Skip to main content
X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using... more
X-rays are invaluable for imaging and sterilization of bones, yet the resulting ionization and primary radiation damage mechanisms are poorly understood. Here we monitor in-situ collagen backbone degradation in dry bones using second-harmonic-generation and X-ray diffraction. Collagen breaks down by cascades of photon-electron excitations, enhanced by the presence of mineral nanoparticles. We observe protein disintegration with increasing exposure, detected as residual strain relaxation in pre-stressed apatite nanocrystals. Damage rapidly grows from the onset of irradiation, suggesting that there is no minimal ‘safe’ dose that bone collagen can sustain. Ionization of calcium and phosphorous in the nanocrystals yields fluorescence and high energy electrons giving rise to structural damage that spreads beyond regions directly illuminated by the incident radiation. Our findings highlight photoelectrons as major agents of damage to bone collagen with implications to all situations where...
2 order orientation tensors as needed as input for C AD simulation programs can be obtained from micro c omputed tomography image data via local orientation analysi s. There are several well established methods for c alculating the fiber... more
2 order orientation tensors as needed as input for C AD simulation programs can be obtained from micro c omputed tomography image data via local orientation analysi s. There are several well established methods for c alculating the fiber orientation in each voxel, based on the structure t ensor, on the Hessian matrix of 2 nd order gray value derivatives, on moments of inertia, and on filtering with anisotropic Gauss ians. For 3D image data, the former two have been p roven to be preferable both in terms of accuracy and computing time. Here, w show the applicability and usefulness of the me thod based on the Hessian matrix in two highly relevant application c ases: Region of interest scans of a glass fiber rei nforced composite components and synchrotron radiation μCT scans of b raided carbon fiber rovings.
Using hard X-rays for high-speed and ultra high-speed imaging has enormous potential to visualize the interior of opaque systems as they change with time. Exposure times below one nanosecond for ultra high-speed imaging are accessible... more
Using hard X-rays for high-speed and ultra high-speed imaging has enormous potential to visualize the interior of opaque systems as they change with time. Exposure times below one nanosecond for ultra high-speed imaging are accessible when synchrotron light sources are employed and this provides a non-destructive method of in-motion radiography. The polychromatic radiation of insertion devices in combination with X-ray phase contrast has proven to be suited for acquisition rates up to the MHz range. This chapter outlines the basic principles of indirect hard X-ray imaging detectors for real-time imaging, and other detection schemes and sources of radiation are briefly discussed. The potential of using hard X-rays for high-speed imaging is demonstrated with application examples from soft matter physics and materials processing.
The safety of Li-ion batteries is of upmost importance in particular for demanding applications such as electric vehicles and other mission critical systems. The thermal response of a cell is one of the most important characteristics to... more
The safety of Li-ion batteries is of upmost importance in particular for demanding applications such as electric vehicles and other mission critical systems. The thermal response of a cell is one of the most important characteristics to understand when assessing the safety of a cell design, as witnessed by recent high profile failures1, 2. However, there is limited understanding of the dynamic mechanisms associated with thermal runaway. X-ray tomography has become a widely used technique for 3D imaging of materials and devices for electrochemical energy storage and conversion. Two of the major advances in tomography techniques in recent years are the reduction in tomogram acquisition time and the increased spatial resolution. In this study, high speed synchrotron X-ray CT of commercial Li-ion batteries during operation and failure was performed in beam-lines ID15A and ID19 at The European Synchrotron (ESRF). Tomograms were captured at a rate of up to 2.5 Hz allowing us to study some...
In this work, we investigated the re-solidification dynamics and microstructure of aluminium AA5005 welded by fibre laser. The re-solidification process was visualized by high-speed X-ray imaging at the European Synchrotron Radiation... more
In this work, we investigated the re-solidification dynamics and microstructure of aluminium AA5005 welded by fibre laser. The re-solidification process was visualized by high-speed X-ray imaging at the European Synchrotron Radiation Facility (ESRF, Grenoble, France). The final microstructure was studied by electron backscatter diffraction. The experiments were performed in both conduction and keyhole weld regimes. The results show that fine and equiaxed structure is obtained for conduction welding due to very high cooling rate. Keyhole welding also shows similar structure at the beginning of re-solidification, followed by a columnar microstructure.
