Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a Practical Decision Support System for Precision Nitrogen Management in Corn
"> Figure 1
<p>Rainfall data from a nearby National Oceanic and Atmospheric Administration (NOAA) weather station for 2017 and 2018. The gray line represents 10 year average. Data obtained from High Plains Regional Climate Center for the Falls City Brenner Field, Nebraska station.</p> "> Figure 2
<p>Framework for transforming field characteristics and passive sensor imagery into a decision support system for in-season nitrogen management in corn when spatial data are available (zone-based approach) and when supporting spatial data is limited (simplified approach). Examples for each step are given; those used in this field study are in bold.</p> "> Figure 3
<p>DJI Inspire 2 multi-rotor UAV with MicaSense<sup>®</sup> RedEdge<sup>®</sup> five-band multispectral sensor and downwelling light sensor. Inset image is a close up of the five-band multispectral sensor.</p> "> Figure 4
<p>Normalized difference red edge (NDRE) data for UAV_84 (sensor-based treatment with 84 kg ha<sup>−1</sup> base rate), UAV_112 (sensor-based treatment with 112 kg ha<sup>−1</sup> base rate), and farmer-managed treatments at sites ZP17, YL18, and DA18. Top panel is NDRE imagery displayed with minimum-maximum stretch on a color ramp that encompasses the minimum and maximum value across imagery dates for that site. Bottom panel are NDRE means; different letters indicate means are significantly different from each other at <span class="html-italic">p</span>-value < 0.05. Vertical bars represent standard deviation. The vertical dashed line separates imagery collected before and after in-season application.</p> "> Figure 5
<p>Histogram of frequency of NDRE values for UAV_112 and UAV_84 treatment strips for the imagery date immediately preceding the in-season N application. Histograms include all pixels (plant, soil, and shadow) in the image. Reference values for each reference method evaluated (VR_simp, VR_HS, and HN) are indicated in the histogram.</p> "> Figure 6
<p>Comparison of sufficiency index (SI) calculated with two virtual reference (VR) methods (one utilizing the NDRE value at the 95 percent in the histogram [VR_simp], the other utilizing the cumulative 95th percentile [VR_HS]) and the high N reference (HN) method for UAV_112 treatment strips at three sites across numerous sensing dates. The 0.95 SI threshold is indicated with a solid black horizontal line. The date of in-season N application is represented with a vertical dashed line. Means denoted with different letters are significantly different within a sensing date at <span class="html-italic">p</span>-value < 0.0001.</p> ">
Abstract
:1. Introduction
- Determine if a UAV mounted with a passive multispectral sensor and available N recommendation algorithms could improve NUE (as measured by partial factor productivity of N [PFPN]) by optimizing yield and N rates compared to farmers’ traditional management;
- Quantify the impact of HN and VR sensor normalization approaches on in-season N recommendations when utilizing high spatial resolution data;
- Evaluate implications and limitations of the proposed UAV-sensor-based DSS for N recommendations.
2. Materials and Methods
2.1. Experimental Sites and Design
2.2. Sensor-Based In-Season N Rate Decision System
- 1.
- User-predicted EONR. The EONR was determined using a corn nitrogen recommendation algorithm developed by the University of Nebraska-Lincoln [62] to standardize the user-predicted EONR [24,63]. The N recommendation algorithm requires expected yield (EY), OM, N credits, and soil nitrate-N concentration as follows:Many of the inputs could be spatially variable, and, as such, EONR can be calculated site-specifically within the field. For ZP17, the zonal approach was used; for YL18 and DA18, due to lack of available spatial data, the simplified approach was used. Additional details on how the values used in Equation (2) were obtained are included in Table S4.
- 2.
