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§1. Introduction.

An elliptic curve E over a field K of characteristic p > 0 is called supersingular
if the group E(K̄) has no p-torsion. This condition depends only on the j-invariant
of E and it is well known (cf. §2 for a review) that there are only finitely many
supersingular j-invariants in F̄p. We are interested in computing the polynomial

ssp(j) =
∏
E/F̄p

E supersingular

(
j − j(E)

)
∈ Fp[j] .

The polynomial describing supersingularity in terms of the λ-invariant of E (defined
by writing E over K̄ in Legendre form y2 = x(x− 1)(x− λ)) has a well-known and
simple explicit expression, but a convenient expression for the polynomial expressing
the condition of supersingularity directly in terms of the j-invariant (i.e., in terms of
a Weierstrass model over K, without numbering the 2-torsion points over K̄) is less
easy to find. In this (partially expository) paper, we will describe several different
ways of constructing canonical polynomials in Q[j] whose reductions modulo p give
ssp(j). These will be of three kinds:

A. polynomials coming from special modular forms of weight p− 1,
B. the Atkin orthogonal polynomials, and
C. other orthogonal polynomials coming from hypergeometric series.

In the rest of this introduction, we will describe in more detail these various ways
of getting the supersingular polynomials.

A. For any even integer k > 2, let Mk denote the space of modular forms of
weight k on Γ = PSL(2,Z). We can write k uniquely in the form

k = 12m+ 4δ + 6ε with m ∈ Z≥0, δ ∈ {0, 1, 2}, ε ∈ {0, 1} , (1)

and then dimMk = m+ 1 and any modular form in Mk can be written uniquely as

f(τ) = ∆(τ)mE4(τ)δ E6(τ)ε f̃
(
j(τ)

)
(2)

for some polynomial f̃ of degree ≤ m in j(τ), the coefficient of jm in f̃ being equal
to the constant term of the Fourier expansion of f . (Here ∆, E4, E6 and j have
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their standard meanings, recalled in §3.) On the other hand, if k = p−1 for a prime
number p ≥ 5, then deg ssp = m + δ + ε and the polynomial ssp(j) is divisible by
jδ(j − 1728)ε. We will describe for each k four (three if k ≡ 2 mod 3) modular
forms Ek, Fk, Gk, and Hk of weight k such that if k = p−1 then the corresponding
polynomial in j, multiplied by jδ(j−1728)ε, reduces modulo p to the supersingular
polynomial. These forms are defined as follows:

Ek is the normalized Eisenstein series of weight k ;

Gk is the coefficient of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)−1/2 ;

Hk is the coefficient of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)k/2 ;

Fk for k 6≡ 2 (mod 3) is the unique normalized solution in Mk of the differential
equation ϑk+2ϑkFk = k(k+2)

144 E4Fk. Here ϑk : Mk → Mk+2 is the derivation f 7→
f ′ − kE2f/12 where f ′ = (2πi)−1df/dτ = q df/dq and E2 = ∆′/∆ = 1− 24q − · · ·
is the “nearly modular” Eisenstein series of weight 2; the existence and uniqueness
of Fk will be shown in §3. The first result is then:

Theorem 1. Let k = p−1 where p ≥ 5 is prime and let f be any of the four modular
forms Ek, Fk, Gk, Hk described above. Then the coefficients of the associated
polynomial f̃ are p-integral and

ssp(j) ≡ ±jδ(j − 1728)ε f̃(j) (mod p) .

Of these four descriptions of ssp(j), the ones in terms of Hk and Ek are well-
known, the former being a classical result of Hasse and Deuring and the latter a
result apparently first noticed by Deligne (cf. [8]). We will give self-contained and
elementary proofs of all four in §§2–3. We will also give alternate descriptions of Gk
as the residue at 0 of the k+1

2 -th power of the Weierstrass ℘-function and of Fk as
a hypergeometric function. As a numerical example, for k = 28 the polynomials
f̃(j), related to the corresponding modular forms by f(τ) = ∆(τ)2E4(τ) f̃(j(τ)),
are given by

Ẽk(j) = j2 − 5699870640000
3392780147 j + 1180807372800000

3392780147 ,

G̃k(j) = 3304503
2048 j2 − 8394435

4 j + 176359680 ,

H̃k(j) = 6608316 j2 − 23558895360 j − 1434705592320 ,

F̃k(j) = 391
72 j2 − 11424 j + 4644864 .

and with p = 29 we indeed find

Ẽk(j) ≡ F̃k(j) ≡ −G̃k(j) ≡ −H̃k(j) ≡ j2 + 2j + 21 ≡ ssp(j)/j (mod p) .

B. The second, and even more beautiful, description of the supersingular poly-
nomials was found about ten years ago by Atkin, who was inspired by a paper of
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Rankin [7] on the zeros of Eisenstein series. However, Atkin’s proofs were appar-
ently never published and are not well-known. One main purpose of this paper is
to popularize and to provide simpler proofs of his discoveries.

Atkin defines a sequence of polynomials An(j) ∈ Q[j], one in each degree n, as
the orthogonal polynomials with respect to a special scalar product. Recall that, if
V is the space of polynomials in one variable over a field K, and φ : V → K a linear
functional, then one can consider the scalar product on V defined by (f, g) = φ(fg)
and the family—which for generic φ exists and unique—of monic polynomials which
are mutually orthogonal with respect to it. The study of such polynomials, which
we will review briefly in §4, is an old subject and is important in many parts of
mathematics. In our context, we take V to be the space of polynomials in j; thinking
of j as the modular invariant j(τ) = q−1 + 744 + · · · , we can identify V with the
space of holomorphic Γ-invariant functions in the upper half-plane H which are
meromorphic at infinity (i.e. f

(
aτ+b
cτ+d

)
= f(τ) for all

( a b
c d

)
∈ Γ and f has a Laurent

series expansion f(τ) =
∑

n�−∞
cnq

n).

Theorem 2 (Atkin). There is a unique functional φ on V (up to a scalar multiple)
for which all Hecke operators Tn : V → V (n ∈ N) are self-adjoint with respect to the
associated scalar product (f, g) = φ(fg), and a unique family of monic polynomials
An(j) of degree n = 0, 1, 2, . . . which are orthogonal with respect to this scalar
product.

We will prove this theorem, and at the same time give several explicit descriptions
of the scalar product, in §5. We mention only one here. Take the weight 12 cusp
form ∆(τ) = q− 24q2 + 252q3 + · · · (rather than q or j−1) as a local parameter for
H/Γ at infinity. Then

(f, g) = constant term of f(τ) g(τ) as a Laurent series in ∆(τ) . (3)

The polynomials An can be found by the Gram-Schmidt orthogonalization proce-
dure or by the explicit formulas given in Theorem 4 below. The first few are

A0(j) = 1 ,

A1(j) = j − 720 ,

A2(j) = j2 − 1640j + 269280 ,

A3(j) = j3 − 12576
5

j2 + 1526958j − 107765856 ,

A4(j) = j4 − 3384j3 + 3528552j2 − 1133263680j + 44184000960 .

The coefficients of An are rational numbers in general, but they are p-integral
for primes p > 2n. In particular, if np (≈ p/12) is the degree of the supersingular
polynomial ssp, then Anp has p-integral coefficients, and we have:

Theorem 3 (Atkin). Let p be a prime number. Then ssp(j) ≡ Anp(j) (mod p) .

The form of this theorem is a little surprising: unlike the descriptions in Theorem 1,
where the polynomials depended separately on m, δ and ε and we therefore had four
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polynomials of each degree, here the polynomial depends only on n = m+δ+ε. Thus
a single Atkin polynomial An may have to do duty for as many as four different
supersingular polynomials, if the four numbers 12n − 13, 12n − 7, 12n − 5 and
12n+ 1 are all prime, e.g. the supersingular polynomial for each of the four prime
numbers p = 23, 29, 31, 37 is the mod p reduction of the same polynomial A3(j).
For instance, for p = 29 we find A3(j) ≡ j3 +2j2 +21j (mod p), in accordance with
the numerical examples given in A above.

Theorem 4. The polynomials An are determined in each of the following ways:
i) Recursion relation:

An+1(j) =
(
j − 24

144n2 − 29
(2n+ 1)(2n− 1)

)
An(j)

− 36
(12n− 13)(12n− 7)(12n− 5)(12n+ 1)

n(n− 1)(2n− 1)2
An−1(j)

(4)

for n ≥ 2, with initial values A0, A1, A2 as given above;
ii) Closed formula:

An(j) =
n∑
i=0

123i

[ i∑
m=0

(−1)m
(
− 1

12

i−m

)(
− 5

12

i−m

)(
n+ 1

12

m

)(
n− 7

12

m

)(
2n− 1
m

)−1]
jn−i

iii) Differential equation:

j2(j − c)2 (n2j − 144)A′′′′n + j(j − c) [6n2j2 − 144(36n2 + 7)j + c2/3]A′′′n
− [(2n4 − 7n2)j3 − 48(72n4 − 245n2 − 30)j2 − 4c(240n2 + 413)j + 320c2]A′′n
− [(2n4 − n2)j2 − 24(72n4 − 13n2 − 12)j + 2c(192n2 − 107)]A′n
+ [n6j − 24(18n4 − n2)]An = 0

where c = 1728, and An is the unique monic polynomial solution of this equation.

We will give a proof of Theorem 3 from the point of view of modular forms theory
in §6 and a second proof, from the point of view of the theory of hypergeometric
functions and with the recurrence (4) as the definition of the Atkin polynomials,
in §7. (Atkin’s original proof also used modular forms and hypergeometric func-
tions, but involved higher hypergeometric functions pFq and was considerably more
complicated.) §7 also contains the proof of Theorem 4 and of other explicit formulas
for An in terms of truncated hypergeometric series.

C. In §8 we will show that the polynomials F̃k(j) attached to the modular forms
Fk (2|k, k 6≡ 2 (mod 3)) defined in part A have beautiful expressions as hyperge-
ometric polynomials and also enjoy properties like those of the Atkin polynomials:
not only do their reductions modulo p give the supersingular polynomials, but they
are also orthogonal with respect to a suitable scalar product on a space of modular
functions on PSL(2,Z). This scalar product does not have the nice property of
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making the Hecke operators self-adjoint, but is in other respects much simpler than
the Atkin scalar product (the scalar product of two monomials in j and j − 1728
is given by a very simple formula). Moreover, the polynomials F̃k are given by for-
mulas similar to those in Theorem 4, but rather simpler: they satisfy a recursion of
almost exactly the same form as (4) (more precisely, four recursions, one for each of
the residue classes modulo 12 which occur), but are given by a much simpler closed
formula and satisfy a much simpler differential equation, of order 2 rather than 4.
The detailed statement will be given as Theorem 5 in §8 when we have established
more notation.

