[go: up one dir, main page]

login
A115977
Expansion of elliptic modular function lambda in powers of the nome q.
22
16, -128, 704, -3072, 11488, -38400, 117632, -335872, 904784, -2320128, 5702208, -13504512, 30952544, -68901888, 149403264, -316342272, 655445792, -1331327616, 2655115712, -5206288384, 10049485312, -19115905536, 35867019904, -66437873664
OFFSET
1,1
COMMENTS
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math.Series 55, Tenth Printing, 1972, p. 591.
J. M. Borwein and P. B. Borwein, Pi and the AGM, Wiley, 1987, p. 121.
A. Erdelyi, Higher Transcendental Functions, McGraw-Hill, 1955, Vol. 3, p. 23, eq. (37).
LINKS
Seiichi Manyama, Table of n, a(n) for n = 1..10000 (terms 1..1000 from G. C. Greubel)
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Eric Weisstein's World of Mathematics, Ramanujan Theta Functions
Eric Weisstein's World of Mathematics, Elliptic Lambda Function
Wolfram Research Basic Algebraic Identities Relations involving squares, 1st formula
FORMULA
Expansion of Jacobi elliptic parameter m = k^2 = (theta_2(q) / theta_3(q))^4 in powers of the nome q.
Expansion of 16 * q * (psi(q^2) / phi(q))^4 = 16 * q * (psi(q^2) / psi(q))^8 = 16 * q * (psi(q) / phi(q))^8 = 16 * q * (psi(-q) / phi(-q^2))^8 = 16 * q / (chi(q) * chi(-q^2))^8 = 16 * q * (f(-q^4) / f(q))^8 in powers of q where phi(), psi(), chi(), f() are Ramanujan theta functions.
Expansion of 16 * (eta(q) * eta(q^4)^2 / eta(q^2)^3)^8 in powers of q.
G.f. A(x) satisfies 0 = f(A(x), A(x^2)) where f(u, v) = u^2 * (1 - v)^2 - 16 * v * (1 - u).
lambda( -1 / tau ) = 1 - lambda( tau ) (see A128692).
G.f. is a period 1 Fourier series which satisfies f(-1 / (4 t)) = g(t) where q = exp(2 Pi i t) and g() is the g.f. for A128692.
G.f.: 16 * q * (Product_{k>0} (1 + q^(2*k)) / (1 + q^(2*k - 1)))^8.
a(n) = 16 * A005798(n). a(n) = -(-1)^n * A014972(n) unless n=0.
a(n) = -(-1)^n * A132136(n). - Michael Somos, Jun 03 2015
Empirical: Sum_{n>=1}(exp(-2*Pi)^n*a(n)) = 17 - 12*sqrt(2). - Simon Plouffe, Feb 20 2011
a(n) ~ -(-1)^n * exp(2*Pi*sqrt(n)) / (32 * n^(3/4)). - Vaclav Kotesovec, Apr 06 2018
The g.f. A(q) = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + ... satisfies A(q) + A(-q) = A(q)*A(-q). - Peter Bala, Sep 26 2023
EXAMPLE
G.f. = 16*q - 128*q^2 + 704*q^3 - 3072*q^4 + 11488*q^5 - 38400*q^6 + 117632*q^7 - ...
MATHEMATICA
a[ n_] := SeriesCoefficient[ InverseEllipticNomeQ @ x, {x, 0, n}];
a[ n_] := If[ n < 0, 0, SeriesCoefficient[ ModularLambda[ Log[q] / (Pi I)], {q, 0, n}]];
a[ n_] := SeriesCoefficient[ (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q])^4, {q, 0, n}];
a[ n_] := SeriesCoefficient[ 1/16 (EllipticTheta[ 2, 0, q] / EllipticTheta[ 3, 0, q^2])^8, {q, 0, n}]; (* Michael Somos, May 26 2016 *)
PROG
(PARI) {a(n) = my(A); if( n<1, 0, n--; A = x * O(x^n); 16 * polcoeff( (eta(x + A) * eta(x^4 + A)^2 / eta(x^2 + A)^3)^8, n))};
CROSSREFS
KEYWORD
sign
AUTHOR
Michael Somos, Feb 09 2006
STATUS
approved