- SI. Imagery was acquired using a DJI™ Inspire 1 multi-rotor UAV (DJI, Shenzhen, China) in 2017 and a DJI™ Inspire 2 multi-rotor UAV (DJI, Shenzhen, China) in 2018 (Figure 3; Figure 2e). Each were equipped with a MicaSense® RedEdge® five-band multispectral sensor (MicaSense, Inc., Seattle, WA, USA) (Figure 3, inset). The spectral resolution of the RedEdge® sensor includes five bands: a blue band with 475 nm center and 20 nm bandwidth FWHM (full width at half maximum), a green band with 560 nm center and 20 nm bandwidth, a red band with 668 nm center and 10 nm bandwidth, a red edge band with 717 nm center and 10 nm bandwidth, and a near-infrared band with 840 nm center and 40 nm bandwidth.Imagery was acquired at 120 m above ground level (AGL), resulting in a ground sample distance of 8.2 cm pixel−1. The radiometric resolution was 16-bit with pixel dimensions of 1280 by 960. Flights were conducted using autonomous flight planning software which allowed the study area to be flown in a systematic, serpentine path. All flights were conducted with a minimum of 75 percent overlap in images in both the forward and side-to-side direction and imagery was acquired within three hours of solar noon. ZP17 study area was approximately 30 ha, which resulted in approximately 4600 images being captured per flight, DA18 study area was approximately 11 ha, resulting in approximately 1725 images being captured per flight, and YL18 study area was 9.3 ha, resulting in approximately 1700 images being captured per flight.
- 3.
- Base N rate and N credits. The amount of N fertilizer applied before crop sensing was 84 or 112 kg ha−1 depending on the base rate treatment. Base rates were established using anhydrous ammonia (82% N) applied on 15 February 2017 for ZP17, 30 November 2017 for YL18, and 1 December 2017 for DA18. Additional credits may be taken for irrigation water N, soil N test, or previous crop credits; however, we accounted for these (where relevant) in sensor input 1 (user-predicted EONR) therefore they were not accounted for again here.
2.3. Timing of In-Season N Recommendation
2.4. Data Analysis
3. Results
3.1. Yield, N Rate, PFPN, and Marginal Net Return Responses to N Management Treatments
3.2. Changes in Crop Canopy Reflectance During the Growing Season and its Response to N Rate
3.3. VR vs. HN Reference Sensor Normalization Approach
4. Discussion
4.1. UAV Sensor-Based N Recommendations
4.2. Impact of Sensor Normalization Approach on N Recomendations
4.3. Implications and Limitations of the UAV Sensor-Based N Recommendation System
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Scharf, P.C. Understanding Nitrogen. In Managing Nitrogen in Crop Production; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2015; pp. 1–24. [Google Scholar]
- Mueller, N.D.; Gerber, J.S.; Johnston, M.; Ray, D.K.; Ramankutty, N.; Foley, J.A. Closing yield gaps through nutrient and water management. Nature 2012, 490, 254–257. [Google Scholar] [CrossRef] [PubMed]
- Tenorio, F.A.M.; Mclellan, E.L.; Eagle, A.J.; Cassman, K.G.; Andersen, D.; Krausnick, M.; Oaklund, R.; Thorburn, J.; Grassini, P. Benchmarking impact of nitrogen inputs on grain yield and environmental performance of producer fields in the western US Corn Belt. Agric. Ecosyst. Environ. 2020, 294, 106865. [Google Scholar] [CrossRef]
- Cassman, K.G.; Dobermann, A.R.; Walters, D.T. Agroecosystems, Nitrogen-use Efficiency, and Nitrogen Management Agroecosystems, Nitrogen-use Efficiency. AMBIO 2002, 31, 132–140. [Google Scholar] [CrossRef] [PubMed]