The last two sections of the paper contain a few complementary results. As we
already mentioned, the recursion (4) implies that An(j) has rational coefficients
and is p-integral for p > 2n. But the recursion shows only that its denominator
divides (2n)!(2n−2)!

22n−1n! , while from numerical examples we find that the denominators
are in fact far smaller. (For instance, the denominator of A9(j) is only 34, and
only three of its coefficients are non-integral, and the previous An(j) have even
fewer non-integral coefficients.) In §9 we will use the closed formula in Theorem 4
to study this phenomenon and some related congruences. Finally, in §10 we will
describe an elementary argument relating the properties of the classical modular
polynomial Φp(X,Y ) ∈ Z[X,Y ] to the mod p reduction of the polynomial Ẽp−1(j),
and thus the supersingular polynomial. This yields at the same time easy proofs
of some properties of supersingular polynomials which were mentioned in the text
and a partial answer to a question of E. de Shalit [9].

§2. Supersingular elliptic curves

The definition of supersingular elliptic curves over a field of characteristic p was
given at the beginning of the paper. We begin by recalling the statement and proof
of the standard criterion for deciding whether a given curve over a finite field Fq
(q = pr, p odd) is supersingular or not.

Proposition 1. Let E be the elliptic curve over Fq defined by the equation y2 = f(x)
(f ∈ Fq[x] of degree 3), and ap the coefficient of xp−1 in f(x)(p−1)/2. Then
|E(Fq)| ≡ 1−NFq/Fpap (mod p).

Corollary. E is supersingular if and only if ap = 0.

Proof. For x ∈ Fq the number of solutions in Fq of y2 = f(x) is equal to 1 +
f(x)(q−1)/2 (namely, to 0, 1, or 2 for f(x) /∈ (Fq)2, f(x) = 0, or f(x) ∈ (F×q )2,
respectively). Counting also the point at infinity, we find

|E(Fq)| = 1 +
∑
x∈Fq

(
1 + f(x)

q−1
2
)

in Fq .

Since the sum over x ∈ Fq of xj equals −1 for j = q− 1 and 0 for all other j in the
range 0 ≤ j ≤ 3(q − 1)/2, this gives

|E(Fq)| = 1− aq in Fq ,
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where aq denotes the coefficient of xq−1 in f(x)(q−1)/2. (In particular, aq belongs
to Fp and not merely to Fq.) But from the expansion

f(x)
q−1
2 = f(x)

p−1
2 (1+p+···+pr−1) = f(x)

p−1
2 f (p)

(
xp
) p−1

2 · · · f (pr−1)
(
xp

r−1) p−1
2 ,

where f (pj) is the polynomial obtained from f by raising all its coefficients to the pj-
th power, we see that aq = a1+p+···+pr−1

p = NFq/Fp(ap). This proves the proposition.
To prove the corollary, note that if ap = 0, then |E(Fqn)| ≡ 1 6≡ 0 (mod p)

for all n, so E has no p-torsion over F̄p. Conversely, if ap 6= 0, then |E(Fqn)| ≡
1−(NFq/Fpap)

n is divisible by p for n divisible by the order of NFq/Fp(ap) modulo p,
so E(F̄p) does contain p-torsion.

We now write out the contents of the corollary explicitly in terms of the standard
Weierstrass equation. This will give the proof of Theorem 1 in the case f = Hk.
Suppose that p ≥ 5. Then any elliptic curve over a field K of characteristic p can
be written in a Weierstrass form

E : y2 = x3 − 3Qx + 2R , (5)

where the factors−3 and 2 have been included to coincide with traditional notations.
(If Q and R are replaced by the Eisenstein series E4(τ) and E6(τ) then (5) is an
equation of the elliptic curve C/(Zτ + Z) over C with j-invariant j(τ).) The j-
invariant of E is equal to Q3/∆, where ∆ = (Q3 − R2)/1728. We define a graded
homogeneous polynomial Hp−1(Q,R) of degree p − 1 in Q and R (where Q and
R have degrees 4 and 6, respectively), the Hasse polynomial, as the coefficient of
xp−1 in (x3 − 3Qx + 2R)(p−1)/2, so that the modular form Hp−1(E4(τ), E6(τ)) is
the same as the modular form of weight p− 1 denoted Hp−1(τ) in the introduction.
As explained there, we can write this polynomial in the form

Hp−1(Q,R) = ∆mQδRε H̃p−1(j)

for some polynomial H̃p−1 ∈ Z[j], where m, δ and ε are the numbers defined by (1)
with k = p− 1. They are given explicitly by

m =
[ p
12
]
, δ =

{
0 if p ≡ 1 (mod 3),
1 if p ≡ 2 (mod 3),

ε =
{

0 if p ≡ 1 (mod 4),
1 if p ≡ 3 (mod 4).

(6)

It now follows from the corollary above that, at least in the case K ⊂ F̄p, the curve
E is supersingular if and only if jδ(j − 1728)εH̃p−1(j) = 0 and hence that

ssp(j) | jδ(j − 1728)εH̃p−1(j) .

The fact that the two polynomials agree up to a constant, as claimed in Theorem 1,
therefore follows from the well-known formula

np (:= deg ssp(j) ) = m+ δ + ε , (7)
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but to make the paper self-contained we give a direct proof. It suffices to show that
the polynomial jδ(j − 1728)εH̃p−1(j) has no multiple roots, since we have already
shown that it has the same zeros as ssp, which is square-free by definition. We first
treat the roots 0 and 1728. From the expansion

(x3 − 3Qx+ 2R)
p−1
2 =

(
x3 + 2R

) p−1
2 − 3

p− 1
2

Qx
(
x3 + 2R

) p−3
2 + O(Q2)

we find

Hp−1(Q,R) =


( p−1

2
p−1
3

)
(2R)

p−1
6 + O(Q) if p ≡ 1 (mod 3)

−3 p−1
2

( p−3
2
p−2
3

)
(2R)

p−5
6 Q+ O(Q2) if p ≡ 2 (mod 3)

and hence in both cases that H̃p−1(0) 6≡ 0 (mod p). A similar argument works
for j = 1728. That the other numbers in F̄p cannot be multiple zeros of H̃p−1(j)
follows from the fact that this polynomial satisfies a second-order linear differential
equation with polynomial coefficients and with leading coefficient j(j − 1728). (We
will show in §3 that H̃p−1 and F̃p−1 agree modulo p, and the differential equation
for the latter is a simple translation of the definition of Fk, given explicitly in §8.)
This implies that any common zero in F̄p \{0, 1728} of H̃p−1 and its first derivative
would be a zero of all higher derivatives and hence have infinite order, which is
impossible. (Note that since we are in characteristic p, this argument would fail if
H̃p−1 were a polynomial in jp, but this is not the case since deg H̃p−1 = m < p.)

Remark. We have proved in particular that there are only finitely many supersin-
gular invariants in F̄p, as mentioned in the introduction. In fact, one knows that
these are the only supersingular j-invariants (i.e., the j-invariant of a supersingular
elliptic curve over any field K of characteristic p lies in F̄p), and also that they
all lie in Fp2 (equivalently, ssp(j) factors into linear and quadratic polynomials
in Fp[j]). For proofs we refer the reader to [3] and [1], which are the two basic
references for the theory of supersingular elliptic curves. In §10 we will give an
elementary proof of the fact that all roots of ssp(j) lie in Fp2 (using the formula
ssp(j) = jδ(j − 1728)εẼp−1(j), which will be established in the next section), as
well as another proof of the simplicity of the zeros 6= 0, 1728 of H̃p−1(j) (mod p).

§3. Modular forms and supersingular polynomials

Our object now is to prove Theorem 1 of the Introduction. We begin by giving
the definitions of the special modular forms Ek, Fk, Gk, and Hk in more detail. For
k even and positive we denote by Bk the kth Bernoulli number and by Ek(τ) the
kth Eisenstein series

Ek(τ) = 1− 2k
Bk

∞∑
n=1

(∑
d|n

dk−1

)
qn (q = e2πiτ ).
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It is a modular form of weight k for k ≥ 4 and for k = 2 is “nearly modular”:

E2

(aτ + b

cτ + d

)
= (cτ + d)2E2(τ) +

6
πi
c(cτ + d)

(( a b
c d

)
∈ Γ
)
. (8)

We also define ∆ = (E3
4 − E2

6)/1728 ∈ M12 and j(τ) = E4(τ)3/∆(τ), the modular
invariant. From (8) it follows easily that

E′2 =
E2

2 − E4

12
, E′4 =

E2E4 − E6

3
E′6 =

E2E6 − E2
4

2
, ∆′ = E2∆ (9)

and more generally ϑk(f) = f ′ − k
12E2f ∈ Mk+2 for any f ∈ Mk, where ′ denotes

differentiation with respect to 2πiτ . If k is represented as in (1), then any f ∈Mk

has a zero of multiplicity ≥ δ at τ = eπi/3 and a zero of multiplicity ≥ ε at τ = eπi/2

and hence is divisible by Eδ4E
ε
6 , and it follows that f has a representation as in (2)

with f̃ a polynomial of degree at most m.
If k+4 6≡ 0 (mod 3), then every element of Mk+4 is divisible by E4, so we have an

endomorphism φk of Mk defined by φk(f) = E−1
4 ϑk+2(ϑk(f)). Since the constant

term of φk(f) is κk := k(k+2)/144 times the constant term of f , this map preserves
the codimension 1 subspace of cusp forms and induces on the quotient space the
map multiplication by κk. It follows that κk is an eigenvalue of φk. If we pick
some corresponding eigenvector Fk, then the other eigenvectors are the modular
forms ∆iFk−12i (1 ≤ i ≤ m) with eigenvalues κk−12i 6= κk (because ϑk ◦ ∆i =
∆i ◦ϑk−12i and dimMk = m+1), so Fk is unique up to a normalizing factor, which
we will fix later when we give natural formulas for Fk in terms of hypergeometric
series. Together with the definitions of Hk and Gk given in §1, this defines the
four modular forms Ek, Fk, Gk, Hk ∈ Mk. (The letters E, F an H are meant to
suggest Eisenstein series, hypergeometric function, and Hasse invariant, while the
remaining letter fills the gap.) We will prove that for any prime number p ≥ 5

Ẽp−1(j) ≡ F̃p−1(j) ≡ (−1)δ+ε G̃p−1(j) ≡ (−1)δ+ε H̃p−1(j) (mod p) (10)

and
ssp(j) = (−1)δ+ε jδ (j − 1728)ε H̃p−1(j) (mod p) , (11)

which together form a slightly more precise version of Theorem 1. (Here and in
what follows, δ and ε are defined by (6).)