A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable... more
A new generation of cameras has made ultra-high-speed x-ray imaging at synchrotron light sources a reality, revealing never-before-seen details of sub-surface transient phenomena. We introduce a versatile indirect imaging system capable of capturing-for the first time-hundreds of sequential x-ray pulses in 16-bunch mode at the European Synchrotron Radiation Facility, recording at 5.68 Mfps over dozens of microseconds, with an effective exposure of 100 ps. The versatile multiplex camera construction of the system allows for various arrangements, including different scintillator configurations, and simultaneous imaging with different resolutions and regions of interest. Image results from a gas gun impact experiment, in which an additive manufactured aluminum lattice was dynamically compressed, is presented as a demonstration of the system's capabilities.
The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial... more
The purpose of this study was to evaluate bone-to-implant contact (BIC) in two-dimensional (2D) histology compared to high-resolution three-dimensional (3D) synchrotron radiation micro computed tomography (SR micro-CT). High spatial resolution, excellent signal-to-noise ratio, and contrast establish SR micro-CT as the leading imaging modality for hard X-ray microtomography. Using SR micro-CT at voxel size 5 μm in an experimental goat mandible model, no statistically significant difference was found between the different treatment modalities nor between recipient and reconstructed bone. The histological evaluation showed a statistically significant difference between BIC in reconstructed and recipient bone (p < 0.0001). Further, no statistically significant difference was found between the different treatment modalities which we found was due to large variation and subsequently due to low power. Comparing histology and SR micro-CT evaluation a bias of 5.2% was found in reconstruct...
Establishing the mineral content distribution in highly mineralized tissues, such as bones and teeth, is fundamental in understanding a variety of structural questions ranging from studies of the mechanical properties to improved... more
Establishing the mineral content distribution in highly mineralized tissues, such as bones and teeth, is fundamental in understanding a variety of structural questions ranging from studies of the mechanical properties to improved pathological investigations. However, non-destructive, volumetric and quantitative density measurements of mineralized samples, some of which may extend several mm in size, remain challenging. Here, we demonstrate the potential of grating-based x-ray phase tomography to gain insight into the three-dimensional mass density distribution of tooth tissues in a non-destructive way and with a sensitivity of 85 mg/cm3. Density gradients of 13 - 19% over 1 - 2 mm within typical samples are detected, and local variations in density of 0.4 g/cm3 on a length scale of 0.1 mm are revealed. This method proves to be an excellent quantitative tool for investigations of subtle differences in mineral content of mineralized tissues that can change following treatment or durin...
Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several... more
Based on the current lack of data and understanding of the wear behavior of dental two-piece implants, this study aims for evaluating the microgap formation and wear pattern of different implants in the course of cyclic loading. Several implant systems with different conical implant-abutment interfaces were purchased. The implants were first evaluated using synchrotron X-ray high-resolution radiography (SRX) and scanning electron microscopy (SEM). The implant-abutment assemblies were then subjected to cyclic loading at 98N and their microgap was evaluated after 100,000, 200,000 and 1 million cycles using SRX, synchrotron micro-tomography (μCT). Wear mechanisms of the implant-abutment connection (IAC) after 200,000 cycles and 1 million cycles were further characterized using SEM. All implants exhibit a microgap between the implant and abutment prior to loading. The gap size increased with cyclic loading with its changes being significantly higher within the first 200,000 cycles. Wear was seen in all implants regardless of their interface design. The wear pattern comprised adhesive wear and fretting. Wear behavior changed when a different mounting medium was used (brass vs. polymer). A micromotion of the abutment during cyclic loading can induce wear and wear particles in conical dental implant systems. This feature accompanied with the formation of a microgap at the IAC is highly relevant for the longevity of the implants.