- Morris, T.F.; Murrell, T.S.; Beegle, D.B.; Camberato, J.J.; Ferguson, R.B.; Grove, J.; Ketterings, Q.; Kyveryga, P.M.; Laboski, C.A.M.; Mcgrath, J.M.; et al. Strengths and Limitations of Nitrogen Rate Recommendations for Corn and Opportunities for Improvement. Agron. J. 2018, 110, 1–37. [Google Scholar] [CrossRef] [Green Version]
- Mueller, N.D.; Lassaletta, L.; Runch, B.C.; Billen, G.; Garnier, J.; Gerber, J.S. Declining spatial efficiency of global cropland nitrogen allocation. Glob. Biogeochem. Cycles 2017, 31, 245–257. [Google Scholar] [CrossRef]
- Zhang, X.; Davidson, E.A.; Mauzerall, D.L.; Searchinger, T.D.; Dumas, P.; Shen, Y. Managing nitrogen for sustainable development. Nature 2015, 528, 51–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ravishankara, A.R.; Daniel, J.S.; Portmann, R.W. Nitrous oxide (N2O): The dominate ozone-depleting substance emitted in the 21st century. Science 2009, 326, 123–125. [Google Scholar] [CrossRef] [Green Version]
- Tilman, D.; Isbell, F. Biodiversity: Recovery as nitrogen declines. Nature 2015, 528, 336–337. [Google Scholar] [CrossRef] [Green Version]
- Hong, N.; Scharf, P.C.; Davis, J.G.; Kitchen, N.R.; Sudduth, K.A. Economically Optimal Nitrogen Rate Reduces Soil Residual Nitrate. J. Environ. Qual. 2007, 36, 354–362. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Christianson, L.E.; Harmel, D.; Pittelkow, C.M. Assessment of drainage nitrogen losses on a yield-scaled basis. Field Crop. Res. 2016, 199, 156–166. [Google Scholar] [CrossRef]
- Mamo, M.; Malzer, G.L.; Mulla, D.J.; Huggins, D.R.; Strock, J. Spatial and temporal variation in economically optimum nitrogen rate for corn. Agron. J. 2003, 95, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.P.; Dejoia, A.J.; Ferguson, R.B.; Taylor, R.K.; Young, R.K.; Havlin, J.L. Corn Yield Response to Nitrogen at Multiple In-Field Locations. Agron. J. 2002, 94, 798–806. [Google Scholar]
- Mueller, S.M.; Camberato, J.J.; Messina, C.; Shanahan, J.; Zhang, H.; Vyn, T.J. Late-split nitrogen applications increased maize plant nitrogen recovery but not yield under moderate to high nitrogen rates. Agron. J. 2017, 109, 2689–2699. [Google Scholar] [CrossRef] [Green Version]
- Ciampitti, I.A.; Vyn, T.J. Physiological perspectives of changes over time in maize yield dependency on nitrogen uptake and associated nitrogen efficiencies: A review. Field Crop. Res. 2012, 133, 48–67. [Google Scholar] [CrossRef]
- Benjamin, J.G.; Porter, L.K.; Duke, H.R.; Ahuja, L.R. Corn growth and nitrogen uptake with furrow irrigation and fertilizer bands. Agron. J. 1997, 89, 609–612. [Google Scholar] [CrossRef]
- Woli, K.P.; Boyer, M.J.; Elmore, R.W.; Sawyer, J.E.; Abendroth, L.J.; Barker, D.W. Corn era hybrid response to nitrogen fertilization. Agron. J. 2016, 108, 473–486. [Google Scholar] [CrossRef] [Green Version]
- Haegele, J.W.; Cook, K.A.; Nichols, D.M.; Below, F.E. Changes in nitrogen use traits associated with genetic improvement for grain yield of maize hybrids released in different decades. Crop Sci. 2013, 53, 1256–1268. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, J.; Beegle, D.; Zhu, Q.; Sripada, R. Improving in-season nitrogen recommendations for maize using an active sensor. Field Crop. Res. 2011, 120, 94–101. [Google Scholar] [CrossRef] [Green Version]
- Sripada, R.P.; Schmidt, J.P.; Dellinger, A.E.; Beegle, D.B. Evaluating multiple indices from a canopy reflectance sensor to estimate corn N requirements. Agron. J. 2008, 100, 1553–1561. [Google Scholar] [CrossRef]