Equation (11) was already proved in the last section, except for the value of the
constant (−1)δ+ε. Since ssp is by definition monic, we only have to compute the
leading coefficient of H̃p−1. The leading coefficient of the polynomial f̃(j) for any
modular form f ∈ Mk is just the constant term of the Fourier expansion of f , i.e.
the limiting value of f as q → 0. Since E4 and E6 have the value 1 at q = 0,
this number for H̃p−1 is just the coefficient of Xp−1 in (1 − 3X4 + 2X6)(p−1)/2 =
(1−X2)p−1(1 + 2X2)(p−1)/2, and from

(1−X2)p−1(1 + 2X2)
p−1
2 ≡ 1−X2p

1−X2

[
(1 + 2X2)

p−1
2 − 3

p−1
2 + 3

p−1
2
]

≡
(
1−X2p

) (
polynomial of degree p− 3

)
+
(3
p

)1−X2p

1−X2
(mod p)
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we find that this coefficient is congruent to
(

3
p

)
= (−1)δ+ε modulo p, as claimed. We

remark that the evaluation of the constant in (11) would also follow from equation
(10) which we will prove independently, since both ssp and Ẽp−1 are monic.

We now proceed to equation (10). The congruence G̃p−1 ≡ H̃p−1 (mod p) is
obvious, since the generating functions of the modular forms Gk and Hk differ
by a factor (1 − 3E4X

4 + 2E6X
6)p/2 ≡ 1 + O(Xp) (mod p). For the congruence

between G̃p−1 and Ẽp−1 we again use a generating function. Consider the elliptic
curve over C with Weierstrass model (5), where Q = E4(τ), R = E6(τ). It can be
parametrized in a well-known way by the Weierstrass ℘-function (here renormalized
to keep coefficients rational), namely by x = P (u), y = − 1

2P
′(u) where

P (u) = u−2 −
∑

n≥4, n even

12n/2Bn
n(n− 2)!

En(τ)un−2

(Bn = nth Bernoulli number). Therefore the change of variables X = P (u)−1/2 =
u+ . . . gives

Gk = ResX=0
dX

Xk+1
√

1− 3E4X4 + 2E6X6

= Resu=0 P (u)
k+1
2 du

= coeff. of uk in
(

1−
∑

n≥4 even

12n/2Bn
n(n− 2)!

En u
n

) k+1
2

.

Now take k = p− 1 and observe that BnEn/n! for n < p− 1 is a polynomial in E4

and E6 with p-integral coefficients, while pBp−1/(p− 1)! ≡ 1 (mod p), so

(
1−

∑
n≥4 even

12n/2Bn
n(n− 2)!

En u
n
) p

2 ≡ 1 + 12
p−1
2 Ep−1 u

p−1 + O(up) (mod p) .

Using 12(p−1)/2 ≡
(12
p

)
= (−1)δ+ε, we obtain the desired congruence for Gp−1.

Finally, we have to consider Fk. This function was defined (up to a constant)
as the unique modular form annihilated by the operator ϑk+1ϑk − κkE4. Since
for k = p − 1 the eigenvalues κk−12r (0 ≤ r ≤ k/12) of the operator E−1

4 ϑk+1ϑk
remain distinct after reduction modulo p, this characterization remains valid also in
characteristic p. (By a modular form of weight k modulo p we mean a polynomial
in E4 and E6 of the right degree with coefficients in Fp.) But using formulas (9) we
find that (

ϑk+2ϑk − κk E4

)
f = f ′′ − k + 1

6
E2 f

′ +
k(k + 1)

12
E′2 f

and this certainly vanishes modulo p if k = p − 1 and f is Ep−1, since then the
Fourier expansion of f reduces to 1 mod p. The proportionality of Ep−1 and Fp−1
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modulo p follows. To get the exact constant of proportionality in (10) we still have
to normalize Fk, which we have not done. For reasons to be explained in §8, we will
do this by

constant term of the Fourier expansion of Fk(τ) = (−1)m
(k−5

6

m

)
, (12)

where m is defined as in equation (1). For k = p− 1 the right-hand side of (12) is
clearly congruent to 1 modulo p. This completes the proof of Theorem 1.

§4. Orthogonal polynomials

In this section we review what we will need from the theory of orthogonal poly-
nomials. Let V be the vector space of polynomials in one variable over a field K and
( , ) a scalar product on V of the form (f, g) = φ(fg) where φ : V → K is a linear
functional. (For the classical orthogonal polynomials, and also for the ones we shall
be considering, K is a subfield of R and φ has the form φ(f) =

∫ b
a
f(X)w(X) dX

for some real numbers a < b and some positive function w on (a, b).) Applying
the Gram-Schmidt process to the basis {Xn}n≥0 of V , we obtain a unique basis of
orthogonal monic polynomials Pn by the recursion

Pn(X) = Xn −
n−1∑
m=0

(Xn, Pm)
(Pm, Pm)

Pm(X) ,

provided that at each stage the scalar product (Pn, Pn) is not zero. (This condition
is satisfied generically and is automatic for φ of the special form mentioned above,
since then (f, f) > 0 for all f 6= 0.) The next proposition describes the recursive
calculation of the polynomials Pn(X), assuming this non-degeneracy condition.

Proposition 2. i) The polynomials Pn satisfy a three-term recursion of the form

Pn+1(X) = (X − an)Pn(X) − bn Pn−1(X) (n ≥ 1) (13)

for some constants an, bn ∈ K, bn =
(Pn, Pn)

(Pn−1, Pn−1)
6= 0.

ii) Define a second sequence of polynomials {Qn}n≥0 in K[X] by the same re-
currence as in i), but with initial values Q0 = 0, Q1(X) = φ(1). Then

Qn(X)
Pn(X)

= Φ(X) + O(X−2n−1) ∈ K[[X−1]] (14)

where

Φ(X) =
∞∑
n=0

gnX
−n−1 ∈ K[[X−1]] , gn = (Xn, 1) = φ(Xn) . (15)

This property characterizes Pn (assumed to be monic of degree n) and Qn uniquely.
10



iii) Define numbers λn ∈ K (n ≥ 1) by the continued fraction expansion

g0 + g1x+ g2x
2 + · · · =

g0

1− λ1x

1− λ2x

1−...

∈ K[[x]] . (16)

Then all λn are non-zero and an = λ2n + λ2n+1, bn = λ2n−1λ2n for n ≥ 1.

Proof. i) Since the Pn(X) are monic, we have XPn = Pn+1 + annPn + · · ·+ an0P0

for some constants anm ∈ K. The orthogonality of the Pm and the fact that the
scalar product of two polynomials depends only on their product imply that

anm (Pm, Pm) = (XPn, Pm) = (Pn, XPm) =
{

0 if m ≤ n− 2,
(Pn, Pn) if m = n− 1.

This proves the assertion (with an = ann, bn = ann−1).
ii) From the definitions, (f, g) is just the coefficient of X−1 in the Laurent series

f(X)g(X)Φ(X). In particular, the fact that Pn is orthogonal to all monomials of
degree < n says that the coefficient of X−r−1 in Pn(X)Φ(X) vanishes for 0 ≤ r ≤
n− 1, i.e., that we have

Pn(X) Φ(X) = Qn(X) + O(X−n−1) ∈ K[X,X−1]] (17)

for some polynomial Qn(X) of degree n − 1. (Here K[X,X−1]] denotes the ring
of Laurent series in X−1, i.e. sums of polynomials in X and power series in X−1,
where X is to be thought of as large.) Reversing the argument shows that property
(17), which is obviously the same as (14), is equivalent to the orthogonality of Pn
with all lower degree polynomials and hence characterizes the (monic) polynomial
Pn completely, as asserted. Finally, from (17) and the recursion (13) we find that
Qn+1(X)−(X−an)Qn(X)+bnQn−1(X) = O(X−n), so that this expression, which
is a polynomial, must vanish for n ≥ 1. Hence the Qn satisfy the same recursion
relation as the Pn, with Q0 = 0, Q1 = g0.

iii) Define another vector space V ∗ as K[Y ] with scalar product given by (f, g) =
ψ(fg), where ψ(Y n) is 0 for n odd and gn/2 for n even. Then we get a family of
orthogonal polynomials P ∗n(Y ) by the same construction as before. Since odd and
even polynomials in Y are orthogonal to each other, it is obvious by induction that
P ∗n has parity n for all n (i.e., the even- and odd-index polynomials are even and
odd, respectively), so the first part of the proposition applied to (V ∗, ψ) gives a
recursion of the form P ∗n+1(Y ) = Y P ∗n(Y ) − λnP ∗n−1 for some non-zero constants
λn = (P ∗n , P

∗
n)/(P ∗n−1, P

∗
n−1) ∈ K. The argument of ii) gives a sequence of compan-

ion polynomials Q∗n to the P ∗n (of degree one less, and hence of opposite parity) for
which the rational functions Q∗n(Y )/P ∗n(Y ) are the best possible approximations at
infinity to

∑
gkY

−2k−1, and they satisfy the same recursion Q∗n+1 = Y Q∗n−λnQ∗n−1

as the P ∗’s. From this one gets by induction on n the formula(
Q∗n+1 Q∗n
P ∗n+1 P ∗n

)
=
(
g0 0
Y 1

)(
Y 1
−λ1 0

)
· · ·
(

Y 1
−λn 0

)
.