X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen... more
X-ray phase-contrast imaging is an effective approach to drastically increase the contrast and sensitivity of microtomographic techniques. Numerous approaches to depict the real part of the complex-valued refractive index of a specimen are nowadays available. A comparative study using experimental data from grating-based interferometry and propagation-based phase contrast combined with single-distance phase retrieval applied to a non-homogeneous sample is presented (acquired at beamline ID19-ESRF). It is shown that grating-based interferometry can handle density gradients in a superior manner. The study underlines the complementarity of the two techniques for practical applications.
For the engineering of foamed products, knowledge about the foam structure as well as about its dynamics and stability are of critical importance. Using X-ray computed tomography (CT) accurate 3D information about the foams structure is... more
For the engineering of foamed products, knowledge about the foam structure as well as about its dynamics and stability are of critical importance. Using X-ray computed tomography (CT) accurate 3D information about the foams structure is obtained, but the structural characterization of liquid foams, which feature structural changes, is still challanging. In this contribution a fast laboratory CT setup is presented allowing the acquisition of 3D data sets almost instantaneously. Reached limits for the CT system:  15 s measurement time for a complete 3D recording  3.5 μm resolution for small objects (I.D. 10 mm)  time-resolved structure characterization  constant climate conditions (temperature, humidity)  non-destructiv The suitability and possibilities of such a system for non-solidified foams and other porous materials are shown.
Propagation-based, or "inline", X-ray phase contrast, is a widely-used option on tomography stations at synchrotron light sources. One of its attractive properties is that it combines the high spatial resolution of... more
Propagation-based, or "inline", X-ray phase contrast, is a widely-used option on tomography stations at synchrotron light sources. One of its attractive properties is that it combines the high spatial resolution of synchrotron-radiation imaging with the enhanced density resolution of phase-sensitive Xray imaging methods. Another is the simple setup: by leaving an appropriate drift space between the sample and the imaging detector, Fresnel diffraction on interfaces within the probed specimen creates interference fringes that enhance these sharply-localized edges. However, while this information can often be directly used for visual inspection, any further quantitative analysis that requires segmentation of the volume data is not easily possible using the plain phase-contrast data. But if the transmission radiographs are sent through a phase-retrieval process, the tomograms will exhibit "area contrast" rather than edge-enhancing contrast. The data can then be much ...
distributions in bulk materials A. Rack, R. Tucoulou, T. Rack, C. Jimenez, F. Garcia-Moreno, C. Mochales, A. Maerten, M. C. Dalconi, L. Valentini, A. Bonnin, H. Palancher and P. Cloetens European Synchrotron Radiation Facility, Grenoble,... more
distributions in bulk materials A. Rack, R. Tucoulou, T. Rack, C. Jimenez, F. Garcia-Moreno, C. Mochales, A. Maerten, M. C. Dalconi, L. Valentini, A. Bonnin, H. Palancher and P. Cloetens European Synchrotron Radiation Facility, Grenoble, F rance. E-mail: alexander.rack@esrf.fr, tucoulou@esrf.fr, cloetens@esrf.fr Charité Berlin, Germany. tanjusha.rack@gmx.net, carol ina.mochales-palau@charite.de Helmholtz-Zentrum Berlin für Materialien und Energie , Germany. Email: jimenez@helmholtz-berlin.de, garcia-moreno@helmholtz-berlin.de Max Planck Institute of Colloids and Interfaces, Pot sdam, Germany. E-mail: anke.maerten@mpikg.mpg.de Università di Padova, Padua, Italy. E-mail: mariach ra.dalconi@unipd.it, luca.valentini@unipd.it CEA Cadarache, Saint Paul lez Durance, France. E-mail : anne.bonnin@cea.fr, herve.palancher@cea.fr
Liquid metallic films are the constituting elements of metallic foams and are governed by a complex interplay between the liquid—here aluminium alloys—, the film stabilising solid particles contained in the melt, and the gas phase. We use... more
Liquid metallic films are the constituting elements of metallic foams and are governed by a complex interplay between the liquid—here aluminium alloys—, the film stabilising solid particles contained in the melt, and the gas phase. We use synchrotron X-ray radioscopy to study particle dynamics and analyse particle motions by applying novel image processing techniques. We find that particles move alone and as clusters. They may move permanently with the melt or can be trapped by the film surface and subsequently even de-trapped again. The aim of this work is to observe interactions between particles or particle clusters and the film surfaces, and to understand how liquid flow in films is reduced and film stability increased by such particles