- Bean, M.; Kitchen, N.R.; Camberato, J.J.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; Scharf, P.C.; et al. Active-Optical Reflectance Sensing Corn Algorithms Evaluated over the United States Midwest Corn Belt. Agron. J. 2018, 110, 2552–2565. [Google Scholar] [CrossRef] [Green Version]
- Shaver, T.M.; Khosla, R.; Westfall, D.G. Evaluation of two crop canopy sensors for nitrogen variability determination in irrigated maize. Precis. Agric. 2011, 12, 892–904. [Google Scholar] [CrossRef]
- Lo, T.H.; Rudnick, D.R.; Krienke, B.T.; Heeren, D.M.; Ge, Y.; Shaver, T.M. Water effects on optical canopy sensing for late-season site-specific nitrogen management of maize. Comput. Electron. Agric. 2019, 162, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Thompson, L.J.; Ferguson, R.B.; Kitchen, N.; Frazen, D.W.; Mamo, M.; Yang, H.; Schepers, J.S. Model and sensor-based recommendation approaches for in-season nitrogen management in corn. Agron. J. 2015, 107, 2020–2030. [Google Scholar] [CrossRef] [Green Version]
- Bastos, L.M. Evaluation of Stabilized Fertilizer and Crop Canopy Sensors as Next-Generation Nitrogen Management Technologies in Irrigated Corn; University of Nebraska-Lincoln: Lincoln, NE, USA, 2019. [Google Scholar]
- Franzen, D.; Kitchen, N.; Holland, K.; Schepers, J.; Raun, W. Algorithms for In-Season Nutrient Management in Cereals. Agron. J. 2016, 108, 1775–1781. [Google Scholar] [CrossRef] [Green Version]
- Raun, W.R.; Solie, J.B.; Johnson, G.V.; Stone, M.L.; Mutten, R.W.; Freeman, K.W.; Thomason, W.E.; Lukina, E.V. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agron. J. 2002, 94, 815–820. [Google Scholar] [CrossRef] [Green Version]
- Ward, N.C. Nitrogen and Water Effects on Canopy Sensor Measurements for Site-Specific Management of Crops; University of Nebraska-Lincoln: Lincoln, NE, USA, 2015. [Google Scholar]
- Barker, D.W.; Sawyer, J.E. Using active canopy sensors to quantify corn nitrogen stress and nitrogen application rate. Agron. J. 2010, 102, 964–971. [Google Scholar] [CrossRef]
- Scharf, P.C.; Shannon, D.K.; Palm, H.L.; Sudduth, K.A.; Drummond, S.T.; Kitchen, N.R.; Mueller, L.J.; Hubbard, V.C.; Oliveira, L.F. Sensor-based nitrogen applications out-performed producer-chosen rates for corn in on-farm demonstrations. Agron. J. 2011, 103, 1683–1691. [Google Scholar] [CrossRef]
- Shaver, T.; Khosla, R.; Westfall, D. Evaluation of Two Crop Canopy Sensors for Nitrogen Recommendations in Irrigated Maize. J. Plant Nutr. 2014, 37, 406–419. [Google Scholar] [CrossRef]
- Daniel, I.; Raj, K.; Ted, M. On-the-go active remote sensing for efficient crop nitrogen management. Sens. Rev. 2005, 25, 209–214. [Google Scholar]
- Erickson, B.; Lowenberg-DeBoer, J.; Bradford, J. 2017 Precision Agriculture Dealership Survey; Purdue University: West Lafayette, IN, USA, 2017. [Google Scholar]
- Crowther, J.D. Integrating Management Zones and Canopy Sensing to Improve Nitrogen Recommendation Algorithms. Master’s Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2018; pp. 1–186. [Google Scholar]
- Bean, G.M.; Kitchen, N.R.; Camberato, J.J.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; Laboski, C.A.M.; Nafziger, E.D.; Sawyer, J.E.; Scharf, P.C.; et al. Improving an active-optical reflectance sensor algorithm using soil and weather information. Agron. J. 2018, 110, 2541–2551. [Google Scholar] [CrossRef] [Green Version]