11



This translates by a standard calculation into the continued fraction

g0Y
−1

1−
λ1Y

−2

1−
λ2Y

−2

. . .
1− λnY −2

=
Q∗n+1(Y )
P ∗n+1(Y )

=
g0

Y
+
g1

Y 3
+ · · · gn

Y 2n+1
+ O

( 1
Y 2n+3

)
.

Setting x = Y −2 and letting n tend to infinity, we get (16). Finally, the recurrence
satisfied by the P ∗n implies the recurrence P ∗n+2 = (Y 2−λn−λn+1)P ∗n−λn−1λnP

∗
n−2

for the P ∗n of a given parity. But V can be identified via X = Y 2 with the even part
of V ∗, with compatible scalar products, so P ∗2n(Y ) = Pn(Y 2). The relation asserted
in the proposition between the coefficients an and bn and the numbers λn follows.

Remark. From the proof we see that the necessary and sufficient condition for the
scalar product defined by φ to be non-degenerate (in the sense that (Pn, Pn) 6= 0
for all n) is that the power series

∑
gnx

n has a continued fraction expansion
as in (16) with g0 and all λn different from 0. We also see that if ( , ) is
positive definite then the numbers bn = λ2n−1λ2n are always positive, and if
(f, g) =

∫ b
a
f(X)g(X)w(X)dX with w ≥ 0 and a ≥ 0 then all λn are positive.

(The condition a ≥ 0 is equivalent to the scalar product on V ∗ being positive
definite, and then λn = (P ∗n , P

∗
n)/(P ∗n−1, P

∗
n−1) > 0.)

§5. The Atkin scalar product and the Atkin polynomials

We gave one definition of Atkin’s scalar product in §1. The following result gives
several alternate descriptions. Recall that V is the set of Γ-invariant holomorphic
functions on H which grow at most like q−N at infinity for some N , that V coincides
with the set of polynomials in j, and that one can take q, j−1 or ∆ as a local
parameter at infinity, where q = e2πiτ , j = j(τ) = q−1 + 744 + 196884q + · · · is the
modular invariant, and ∆ = q − 24q2 + 252q3 + · · · is the discriminant function.

Proposition 3. The following four definitions of a scalar product on V coincide:
i) (f, g) = constant term of fg as a Laurent series in ∆ ;

ii) (f, g) = constant term of fgE2E4/E6 as a Laurent series in j−1 ;
iii) (f, g) = constant term of fgE2 as a Laurent series in q ;
iv) (f, g) = 6

π

∫ π/2
π/3

f(eiθ) g(eiθ) dθ .

Corollary. The scalar product ( , ) is positive definite on VR = R[j] .

Proof. The equivalence of the first three formulas is immediate by writing the con-
stant terms as 1/(2πi) times the corresponding residues and using the formulas

d∆(τ)
∆(τ)

= 2πiE2(τ) dτ = E2(τ)
dq

q
= −E2(τ)E4(τ)

E6(τ)
dj(τ)
j(τ)

.

For the fourth, we use the global residue formula: Let Fa denote the standard
fundamental domain of Γ, truncated at some height a > 1 (i.e., the domain |x| ≤ 1

2 ,
12



x2 + y2 ≥ 1, y ≤ a, where τ = x + iy). The integral of f(τ)g(τ)E2(τ)dτ over
the top edge of this domain equals (f, g) by formula (iii), so the holomorphy of
fgE2 implies that (f, g) is also given by the sum of the integrals over the rest of
the boundary, taken with the appropriate signs. The integrals along the vertical
edges x = ± 1

2 cancel because fgE2 is periodic of period 1. Replacing τ by −1/τ on
the left half of the bottom edge and noting that f and g are invariant under this
transformation, we find that (f, g) equals the integral along the arc from eπi/3 to
eπi/2 of [E2(τ) − τ−2E2(−1/τ)]f(τ)g(τ)dτ . But the expression in square brackets
equals −6i/πτ by the transformation law (8) of E2, and this, with τ = eiθ, gives
formula (iv).

The corollary follows immediately from (iv), since j(eiθ) is real for θ ∈ [π/3, π/2]
and consequently

∫ π/2
π/3

f(eiθ)2 dθ > 0 for f(τ) any non-zero polynomial in j(τ) with
real (or a fortiori, rational) coefficients. Note that formula (iv) can be rewritten in
the form

(f, g) =
∫ 1728

0

f(j) g(j)w(j) dj , w(j) =
6
π
θ′(j)

(here and from now on we will commit the standard abuse of notation of using the
same letter to denote an element of V thought of as a function of τ , q, j or ∆,
indicating by one of these letters the argument intended), where θ : [0, 1728] →
[π/3, π/2] is the inverse to the monotone increasing function θ 7→ j(eiθ). A graph
of the function w(j) is given in Figure 1.

By the results of the last section we now deduce that (i) there is a unique sequence
of monic orthogonal polynomials An(j) of degree n; (ii) the scalar product of two
monomials jn and jm equals gn+m, where gn is the coefficient of j(τ)−n−1 in

Φ(τ) =
E2(τ)E4(τ)
E6(τ)j(τ)

= q − 24q2 + 196812q3 + · · · = 1
j(τ)

+
720
j(τ)2

+ · · · ;

(iii) the An are the denominators of the best rational-function approximations to
Φ; and (iv) they satisfy a recursion of the form

An+1(j) =
(
j − (λ2n + λ2n+1)

)
An(j) − λ2n−1λ2nAn−1(j) (18)

where the λn are positive rational numbers defined by the continued fraction ex-
pansion of Φ with respect to 1/j. Computing numerically, we find that the first few
values of gn = (jn, 1) and λn are given by

g0 = 1, g1 = 720, g2 = 911520, g3 = 1301011200, g4 = 1958042030400,

λ1 = 720, λ2 = 546, λ3 = 374, λ4 = 475, λ5 =
2001

5
.

In §7, in connection with hypergeometric functions, we will show that

λn =


720 if n = 1,

12
(
6 +

(−1)n

n− 1
)(

6 +
(−1)n

n

)
if n > 1,

(19)
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giving the explicit recurrence written in part (i) of Theorem 4 of the Introduction.
However, this recurrence is not needed for the proofs of the two most important
properties of the Atkin polynomials, their Hecke invariance and their relationship
to the supersingular polynomials in characteristic p, to which we now turn.

Proof of Theorem 2. For k ∈ Z let Vk denote the space of holomorphic functions in
H which transform like modular forms of weight k and have at most exponential
growth at infinity (i.e., Vk is the degree k part of the graded ring C[E4, E6,∆−1]).
Note that V = V0 and that V2 coincides with the set of derivatives of functions in
V . We define Hecke operators on Vk by(

f |kTn
)
(τ) = nk/2

∑( a b
c d

)
∈Γ\Mn

1
(cτ + d)k

f
(aτ + b

cτ + d

)
(n ∈ N, f ∈ Vk) ,

whereMn denotes the set of 2×2 matrices with integral coefficients and determinant
n. (This is not the standard normalization of Tn unless k = 2, but will turn out
to be a more convenient normalization when we study both positive and negative
weights.) Notice that this formula makes sense only for f ∈ Vk, since the expression
(cτ +d)−kf

(
aτ+b
cτ+d

)
will not be independent of the choice of representative in Γ\Mn

if f is not modular, but the “Hecke operator at infinity”(
f |kT∞n

)
(τ) = nk/2

∑
ad=n
a, d>0

∑
b (mod d)

d−k f
(aτ + b

d

)
makes sense for any 1-periodic function f and agrees with |kTn if f ∈ Vk because

the matrices
(
a b
0 d

)
with 0 ≤ b < d =

n

a
are a set of representatives for Γ\Mn.

We claim that

Res∞
(
(f |kT∞n ) · h

)
= Res∞

(
f · (h|2−kT∞n )

)
(f, h ∈ C[q−1, q]] ) (20)

and
(gE2)|2T∞n = (g|0Tn) · E2 (mod V2) (g ∈ V0) , (21)

where Res∞(F ) for a 1-periodic holomorphic function F on H denotes the residue
at infinity of 2πiF (τ)dτ , i.e., the constant term of F as a Laurent series in q.
Theorem 2 then follows using description (iii) of the Atkin scalar product and the
fact that V V2 ⊆ V2 and that Res∞ vanishes on V2:

(f |0Tn, g) = Res∞
(
(f |0Tn) · g · E2

)
= Res∞

(
f · (gE2)|2T∞n

)
= Res∞

(
f · (g|0Tn) · E2

)
= (f, g|0Tn) (f, g ∈ V ) .

To prove (20), we check that T∞n acts on Fourier series by(∑
r

Ar q
r
)
|kT∞n = nk/2

∑
ad=n

d1−k
∑
r

Ard q
ar
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and consequently that

Res∞
(
(f |kT∞n )h

)
= nk/2

∑
ad=n

∑
r

d1−kAdrB−ar

= n1−k/2
∑
ad=n

a−1+k
∑
s

BasA−ds = Res∞
(
f (h|2−kT∞n )

)
for f =

∑
Arq

r, h =
∑
Bsq

s. For (21), we use the well-known fact, equivalent to

the transformation equation (8) in §3, that E2(τ) = E∗2 (τ) +
3
πy

, where y = =(τ)

and the non-holomorphic function E∗2 (τ) transforms like a modular form of weight 2.
Denoting by V ∗2 the space of functions with the last property, and observing that
V V ∗2 ⊆ V ∗2 and that |2Tn preserves V ∗2 , we have

(g E2)|2T∞n − (g|0Tn)E2 ≡
3
π

(
(g y−1)|2T∞n − (g|0Tn) y−1

)
(mod V ∗2 ) .

The right-hand side of this formula vanishes by virtue of the calculation

(
(g y−1)|2T∞n

)
(τ) =

∑
ad=n

b (mod d)

n

d2
g
(aτ + b

d

)
=
(aτ + b

d

)−1 = y−1 (g|0Tn)(τ) ,

so the left-hand side, which is holomorphic, belongs to V2 as claimed.
The uniqueness clause in the theorem is easy to prove. Any functional φ : V → C

as in Theorem 2 annihilates the polynomials hn = j|Tn · 1 − j · 1|Tn (n ≥ 2) and
h∗ = j2|T2 ·j−j2 ·j|T2. But these polynomials span a codimension 1 subspace of V ,
since deg hn = n and h∗ is not a linear combination of the hn’s, so φ is unique.