Computed tomography (CT) with hard X-rays is a mature technique that is in regular use to depict the interior of opaque specimens with spatial resolutions up to the micrometre range (microtomography or µCT). Short acquisition times and... more
Computed tomography (CT) with hard X-rays is a mature technique that is in regular use to depict the interior of opaque specimens with spatial resolutions up to the micrometre range (microtomography or µCT). Short acquisition times and sophisticated contrast modes are accessible when synchrotron light sources are combined with microtomography—SR-µCT. Both features render SR-µCT as excellent probe to study delicate samples in situ, for example under mechanical load by deploying corresponding sample environments. The so-called TomoPress is such a device available within the public user programme of tomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF). It allows one to study samples under high axial load (up to 500 N) with high spatial resolution up to the micrometer range. Different gauges are installed to allow online monitoring of the applied force. Constant humidity, temperature and wetting are routinely available as well. The article shall outline basic d...
To control the final grain structure and the density of structural crystalline defects in silicon (Si) ingots is still a main issue for Si used in photovoltaic solar cells. It concerns both innovative and conventional fabrication... more
To control the final grain structure and the density of structural crystalline defects in silicon (Si) ingots is still a main issue for Si used in photovoltaic solar cells. It concerns both innovative and conventional fabrication processes. Due to the dynamic essence of the phenomena and to the coupling of mechanisms at different scales, the post-mortem study of the solidified ingots gives limited results. In the past years, we developed an original system named GaTSBI for Growth at high Temperature observed by Synchrotron Beam Imaging, to investigate in situ the mechanisms involved during solidification. X-ray radiography and X-ray Bragg diffraction imaging (topography) are combined and implemented together with the running of a high temperature (up to 2073 K) solidification furnace. The experiments are conducted at the European Synchrotron Radiation Facility (ESRF). Both imaging techniques provide in situ and real time information during growth on the morphology and kinetics of th...
As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell... more
As the energy density of lithium-ion cells and batteries increases, controlling the outcomes of thermal runaway becomes more challenging. If the high rate of gas generation during thermal runaway is not adequately vented, commercial cell designs can rupture and explode, presenting serious safety concerns. Here, ultra-high-speed synchrotron X-ray imaging is used at >20 000 frames per second to characterize the venting processes of six different 18650 cell designs undergoing thermal runaway. For the first time, the mechanisms that lead to the most catastrophic type of cell failure, rupture, and explosion are identified and elucidated in detail. The practical application of the technique is highlighted by evaluating a novel 18650 cell design with a second vent at the base, which is shown to avoid the critical stages that lead to rupture. The insights yielded in this study shed new light on battery failure and are expected to guide the development of safer commercial cell designs.
Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale... more
Chondritic meteorites are fragments of asteroids, the building blocks of planets, that retain a record of primordial processes. Important in their early evolution was impact-driven lithification, where a porous mixture of millimetre-scale chondrule inclusions and sub-micrometre dust was compacted into rock. In this Article, the shock compression of analogue precursor chondrite material was probed using state of the art dynamic X-ray radiography. Spatially-resolved shock and particle velocities, and shock front thicknesses were extracted directly from the radiographs, representing a greatly enhanced scope of data than could be measured in surface-based studies. A statistical interpretation of the measured velocities showed that mean values were in good agreement with those predicted using continuum-level modelling and mixture theory. However, the distribution and evolution of wave velocities and wavefront thicknesses were observed to be intimately linked to the mesoscopic structure o...
