208 62134 25202 53933 69315 34883 96012 72044 83857 83600 85
5 10186 63549 71409 56830 21681 12072 29975 61148 07976 01702 86
19845 94685 77153 87241 69587 80804 25504 86362 "87388 82125 ‘ 87
38518 94383 02834 97365 36939 13362 43138 88225 01457 92000 | 88
74484 51892 92890 17811 71998 98327 68142 07693 12594 10120 | 89
1 43507 17246 72834 53885 51522 23427 82991 19235 32076 03200 i 90
| 2.75501 04261 67891 53749 08061 78938 36796 95113 30207 83496 | 91
' 5 27036 05803 32817 64188 08922 00416 29201 19197 55057 36160 | 92
10 04730 45344 09390 42843 89896 53654 12981 69030 71458 27840 ! 93
19 08864 09832 13103 02488 60473 90986 18405 93893 84773 79584 94
36 14432 17930 44626 81879 67650 91204 64684 97513 08362 05230 |95
68 21306 83268 93807 76546 62932 56534 65084 00341 84769 04448 = 06
128 31568 45003 05662 37049 15719 10171 04861 21743 36342 89960 ‘ 97
{ 240 60143 44493 76049 97591 58609 03804 73418 08640 16968 39630 .98
449 72195 69301 18067 40150 81827 51777 54986 40947 29105 49646 99
837 98831 11070 74769 12751 95038 47574 52703 80191 83390 72000 ‘ 100
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