Remark. One can prove in the same way the more general adjunction formula

(f |kTn, g) = (f, g|−kTn) (f ∈ Vk, g ∈ V−k),

where the pairing ( , ) : Vk ⊗ V−k → C is defined by (f, g) = Res∞(f · g · E2).

§6. “Modular” proof of Theorem 3

We saw in the last section that the Atkin polynomials are the denominators of
the best rational approximations to the function Φ = E2E4/E6j, considered as a
function of j near infinity. If p ≥ 5 is a prime, then we know that the Eisenstein
series Ep−1 and Ep+1 are congruent (as power series in q and therefore also as
power series in 1/j) to the constant function 1 and to the Eisenstein series E2,
respectively, so we can replace Φ modulo p by the modular form Ep+1E4/Ep−1E6j,
which has weight 0 and hence is itself a rational function of j. This rational function
is then a perfect, and hence certainly a best possible, approximation to itself, so its
denominator must be (the mod p reduction of) the corresponding Atkin polynomial.
But this denominator is essentially Ẽp−1, and hence essentially the supersingular
polynomial for p by the result of §3. We now give the details of this argument.
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Let p be a prime ≥ 5 (Theorem 3 is trivial for p = 2 or 3), and define m, δ,
and ε by (6). They coincide with the m, δ, and ε of (1) for weight k = p − 1,
while the corresponding numbers for weight p+ 1 are m+ δ + ε− 1, 2(1− δ), and
1− ε, respectively. Equation (2) for the Eisenstein series Ep−1 and Ep+1 therefore
becomes

Ep−1 = ∆mEδ4 E
ε
6 Ẽp−1 , Ep+1 = ∆m+δ+ε−1E2−2δ

4 E1−ε
6 Ẽp+1 ,

so

Φ =
E2E4

E6j
≡ Ep+1E4

Ep−1E6j
=

Ẽp+1

jδ(j − 1728)εẼp−1

(mod p) .

The right-hand side here is a rational function whose denominator is ssp(j) (mod p)
by the result of §3, while the numerator is a polynomial of degree m+δ + ε − 1 =
np − 1. On the other hand, Φ is equal to Bn(j)/An(j) + O(j−2n−1) for any n by
equation (14), where An is the nth Atkin polynomial and Bn a certain polynomial
of degree n − 1. Taking n = np and multiplying An and Bn if necessary by a
common power of p to make Anp p-integral and primitive modulo p, we obtain

Ẽp+1(j)
ssp(j)

≡ Φ ≡
B̄np
Ānp

+ O
(
j−2np−1

)
(mod p)

where Ānp and B̄np are polynomials over Fp of degree ≤ np and ≤ np − 1, re-
spectively. Multiplying this identity by Ānp(j)ssp(j), we find that the expression
B̄npssp−ĀnpẼp+1 is O(j−1) as j →∞ and hence, since it is a polynomial, vanishes.
If we show that Ẽp+1(j) is prime to ssp(j), then it follows that ssp divides Ānp(j)
(mod p) and hence, since Anp is monic of degree np, that Anp indeed has p-integral
coefficients and reduces to ssp mod p. This coprimality assertion is a consequence
(since ssp has no multiple roots) of the identity

Ẽp+1(j) ≡ −12 ss′p(j) + 8 δ
ssp(j)
j

+ 6 ε
ssp(j)
j − 1728

,

which in turn follows from the formulas

12ϑp−1Ep−1 = 12q
d

dq
Ep−1 − (p− 1)E2Ep−1 ≡ E2 ≡ Ep+1 (mod p) ,

(ϑp−1Ep−1)∼ = −jδ(j − 1728)ε
(
δ

3 j
+

ε

2 (j − 1728)
+
d

dj

)
Ẽp−1 .

This completes the proof.
We remark that the last steps of the proof could have been simplified if we had

used the formula (19), which will be proved in the next section, for then it would
follow (i) that the coefficients in (18) are p-integral for n ≤ np, and consequently that
Anp(j) is a polynomial with p-integral coefficients and can be reduced modulo p, and
(ii) that the mod p reductions of Anp and Bnp are coprime (because AnpBnp−1 −
BnpAnp−1 = ±b1 · · · bnp−1 6≡ 0 (mod p)). It then follows by an argument like the
one above that the reduction of Anp divides, and hence, since it is monic, equals,
ssp.
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§7. Hypergeometric aspects of An(j) and ssp(j)

Recall the definition of the classical Gauss hypergeometric series F = 2F1 :

F (a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn =
∞∑
n=0

(−a
n

)(−b
n

)(−c
n

) (−x)n (|x| < 1)

where (a)n denotes the “ascending factorial” a(a + 1) · · · (a + n − 1). (The minus
signs in the second formula are because Gauss chose to use ascending rather than
descending factorials.) If c = −k is a non-positive integer, then F (a, b; c;x) is not
defined, since all terms after the kth have infinite coefficients; if instead a or b is a
non-positive integer, then F (a, b; c;x) is a polynomial. In this section we will relate
the Atkin polynomials to hypergeometric and truncated hypergeometric series, and
use this relationship to give a second proof of Theorem 3 and to prove the various
formulas for An(j) given in Theorem 4 of the Introduction.

We first define four monic polynomials Uεn, V δn of every degree n ≥ 0 by the
formulas

jn F
(

1
12 ,

5
12 ; 1; 1728

j

)
= U0

n(j) + O(1/j)

jn−1 (j − 1728)F
(

7
12 ,

11
12 ; 1; 1728

j

)
= U1

n(j) + O(1/j)

(j − 1728)n F
(

1
12 ,

7
12 ; 1; 1728

1728−j
)

= V 0
n (j) + O(1/j)

j (j − 1728)n−1 F
(

5
12 ,

11
12 ; 1; 1728

1728−j
)

= V 1
n (j) + O(1/j)

as j →∞ (truncated hypergeometric functions).
We will prove two results about these polynomials: that the Atkin polynomials

can be expressed as linear combinations of them, and that their reductions modulo
primes give the supersingular polynomials. Together, these give a second proof of
the relation between the Atkin and the supersingular polynomials. But now we
will take the recursion relation (4) rather than the orthogonality property with
respect to the Atkin scalar product as the defining property of An, so that the new
proof is simpler or more complicated than the first one we gave depending on which
definition of the An’s one considers to be the more fundamental one.

Proposition 4. The functions An(j) (n ≥ 0) defined by the recurrence and initial
conditions given in part (i) of Theorem 4 have the following expressions in terms
of the polynomials introduced above:

An(j) =
n∑

m=0

(−12)3m

(
n+ 1

12

m

)(
n− 7

12

m

)(
2n− 1
m

)−1

U0
n−m(j) ,

An(j) =
n∑

m=0

(−12)3m

(
n− 5

12

m

)(
n− 13

12

m

)(
2n− 1
m

)−1

U1
n−m(j) ,

An(j) =
n∑

m=0

123m

(
n+ 1

12

m

)(
n− 5

12

m

)(
2n− 1
m

)−1

V 0
n−m(j) ,

An(j) =
n∑

m=0

123m

(
n− 7

12

m

)(
n− 13

12

m

)(
2n− 1
m

)−1

V 1
n−m(j) .
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Proof. We will prove only the first of these formulas (which is the same as the
formula given in part (ii) of Theorem 4), the other cases being similar. Denote the
expression on the right of this formula by A0

n. The equality A0
n = An is checked

directly for n ≤ 2, so we must prove the recursion A0
n+1 = (j − an)A0

n − bnA0
n−1,

where an and bn are the rational functions of n occurring in formula (4). We can
rewrite the definition of A0

n as A0
n =

∑n
k=0 c(n, k)U0

k with

c(n, 0) = (−12)3n

(
−5/12
n

)(
−13/12

n

)(
2n− 1
n

)−1

,

c(n, k) = c(n, 0) · 12−3k

(
n

k

)(
−n
k

)(
−5/12
k

)−1(−13/12
k

)−1

.

Then, noting that jU0
k = U0

k+1 − 123k+3
(−1/12
k+1

)(−5/12
k+1

)
, we find

A0
n+1(j)− (j − an)A0

n(j) + bnA
0
n−1(j)

=
n∑
k=0

[
c(n+ 1, k)− c(n, k − 1) + an c(n, k)

+ bn c(n− 1, k)
]
U0
k +

n∑
k=0

123k+3

(
−1/12
k + 1

)(
−5/12
k + 1

)
c(n, k)

(22)

for n ≥ 2, where we have set c(n,−1) = 0 and used that c(n, n) = 1, c(n−1, n) = 0.
We can check directly that the coefficient of U0

k on the right equals 0 for k ≥ 1 and
equals 84c(n, 0)/(n2 − 1) for k = 0. Substituting the value U0

0 = 1 and the values
of an, bn and c(n, k) and writing k = n−m, we then find that the right-hand side
of (22) equals

12c(n, 0)
n2 − 1

n+1∑
m=0

(
−n+ 1

n+ 1−m

)[
7
(
n+ 1
m

)
− 12(n+ 1)

(
n

m

)]
,

where the “extra” term m = n+ 1 comes from the multiple of U0
0 in (22). This last

sum is just the coefficient of xn+1 in (1 + x)1−n[7(1 + x)n+1 − 12(n + 1)(1 + x)n]
and hence vanishes for n ≥ 2.

Remark. The formulas in Proposition 4 can be inverted, e.g., we have

U0
n(j) =

n∑
m=0

123m

(
n+ 1

12

m

)(
n− 7

12

m

)(
2n−m
m

)−1

An−m(j) .

Proposition 5. Let p ≥ 5 be a prime number and write p as 12n−8δ−6ε+1 with
n ∈ N, δ, ε ∈ {0, 1}. Then

ssp(j) ≡ Uεn(j) ≡ V δn (j) (mod p) .
18



Proof. Again we treat only the case of U0
n in detail, the other cases being similar.

So assume that p ≡ 1 (mod 4); then we want to show that ssp(j) ≡ U0
n(j) (mod p).

Write p = 4l + 1. Expanding Hp−1 by the trinomial theorem, we have

Hp−1 = coefficient of Xp−1 in
(
1− 3E4X

4 + 2E6X
6
)2l

=
∑
r, s≥0

2r+3s=2l

(2l)!
r! s! (2l − r − s)!