- Puntel, L.A.; Sawyer, J.E.; Barker, D.W.; Dietzel, R.; Poffenbarger, H.; Castellano, M.J.; Moore, K.J.; Thorburn, P.; Archontoulis, S.V. Modeling Long-Term Corn Yield Response to Nitrogen Rate and Crop Rotation. Front. Plant Sci. 2016, 7, 1–18. [Google Scholar] [CrossRef] [PubMed]
- Kitchen, N.R.; Shanahan, J.F.; Ransom, C.J.; Bandura, C.J.; Bean, G.M.; Camberato, J.J.; Carter, P.R.; Clark, J.D.; Ferguson, R.B.; Fernández, F.G.; et al. A public–industry partnership for enhancing corn nitrogen research and datasets: Project description, methodology, and outcomes. Agron. J. 2017, 109, 2371–2388. [Google Scholar] [CrossRef] [Green Version]
- Ransom, C.J.; Kitchen, N.R.; Camberato, J.J.; Carter, P.R.; Ferguson, R.B.; Fernandez, F.G.; Franzen, D.W.; Laboski, C.A.M.; Myers, D.B.; Nafziger, E.D.; et al. Statistical and machine learning methods evaluated for incorporating soil and weather into corn nitrogen recommendations. Comput. Electron. Agric. 2019, 164, 104872. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Zhou, M.; Li, D.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Improved estimation of rice aboveground biomass combining textural and spectral analysis of UAV imagery. Precis. Agric. 2019, 20, 611–629. [Google Scholar] [CrossRef]
- Wang, T.; Alex Thomasson, J.; Yang, C.; Isakeit, T.; Nichols, R.L. Automatic Classification of Cotton Root Rot Disease Based on UAV Remote Sensing. Remote Sens. 2020, 12, 1310. [Google Scholar] [CrossRef] [Green Version]
- Campos, J.; Llop, J.; Gallart, M.; García-Ruiz, F.; Gras, A.; Salcedo, R.; Gil, E. Development of canopy vigour maps using UAV for site-specific management during vineyard spraying process. Precis. Agric. 2019, 20, 1136–1156. [Google Scholar] [CrossRef] [Green Version]
- Barrero, O.; Perdomo, S.A. RGB and multispectral UAV image fusion for Gramineae weed detection in rice fields. Precis. Agric. 2018, 19, 809–822. [Google Scholar] [CrossRef]
- Jang, G.J.; Kim, J.; Yu, J.K.; Kim, H.J.; Kim, Y.; Kim, D.W.; Kim, K.H.; Lee, C.W.; Chung, Y.S. Review: Cost-effective unmanned aerial vehicle (UAV) platform for field plant breeding application. Remote Sens. 2020, 12, 998. [Google Scholar] [CrossRef] [Green Version]
- Millan, V.E.G.; Rankine, C.; Sanchez-Azofeifa, G.A. Crop loss evaluation using digital surface models from unmanned aerial vehicles data. Remote Sens. 2020, 12, 981. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Ma, J.; Zhou, M.; Li, D.; Yao, X.; Cao, W.; Zhu, Y.; Cheng, T. Enhancing the nitrogen signals of rice canopies across critical growth stages through the integration of textural and spectral information from unmanned aerial vehicle (UAV) multispectral imagery. Remote Sens. 2020, 12, 957. [Google Scholar] [CrossRef] [Green Version]
- Ye, H.; Huang, W.; Huang, S.; Cui, B.; Dong, Y.; Guo, A.; Ren, Y.; Jin, Y. Recognition of banana Fusarium wilt based on UAV remote sensing. Remote Sens. 2020, 12, 938. [Google Scholar] [CrossRef] [Green Version]
- Martinez-Guanter, J.; Agüera, P.; Agüera, J.; Pérez-Ruiz, M. Spray and economics assessment of a UAV-based ultra-low-volume application in olive and citrus orchards. Precis. Agric. 2020, 21, 226–243. [Google Scholar] [CrossRef]
- López-Granados, F.; Torres-Sánchez, J.; Serrano-Pérez, A.; de Castro, A.I.; Mesas-Carrascosa, F.J.; Peña, J.M. Early season weed mapping in sunflower using UAV technology: Variability of herbicide treatment maps against weed thresholds. Precis. Agric. 2016, 17, 183–199. [Google Scholar] [CrossRef]