A hard X-ray transparent triaxial deformation apparatus, called HADES, has been developed by Sanchez Technologies and installed on the microtomography beamline ID19 at the European Radiation Synchrotron Facility (ESRF). This rig can be... more
A hard X-ray transparent triaxial deformation apparatus, called HADES, has been developed by Sanchez Technologies and installed on the microtomography beamline ID19 at the European Radiation Synchrotron Facility (ESRF). This rig can be used for time-lapse microtomography studies of the deformation of porous solids (rocks, ceramics, metallic foams) at conditions of confining pressure to 100 MPa, axial stress to 200 MPa, temperature to 250°C, and controlled aqueous fluid flow. It is transparent to high-energy X-rays above 60 keV and can be used for in situ studies of coupled processes that involve deformation and chemical reactions. The rig can be installed at synchrotron radiation sources able to deliver a high-flux polychromatic beam in the hard X-ray range to acquire tomographic data sets with a voxel size in the range 0.7-6.5 µm in less than two minutes.
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the... more
The short pulse duration, small effective source size and high flux of synchrotron radiation is ideally suited for probing a wide range of transient deformation processes in materials under extreme conditions. In this paper, the challenges of high-resolution time-resolved indirect X-ray detection are reviewed in the context of dynamic synchrotron experiments. In particular, the discussion is targeted at two-dimensional integrating detector methods, such as those focused on dynamic radiography and diffraction experiments. The response of a scintillator to periodic synchrotron X-ray excitation is modelled and validated against experimental data collected at the Diamond Light Source (DLS) and European Synchrotron Radiation Facility (ESRF). An upper bound on the dynamic range accessible in a time-resolved experiment for a given bunch separation is calculated for a range of scintillators. New bunch structures are suggested for DLS and ESRF using the highest-performing commercially availa...
Fracture and breakage of single crystals, particularly of silicon wafers, are multi-scale problems: the crack tip starts propagating on an atomic scale with the breaking of chemical bonds, forms crack fronts through the crystal on the... more
Fracture and breakage of single crystals, particularly of silicon wafers, are multi-scale problems: the crack tip starts propagating on an atomic scale with the breaking of chemical bonds, forms crack fronts through the crystal on the micrometre scale and ends macroscopically in catastrophic wafer shattering. Total wafer breakage is a severe problem for the semiconductor industry, not only during handling but also during temperature treatments, leading to million-dollar costs per annum in a device production line. Knowledge of the relevant dynamics governing perfect cleavage along the {111} or {110} faces, and of the deflection into higher indexed {hkl} faces of higher energy, is scarce due to the high velocity of the process. Imaging techniques are commonly limited to depicting only the state of a wafer before the crack and in the final state. This paper presents, for the first time,in situhigh-speed crack propagation under thermal stress, imaged simultaneously in direct transmissi...
The investigation of lithium-ion battery failures is a major challenge for personnel and equipment due to the associated hazards (thermal reaction, toxic gases and explosions). To perform such experiments safely, a battery abuse-test... more
The investigation of lithium-ion battery failures is a major challenge for personnel and equipment due to the associated hazards (thermal reaction, toxic gases and explosions). To perform such experiments safely, a battery abuse-test chamber has been developed and installed at the microtomography beamline ID19 of the European Synchrotron Radiation Facility (ESRF). The chamber provides the capability to robustly perform in situ abuse tests through the heat-resistant and gas-tight design for flexible battery geometries and configurations, including single-cell and multi-cell assemblies. High-speed X-ray imaging can be complemented by supplementary equipment, including additional probes (voltage, pressure and temperature) and thermal imaging. Together with the test chamber, a synchronization graphical user interface was developed, which allows an initial interpretation by time-synchronous visualization of the acquired data. Enabled by this setup, new meaningful insights can be gained i...