(
−3E4

)r (2E6)s

=
(
−3E4

)l [l/3]∑
k=0

(2l)!
(l − 3k)! (2k)! (l + k)!

(
− 4

27
j − 1728

j

)k
,

where k = s/2 and we have used that E2
6/E

3
4 = (j−1728)/j. (The calculation with

U1
n in the case p ≡ 3 (mod 4) would be similar but with s = 2k+ 1, while to obtain

the results for V δn we would instead set r = 3k + δ and then expand in powers of
j/(j − 1728).) But one checks easily, either directly or by induction on k, that

(2l)!
(l − 3k)! (2k)! (l + k)!

(
− 4

27
)k ≡ (2l

l

)
( 1

12 )k ( 5
12 )k

k! ( 1
2 )k

(mod p)

so using (11) and noting that [l/3] = m = n−δ and (−1)δ = (−3/p) ≡ 32l (mod p),
we find (writing Fm(a, b; c;x) for the hypergeometric series truncated at degree m)

ssp(j) ≡ (−j)δ H̃p−1(j) ≡ (−3)3l

(
2l
l

)
jn F[l/3]

(
1
12 ,

5
12 ; 1

2 ; 1− 1728
j

)
(mod p) .

Now, taking into account that the coefficients of xk and yk in F ( 1
12 ,

5
12 ; 1;x) and

F ( 1
12 ,

5
12 ; 1

2 ; y) vanish modulo p if k is in the range [l/3] < k ≤ 2l and that both
F ( 1

12 ,
5
12 ; 1;x) and F ( 1

12 ,
5
12 ; 1

2 ; 1−x) satisfy the same second order linear differential
equation with polynomial coefficients of degree at most 2, we can conclude that the
polynomial on the right-hand of the last formula is a multiple of U0

n(j). This multiple
must then be 1 because the supersingular polynomial is monic.

“Hypergeometric” proof of Theorem 3. The theorem is trivial for p = 2 or 3. Oth-
erwise np is the same as the number n in the proposition. Applying Proposition
4 to Uεn or to V δn with this value of n immediately gives the desired result, since
all coefficients except the one for m = 0 vanish modulo p. So we actually get two
proofs.

Proof of Theorem 4. i) We need to prove only the explicit formula (19) for the
coefficients of the continued fraction expansion of Φ = E2E4/E6j with respect
to 1/j, since then (4) reduces to equation (18), which we have already proved.
From the formulas (9) we immediately find that Φ = −d(log ∆)/dj. On the other
hand, ∆ can be expressed hypergeometrically in terms of j by the formula ∆ =
1
j F ( 1

12 ,
5
12 ; 1; 1728

j )12. It follows with the aid of Gauss’s contiguous relations that
19



Φ = F ( 13
12 ,

5
12 ; 1; 1728

j )/jF ( 1
12 ,

5
12 ; 1; 1728

j ), and (19) now follows from Gauss’s well-
known formula for the continued fraction expansion of a quotient of contiguous
hypergeometric functions, as given in [2].

ii) We have just shown that the Atkin polynomials are indeed the An of Propo-
sition 4. The closed formula given in Theorem 4 is then just a rewriting of the first
formula of that proposition, as already mentioned.

iii) The closed formula of part (ii) is equivalent to saying that An(j) can be
obtained by truncating the product

F ( 1
12 ,

5
12 ; 1;x)F (−n− 1

12 ,−n+ 7
12 ; 1− 2n;x) (23)

at xn and inverting it (i.e., set x = 1728/j and multiply by jn). Notice that some
truncation is necessary, since the coefficients of the second factor in (23) become
infinite from degree 2n onwards. In fact we can truncate at xm for any m between
n and 2n − 1, since the coefficient of xi in (23) vanishes for n < i < 2n, as can be
seen by letting γ → 1 in the following identity, which is a consequence of Gauss’s
contiguous relation and two formulas of Heine ([4], proved in [5]):

F (α, β; γ;x)F (−n− α,−n+ 1− β;−2n+ 2− γ;x)

+ δn x
2n(1− x)F (1− α, 1− β; 2− γ;x)F (α+ n+ 1, β + n; γ + 2n;x)

= polynomial of degree n
(
n ≥ 1, δn =

(−α
n+1

)(−β
n

)(
α−γ
n−1

)(
β−γ
n

)(−γ
2n

)(
1−γ
2n

)(
2n
n

)(
2n
n−1

) ) .
The differential equation for An now follows from this truncation argument and
the fact that the product of two hypergeometric functions (or of any two functions
satisfying linear differential equations of second order) satisfies a fourth order linear
differential equation whose coefficients can be calculated by an explicit procedure.
For the uniqueness, we observe that if the function An(j) is replaced by a polynomial
beginning jd for some integer d ≥ 0, then the left-hand side of the differential
equation in (iii) has leading term n2(n2 − d2)2, so the differential equation can be
satisfied only if d = n.

As a corollary to Theorem 4, we have

Proposition 6 (Atkin). The scalar product of An with itself and its special values
at j = 0 and j = 1728 are given for n ≥ 1 by

(An, An) = − 126n+1 (−1/12)n (5/12)n (7/12)n (13/12)n
(2n− 1)! (2n)!

,

An(0) = (−12)3n+1 (−1/12)n (5/12)n
(2n− 1)!

,

An(1728) = − 123n+1 (−1/12)n (7/12)n
(2n− 1)!

.

Proof. The values at j = 0 and j = 1728 can be checked directly from the recursion
(4), while the formula for the scalar product follows from the recursion and part (i)

20



of the Proposition 2, §4. The fact that (An, An) > 0 for all n gives a second proof
of the fact, already mentioned in §5, that Atkin’s scalar product is positive definite.
From the explicit formula for (An, An) and Stirling’s formula we see that the length
of An in the Atkin norm is asymptotically equal to

√
6/π 432n as n→∞.

§8. Hypergeometric properties of Fk .

Recall that the modular form Fk(τ) for k 6≡ 2 (mod 3) is the unique normalized
solution of the second order differential equation

ϑk+2 ϑk Fk −
k(k + 2)

144
E4 Fk = 0 , (24)

the normalization being given as in (12). We introduce the following notations:

ν0 =
1− 2δ

3
, ν1 =

1− 2ε
2

, ν∞ =
k + 1

6
(ν0 + ν1 + ν∞ = 2m+ 1) ,

X0 = J =
j

1728
, X1 = 1− J , X∞ = −1 (X0 +X1 +X∞ = 0) ,

Y0 = E3
4 , Y1 = −E2

6 , Y∞ = −1728 ∆ (Y0 + Y1 + Y∞ = 0) ,

where m, δ and ε are associated to k by (1) as usual. The following theorem
gives various explicit descriptions of the Fk and their associated polynomials F̃k(j),
similar to those given earlier for An, G̃k, and H̃k.

Theorem 5. Suppose k ≥ 0, k 6≡ 2 (mod 3). Then we have:
i) Differential equation: F̃k(j) is the unique normalized polynomial solution of

j(j − 1728) F̃ ′′k + {(1− ν1) j + (1− ν0)(j − 1728)} F̃ ′k +m(m− ν∞) F̃k = 0 .

ii) Closed formulas: Let σ be any permutation of {0, 1,∞}. Then

F̃k(j) = (sgn(σ)·1728)m
(
m− νσ(∞)

m

)
Xm
σ(0) F

(
−m,−m+νσ(0); 1−νσ(∞);−

Xσ(∞)

Xσ(0)

)
and

Fk(τ) = sgn(σ)mEδ4 E
ε
6

m∑
l=0

(−1)l
(
m− νσ(0)

l

)(
m− νσ(∞)

m− l

)
Y lσ(∞) Y

m−l
σ(0) .

iii) Recursion relation: The F̃k(j) satisfy

(m+ 1)(m− ν∞)(1− ν∞) F̃k+12

− ν∞
[
(1 + ν∞)(1− ν∞) j − 1728((1− ν0)(ν0 + ν1) + 2m(m− ν∞))

]
F̃k

+ 17282(m− ν0)(m− ν1)(1 + ν∞) F̃k−12 = 0 (k ≥ 12) .
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iv) “Generating function”: For k ∈ Z≥0 and any α denote by Gk,α(τ) the coefficient
of Xk in (1− 3E4(τ)X4 + 2E6(τ)X6)α. Then

Fk(τ) = (−1)m+δ 2−2m−ε
(

2m+ ε

m

)( 1
6 (k − 2)
m+ ε

)−1

Gk, k−2
6

(τ) .

Proof. i) We can easily transform the equation (24) into the one in terms of j, by
using formulas (9) and the relation Fk = ∆mEδ4E

ε
6F̃k. The uniqueness follows from

the same argument used in the proof of Theorem 4, iii) in §7.
ii) The equation in i) is in fact a hypergeometric differential equation and has

a polynomial solution F (−m,−m + ν∞; 1 − ν0; j/1728). We have 6 polynomial
solutions out of Kummer’s 24 solutions to this equation. By the uniqueness, they
differ only by constant factors. Making the expressions symmetric, we obtain the
formula in the theorem. The formula for Fk follows immediately.

iii) The first three arguments of the hypergeometric series in the formula for F̃k(j)
will change by 1 if we replace k by k± 12. The recursion is therefore a consequence
of Gauss’s contiguous relations.

iv) Put Yα = (1− 3E4X
4 + 2E6X

6)α. From the relations

Yα = Yα−1 · (1− 3E4X
4 + 2E6X

6) ,
∂

∂X
Yα = αYα−1 (−12E4X

3 + 12E6X
5) ,

∞∑
k=0

ϑkGk,αX
k =

1
2πi

∂

∂τ
Yα −

E2

12
X

∂

∂X
Yα = αYα−1 (E6X

4 − E2
4 X

6)

we obtain respectively

Gk,α = Gk,α−1 − 3E4Gk−4,α−1 + 2E6Gk−6,α−1 , (25)

k Gk,α = −12αE4Gk−4,α−1 + 12αE6Gk−6,α−1 , (26)

ϑkGk,α = αE6Gk−4,α−1 − αE2
4 Gk−6,α−1 . (27)

Solving (25) and (26) for E4Gk−4,α−1 and E6Gk−6,α−1 and substituting the expres-
sions obtained into (27), we get

ϑkGk,α = − 1
α+ 1

(
α− k

6
+

1
3
)(
α− k

6
+

2
3
)
Gk+2,α+1 +

(
α− k

12
+

1
2
)
Gk+2,α .

Using this repeatedly we finally obtain

ϑk+2 ϑkGk,α −
k(k + 2)

144
E4Gk,α

=
(
α− k

6
+

1
3
)[ 1

(α+ 1)(α+ 2)
(
α− k

6
+

2
3
)(
α− k

6
+ 1
)(
α− k

6
+

4
3
)
Gk+4,α+2

− 1
α+ 1

{(
α− k

6
+

2
3
)(
α− k

12
+

4
3
)

+
(
α− k

6
)(
α− k

12
+

1
2
)
− k(k + 2)

144
}
Gk+4,α+1

+
(
α+

1
2
)
Gk+4,α

]
.
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Since the right-hand side vanishes if α = (k − 2)/6 we deduce that Gk,(k−2)/6(τ)
satisfies the same differential equation as Fk(τ). The constant term of the Fourier
expansion of Gk,(k−2)/6 equals the coefficient of Xk in (1 − 3X4 + 2E6)(k−2)/6 =
(1−X2)(k−2)/3(1 + 2X2)(k−2)/6, which in turn equals

k/2∑
i=0

(−1)i 2
k
2−i

(k−2
3

i

)( k−2
6

k
2 − i

)
= (−1)

k
2

(k−2
3
k
2

) k/2∑
i=0

2i
(k

2

i

)
= (−3)k/2

(k−2
3
k
2

)
.

This together with (12) gives Fk(τ) = cGk, k−2
6

(τ) with

c = (−1)m
(k−5

6

m

)
/(−3)

k
2

(k−2
3
k
2

)
= (−1)m+δ 2−2m−ε

(
2m+ ε

m

)( k−2
6

m+ ε

)−1

.

Remarks. 1. The symmetry in the closed formula ii) is the reason why we chose the
normalization (12) of Fk.

2. Part iv) of the theorem makes it clear why the modular forms Hp−1, Gp−1

and Fp−1 in Theorem 1 are (up to scalar factors) congruent to one another modulo
p (up to scalar factors): they are just the specializations of Gp−1,α to the three
values α = − 1

2 , p−1
2 and p−3

6 , which are the same modulo p.
3. In the notation of [10], the formula for Fk can be written as

Fk = sgn(σ)mEδ4 E
ε
6 Hm(1− νσ(∞), 1− νσ(0);Yσ(∞), Yσ(0)),

where Hn(k, l;X,Y ) is the polynomial
∑
r+s=n(−1)r

(
n+k−1

s

)(
n+l−1
r

)
XrY s, which

satisfies the “hidden symmetry” that it is ±1-symmetric in the three variables
(k,X), (l, Y ), (m,Z), where k + l + m = n − 2, X + Y + Z = 0. (This poly-
nomial is essentially the Wigner 3J-symbol of quantum mechanics and arose in [10]
in connection with the Cohen bracket operation on modular forms.)

We now interpret the F̃k as orthogonal polynomials. Consider the space W =
C[j1/3, (j− 1728)1/2] which is identified with the space of holomorphic functions on
H invariant under the commutator subgroup [Γ,Γ] of Γ = PSL(2,Z) and growing at
most like a polynomial in q−1. For each residue class r modulo 6, denote by χr the
character of the cyclic group Γ/[Γ,Γ] determined uniquely by χ

(( 1 1

0 1

)
mod [Γ,Γ]

)
=

eπir/3, and let W =
⊕

rmod 6

W (r) be the corresponding decomposition of W , i.e.,

W (r) is the χr-eigenspace with respect to the action of Γ. We note that if δ ∈
{0, 1, 2} and ε ∈ {0, 1} are determined by the congruence 2r ≡ 4δ + 6ε (mod 12),
then W (r) is identified with jδ/3(j − 1728)ε/2C[j]. Now we define a scalar product
on W by the formula

(f, g) =
∫ 1728

0

f g dj

j1/3 (1728− j)1/2
, (f, g ∈W ) . (28)
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On each subspace W (r), the scalar product induced by (28) is positive or negative
definite on jδ/3(j − 1728)ε/2R[j] depending whether ε = 0 or 1. Hence we have
six families of monic polynomials {f (r)

m }m≥0, f (r)
m being of degree m, such that the

jδ/3(j − 1728)ε/2f (r)
m are orthogonal with respect to this scalar product. On the

other hand, for each even residue class 2r ≡ 4δ + 6ε (mod 12) and m ≥ 0, put

F̂ (r)
m (j) = jm F

(
−m,−m+ ν0; 1− ν∞;

1728
j

)
where ν0 = 1

3 (1 − 2δ) and ν∞ = 1
6 (12m + 4δ + 6ε + 1). If 2r 6≡ 2 mod 3 and

k = 12m+ 4δ + 6ε, this is nothing but F̃k(j), renormalized to be monic.

Theorem 6. f (r)
n = F̂

(r)
n for any r mod 6 and m ≥ 0.

Proof. For fixed r, the F̂ (r)
m satisfy the following recursion which is equivalent to

part iii) of Theorem 5 if 2r 6≡ 2 (mod 3):

F̂
(r)
m+1(j) =

(
j − (λ2m + λ2m+1)

)
F̂ (r)
m (j)− λ2m−1λ2m F

(r)
m−1 (m ≥ 1)

where

λn = 12
(

6− (−1)n
3− 6ν0

n− ν0 − ν1

)(
6− (−1)n

3− 6ν0

n+ 1− ν0 − ν1

)

(ν1 = (1−2ε)/2). By the general theory reviewed in §4, the F̂ (r)
m are orthogonal with

respect to the scalar product whose values gn = (jn, 1) are given by the continued
fraction (16). This continued fraction is equal to g0 F (1, 1− ν0; 2− ν0− ν1; 1728/j)
by [2]. Hence the (jn, 1) are given by (jn, 1) = g0 ·1728n

(
ν0−1
n

)
/
(
ν0+ν1−2

n

)
, which is a

constant multiple of
∫ 1728

0
jn−ν0(1728−j)−ν1dj (beta function). This latter integral

is just (−1)ε times the inner product (jδ/3(j − 1728)ε/2jn, jδ/3(j − 1728)ε/2 · 1)
in (28). The theorem follows.

Remark. Up to a rescaling by 1728, our polynomial is essentially a Jacobi polyno-
mial. These are polynomials P (α,β)

n generalizing the Chebyshev polynomials, which
have parameters ( 1

2 ,
1
2 ) and come in four types (even and odd, first and second

kind), corresponding to the fourfold decomposition of C[x1/2, (1 − x)1/2], whereas
our parameters are ( 1

3 ,
1
2 ) and we have six families.

§9 The denominators of the Atkin polynomials

¿From the relation (4) we get by induction that the denominator of An+1(j) is at
most (2n+ 1)!(2n)!/22nn!, but this is far too large, e.g., the denominator of A8(j)
is only 5 rather than 1380566997810000, and indeed only two of its coefficients,
those of j7 and j2, have any denominator at all. Similarly, if we fix a prime p > 3,
then (4) would lead one to expect that p would occur in the denominator of all An
with n > p/2, but instead we find, for instance, that for p = 11 all of the An with
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n ≤ 150 are p-integral unless n is congruent to 1 or 6 modulo 11 or n belongs to
one of the intervals [62,70] or [123,130]. Finally, if we look at the values of pAn(j)
modulo p for the first values of n for which p occurs in the denominator, then we
find a very precise pattern. For instance, for the first such value n = 1

2 (p + 1) we
find experimentally

pAn(j) ≡ 0jn + 84jn−1 + 37800jn−2 + · · ·+ cr j
n−r−1 + · · · (mod p)

with coefficients cr ∈ Z independent of p, and with a little numerical work we
discover the empirical formula

cr = 12 (8r + 7)
(6r + 1)!

(3r)! r! (r + 1)!2
(r ≥ 0)

from which in turn it follows that all of the coefficients of A 1
2 (p+1)(j) with r ≥ p−1

6

are actually p-integral. In this section we will describe these phenomena in a little
more detail and provide some explanations.

We first generalize the above congruence for pA 1
2 (p+1)(j). Recall from the dis-

cussion of orthogonal polynomials in §4 that in terms of the variable Y =
√
j

the Atkin polynomials are the even members of a sequence of monic polynomials
A∗n(Y ) satisfying the recurrence A∗n+1(Y ) = Y A∗n(Y )−λnA∗n−1(Y ) (n ≥ 1) with λn
as in (19). Moreover, A∗n is a polynomial of the same parity as n, so we can write
A∗n(Y ) = Y nan(1/Y 2) where an(t) is a polynomial of degree ≤ n/2. In terms of
the an the recursion becomes

an+1(t) = an(t)− λn t an−1(t) (n ≥ 1), (29)

and the relation to the Atkin polynomials is An(j) = jna2n(1/j). From the re-
cursion it follows that an(t) has p-integral coefficients for n ≤ p, and looking at
numerical examples we find empirically that ap(t) ≡ Φ0(t) mod (p, tp) and

ap(t) ≡ Φ0(t) mod (p, tp) ,

p an(t) ≡ Φn−p(t) mod (p, tp) (p < n < 2p),
(30)

where the Φn(t) are certain power series independent of p, the first few being

Φ0(t) = 1 + 120 t+ 83160 t2 + 81681600 t3 + 93699005400 t4 + · · · ,
Φ1(t) = 84 t

(
1 + 450 t+ 394680 t2 + 429557700 t3 + · · ·

)
,

Φ2(t) = 27720 t2
(
1 + 944 t+ 1054170 t2 + 1297994880 t3 + · · ·

)
,

Φ3(t) = 13693680 t3
(
1 + 1335 t+ 1757970 t2 + 2386445040 t3 + · · ·

)
.

(31)

Comparing the recursion (29) and the congruence (30), and using formula (19) for
the λn, we find that these power series, if they exist at all, must satisfy the recursion

Φn+1(t) = Φn(t)− λ∗n tΦn−1(t) (n ≥ 1) (32)
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with

λ∗n =


84 if n = 1,

12
(

6− (−1)n

n− 1

)(
6− (−1)n

n

)
if n > 1.