An experimental procedure for transmission X-ray ghost imaging using synchrotron light is presented. Hard X-rays from an undulator were divided by a beamsplitter to produce two copies of a speckled incident beam. Both beams were... more
An experimental procedure for transmission X-ray ghost imaging using synchrotron light is presented. Hard X-rays from an undulator were divided by a beamsplitter to produce two copies of a speckled incident beam. Both beams were simultaneously measured on an indirect pixellated detector and the intensity correlation between the two copies was used to retrieve the ghost image of samples placed in one of the two beams, without measuring the samples directly. Aiming at future practical uses of X-ray ghost imaging, the authors discuss details regarding data acquisition, image reconstruction strategies and measure the point-spread function of the ghost-imaging system. This approach may become relevant for applications of ghost imaging with X-ray sources such as undulators in storage rings, free-electron lasers and lower-coherence laboratory facilities.
Severe plastic deformation of solids is relevant to many materials processing techniques as well as tribological events such as wear. It results in microstructural refinement, redistribution of phases, and ultimately even mixing. However,... more
Severe plastic deformation of solids is relevant to many materials processing techniques as well as tribological events such as wear. It results in microstructural refinement, redistribution of phases, and ultimately even mixing. However, mostly due to inability to experimentally capture the dynamics of deformation, the underlying physical mechanisms remain elusive. Here, we introduce a strategy that reveals details of morphological evolution upon shearing up to ultrahigh strains. Our experiments on metallic multilayers find that mechanically stronger layers either fold in a quasi-regular manner and subsequently evolve into periodic vortices, or delaminate into finer layers before mixing takes place. Numerical simulations performed by treating the phases as nonlinear viscous fluids reproduce the experimental findings and reveal the origin for emergence of a wealth of morphologies in deforming solids. They show that the same instability that causes kilometer-thick rock layers to fold...
The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at... more
The metatarsal lyriform organ of the Central American wandering spider Cupiennius salei is its most sensitive vibration detector. It is able to sense a wide range of vibration stimuli over four orders of magnitude in frequency between at least as low as 0.1 Hz and several kilohertz. Transmission of the vibrations to the slit organ is controlled by a cuticular pad in front of it. While the mechanism of high-frequency stimulus transfer (above ca 40 Hz) is well understood and related to the viscoelastic properties of the pad's epicuticle, it is not yet clear how low-frequency stimuli (less than 40 Hz) are transmitted. Here, we study how the pad material affects the pad's mechanical properties and thus its role in the transfer of the stimulus, using a variety of experimental techniques, such as X-ray micro-computed tomography for three-dimensional imaging, X-ray scattering for structural analysis, and atomic force microscopy and scanning electron microscopy for surface imaging. ...
Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading.... more
Synchrotron real-time radioscopy and in situ microtomography are the only techniques providing direct visible information on a micrometre scale of local deformation in the implant-abutment connection (IAC) during and after cyclic loading. The microgap formation at the IAC has been subject to a number of studies as it has been proposed to be associated with long-term implant success. The next step in this scientific development is to focus on the in situ fatigue procedure of two-component dental implants. Therefore, an apparatus has been developed which is optimized for the in situ fatigue analysis of dental implants. This report demonstrates both the capability of in situ radioscopy and microtomography at the ID19 beamline for the study of cyclic deformation in dental implants. The first results show that it is possible to visualize fatigue loading of dental implants in real-time radioscopy in addition to the in situ fatigue tomography. For the latter, in situ microtomography is applied during the cyclic loading cycles in order to visualize the opening of the IAC microgap. These results concur with previous ex situ studies on similar systems. The setup allows for easily increasing the bending force, to simulate different chewing situations, and is, therefore, a versatile tool for examining the fatigue processes of dental implants and possibly other specimens.

And 144 more