Moreover, by inspection of the first few coefficients one finds the formulas

Φ0(t) =
∞∑
r=0

(6r)!
(3r)! r!3

tr , Φ1(t) = 12
∞∑
r=0

(8r + 7) (6r + 1)!
(3r)! r! (r + 1)!2

tr+1 . (33)

So far, this is all only experimental. To check that it is true, we first find the
solution of the recursion (32) with initial conditions (33). We first observe that the
formulas (33) are equivalent to

Φ0(t) = F
(

1
12 ,

5
12 ; 1; 1728t

)2
, Φ1(t) = 84tF

(
1
12 ,

5
12 ; 1; 1728t

)
F
(

5
12 ,

13
12 ; 2; 1728t

)
.

(To prove this, verify that in each claimed equality both sides have the the same
first few terms and satisfy the same third order differential equation.) Now by
induction on n and the continued fraction formulas of Gauss already used in the
proof of part i) of Theorem 4 we find that the general solution of (32) is given by

Φn(t) = cn t
n F
(

1
12 ,

5
12 ; 1; 1728t

)
F
([
n
2

]
+ 5

12 ,
[
n+1

2

]
+ 1

12 ;n+ 1; 1728t
)

(34)

with constants cn ∈ Z given by c0 = 1 and

cn = λ∗1 . . . λ
∗
n = (−1728)n n

([n
2

]
− 1

12

n

)([n+1
2

]
− 5

12

n

)
=

(6n+ 1)!/(6n+(−1)n)
(n− 1)!(2n)!(3n)!

for n ≥ 1. In particular, the power series Φn(t) has integral coefficients and is
divisible by tn for all n, properties which were visible in the examples (31) but are
not at all obvious from the recursion.

Now write an(t) =
∑[n/2]
i=0 α(n, i) ti. The congruences (30) say that pα(p + n, i)

is congruent modulo p to the coefficient of ti in Φn(t) for 0 ≤ n, i < p. Because of
the recursions, it suffices to prove them for n even (which anyway is the case we are
interested in). By part ii) of Theorem 4, we have

α(2n, i) = 123i
i∑

m=0

(−1)m
(
− 1

12

i−m

)(
− 5

12

i−m

)(
n+ 1

12

m

)(
n− 7

12

m

)(
2n− 1
m

)−1

.

Let 2n = p + 2h + 1 with h ≥ 0 fixed and p > 2h + 1. The binomial coefficient(
2n−1
m

)
is prime to p for m ≤ 2h and divisible by p exactly once for m ≥ 2h + 1

(note that m ≤ i < p), and in the latter case we have the congruence

1
p

(
2n− 1
m

)
=

(p+ 2h) · · · (p+ 1)(p− 1) . . . (p−m+ 2h+ 1)
m!

≡ (−1)m−1 (2h)! (m− 2h− 1)!
m!

≡ (−1)m−1

m

(
m− 1

2h

)−1

(mod p) .
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Hence pα(p+ 2h+ 1, i) is p-integral and is congruent modulo p to

−123i
∑

2h+1≤m≤i

(
− 1

12

i−m

)(
− 5

12

i−m

)
·
(
h+ 7

12

m

)(
h− 1

12

m

)
m

(
m− 1

2h

)
,

and using (34) one checks that this agrees with the coefficient of ti in Φ2h+1(t).
This completes the proof of (30), which give congruences modulo p for the an(t)

in the range p ≤ n < 2p. Going further, one finds further congruences of the same
sort. For instance,

a2p(t) ≡ 1
2 Ψ0(t) mod (p, tp) ,

p an(t) ≡ 1
2 Φn−2p(t) mod (p, tp) (2p < n < 3p),

where the Ψn(t) (n ≥ 0) are another sequence of power series with properties similar
to those of the Φn (they satisfy a simple recursion and factor as products of one
fixed and one variable hypergeometric series), the first few being

Ψ0(t) = 1− 24 t− 17928 t2 − 18117312 t3 + · · · ,
Ψ1(t) = −60 t

(
1 + 522 t+ 471288 t2 + 519169620 t3 + · · ·

)
,

Ψ2(t) = −32760 t2
(
1 + 896 t+ 984042 t2 + 1201855008 t3 + · · ·

)
.

More generally, for s < p the first p coefficients of asp(t) and p asp+n(t) (0 < n < p)
are congruent modulo p to the coefficients of γsΦn(t) if s is even and to γsΨn(t) if
s is odd, where γ0 = 1, γ1 = 1

2 , γ2 = − 1265
3 , γ3 = − 1647

4 , . . . are certain constants.
Then starting at n = p2 we get higher powers of p in the denominators and a new
sequence of congruences. There are also nice congruences for the power series Φn(t)
and Ψn(t) modulo p and powers of p which the reader may want to experiment
with, but we are getting carried away from our main theme and will stop here.

§10 Supersingular polynomials and the modular polynomial

In this section, which is a bit disjoint from the rest of the paper, we tie up some
loose ends by giving direct proofs of two facts about supersingular polynomials
which appeared in earlier sections. The argument given here is essentially identical
with one given in a paper of Koike ([6], p. 136 and 169), but the presentation there
is considerably less elementary and makes use of difficult results of Ihara, whereas
the discussion here is entirely self-contained. Since the present paper has a partially
expository character, and the argument is short and quite pretty, it seemed worth
including it here.

We will work with modular forms and functions considered as elements in the
ring Q((q)) of Laurent series in q, which we identify with the ring Q((j−1)) of Laurent
series in j−1 = j(τ)−1. In particular, we define a Laurent series ϕp(j) ∈ Z((j−1))
with leading coefficient 744 jp−1 by

ϕp(j(τ)) =
j(τ)p − j(pτ)

p
. (35)
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Let Φp(X,Y ) ∈ Z[X,Y ] be the modular polynomial relating the j-invariants
of two p-isogenous elliptic curves. The famous (and easily proved) congruence of
Kronecker says that

Φp(X,Y ) = (Xp − Y )(X − Y p) + pRp(X,Y ) (36)

for some Rp(X,Y ) ∈ Z[X,Y ]. We are interested in the mod p reduction of the
polynomial Hp(X) = Rp(X,Xp). Substituting X = j(τ), Y = j(pτ) into (36) we
find

0 =
1
p

Φp
(
j(τ), j(pτ)

)
= ϕp

(
j(τ)

)(
j(τ)− j(pτ)p

)
+Rp

(
j(τ), j(pτ)

)
and hence, reducing modulo p and using j(pτ) ≡ j(τ)p (here and from now on ≡
denotes congruence of Laurent series modulo p),

ϕp(j) ≡
Hp(j)
jp2 − j

. (37)

In particular, the mod p reduction of ϕp is the Laurent series expansion of a rational
function all of whose poles are simple and are contained in Fp2 .

On the other hand, differentiating (35) gives

ϕ′p
(
j(τ)

)
= j(τ)p−1 − j′(pτ)

j′(τ)
≡ j(τ)p−1 − j′(τ)p−1 ,

where ′ applied to a function of τ means (2πi)−1d/dτ . But from

1 ≡ Ep−1(τ) = ∆mEδ4E
ε
6Ẽp−1(j) ≡ ∆mEδ4E

ε
6j
−δ(j − 1728)−εSp(j),

where Sp(j) ∈ Fp[j] is defined by Sp(j) ≡ jδ(j − 1728)εẼp−1(j), we get

j′(τ)p−1 =
(
−E6(τ)
E4(τ)

j(τ)
)12m+4δ+6ε

≡ j(τ)8m+4δ+4ε (j(τ)− 1728)6m+2δ+4ε

Sp(j(τ))2

(for p ≥ 5). Hence the Laurent series ϕ′p(j) satisfies the congruence

ϕ′p(j) ≡ j8m+4δ+4ε
(
j4m+2ε − (j − 1728)6m+2δ+4ε

Sp(j)2

)
. (38)

Comparing equations (37) and (38), we deduce that:
(a) all zeros of Sp(j) except for possibly 0 and 1728 are simple;
(b) all zeros of Sp(j) lie in Fp2 ;
(c) the polynomial Hp(j) (mod p) vanishes at j = 0 and 1728 and at all values

of j ∈ Fp2 which are not roots of Sp(j) ;
(d) if j is a root of Sp(j), then Hp(j) ≡ −j8m+4δ+4ε(j− 1728)6m+2δ+4ε/S′p(j)

2 .
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Statement (a) was needed in §3, where a different proof was given. Statement
(b), once Sp(j) has been identified with ssp(j) as was done in §3, is the fact that
all supersingular invariants lie in Fp2 , which was mentioned without proof in §2.
Statement (c) can be found in the paper [9] by E. de Shalit, and statement (d)
is closely related to a question raised there. Namely, de Shalit wrote down the
conjectural formula, closely related to previous work of Oesterlé and himself on the
p-adic period pairing on X0(p),

Hp(j) =


0 if j ∈ Fp2 is not supersingular,

(−1)ε j
2δ(p+1)

3 (j − 1728)
ε(p+1)

2

ss′p(j)p+1
if j is supersingular,

(39)

and proved this formula completely for p ≡ 1 (mod 4) and up to a possible ambigu-
ity of sign if p ≡ 3 (mod 4), his proof being non-elementary. Comparing with (d),
we see that formula (39) is true if and only if

ssp(j) = 0 ⇒ ss′p(j)
p−1 = (−1)ε−1 j

2
3 (δ−1)(p−1) (j − 1728)

1
2 (ε−1)(p−1) . (40)

For instance, if p ≡ −1 (mod 12), then (40) says simply that ss′p(j) belongs to Fp
for all supersingular j. It would be nice to have an elementary proof of this simple
statement. A sketch of an argument why equation (40) (or at least its 12th power)
should be true was shown to one of the authors by Faltings. We also mention that
properties (c) and (d) almost characterize the polynomial Hp(j), since they give its
values at p2 arguments and Hp has degree p2 + p+ 1 if p - 744. A complete (though
not very elegant) determination of Hp then follows from (37) and the additional
formulas ϕ(n)

p (0) ≡ 0 (1 ≤ n ≤ 8m+ 2δ+ 4ε) and ϕ(n)
p (1728) ≡ (n− 1)!(−1728)n−1

(1 ≤ n ≤ 6m+ 2δ + 2ε), which follow immediately from (38).
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