- Louargant, M.; Villette, S.; Jones, G.; Vigneau, N.; Paoli, J.N.; Gée, C. Weed detection by UAV: Simulation of the impact of spectral mixing in multispectral images. Precis. Agric. 2017, 18, 932–951. [Google Scholar] [CrossRef] [Green Version]
- Comba, L.; Biglia, A.; Ricauda Aimonino, D.; Tortia, C.; Mania, E.; Guidoni, S.; Gay, P. Leaf Area Index evaluation in vineyards using 3D point clouds from UAV imagery. Precis. Agric. 2019, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Krienke, B.T.; Ferguson, R.B.; Maharjan, B. Using an unmanned aerial vehicle to evaluate nitrogen variability and distance effect with an active crop canopy sensor. In Precision Agriculture ‘15; Stafford, J.V., Ed.; Wageningen Academic Publishers: Gelderland, The Netherlands, 2015; pp. 143–150. ISBN 978-90-8686-267-2. [Google Scholar]
- Krienke, B.; Ferguson, R.B.; Schlemmer, M.; Holland, K.; Marx, D.; Eskridge, K. Using an unmanned aerial vehicle to evaluate nitrogen variability and height effect with an active crop canopy sensor. Precis. Agric. 2017, 18, 900–915. [Google Scholar] [CrossRef] [Green Version]
- Maresma, Á.; Lloveras, J.; Martínez-Casasnovas, J.A. Use of multispectral airborne images to improve in-season nitrogen management, predict grain yield and estimate economic return of maize in irrigated high yielding environments. Remote Sens. 2018, 10, 543. [Google Scholar] [CrossRef] [Green Version]
- Holland, K.H.; Schepers, J.S. Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agron. J. 2010, 102, 1415–1424. [Google Scholar] [CrossRef]
- Scharf, P.C.; Lory, J.A. Calibrating reflectance measurements to predict optimal sidedress nitrogen rate for corn. Agron. J. 2009, 101, 615–625. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Use of a chlorophyll meter to monitor nitrogen status and schedule fertigation for corn. J. Prod. Agric. 1995, 8, 56–60. [Google Scholar] [CrossRef]
- Holland, K.H.; Schepers, J.S. Use of a virtual-reference concept to interpret active crop canopy sensor data. Precis. Agric. 2013, 14, 71–85. [Google Scholar] [CrossRef]
- Guan, S.; Fukami, K.; Matsunaka, H.; Okami, M.; Tanaka, R.; Nakano, H.; Sakai, T.; Nakano, K.; Ohdan, H.; Takahashi, K. Assessing correlation of high-resolution NDVI with fertilizer application level and yield of rice and wheat crops using small UAVs. Remote Sens. 2019, 11, 112. [Google Scholar] [CrossRef] [Green Version]
- Maresma, Á.; Ariza, M.; Martínez, E.; Lloveras, J.; Martínez-Casasnovas, J.A. Analysis of vegetation indices to determine nitrogen application and yield prediction in maize (zea mays l.) from a standard uav service. Remote Sens. 2016, 8, 973. [Google Scholar] [CrossRef] [Green Version]
- Zheng, H.; Cheng, T.; Li, D.; Zhou, X.; Yao, X.; Tian, Y.; Cao, W.; Zhu, Y. Evaluation of RGB, color-infrared and multispectral images acquired from unmanned aerial systems for the estimation of nitrogen accumulation in rice. Remote Sens. 2018, 10, 824. [Google Scholar] [CrossRef] [Green Version]
- Padilla, F.M.; Gallardo, M.; Peña-Fleitas, M.T.; De Souza, R.; Thompson, R.B. Proximal optical sensors for nitrogen management of vegetable crops: A review. Sensors 2018, 18, 2083. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, C.A.; Ferguson, R.B.; Hergert, G.W.; Wortmann, C.S.; Walters, D.T. Fertilizer Suggestions for Corn; University of Nebraska-Lincoln: Lincoln, NE, USA, 2008; pp. 1–6. [Google Scholar]
- Thompson, L.J.; Glewen, K.L.; Ingram, T.; Krienke, B.; Lesoing, G.; Melvin, S.; Mueller, N.; Nygren, A.; Ohnesorg, W.; Proctor, C.; et al. Nebraska Extension on-Farm Research: 2017 Growing Season Results; University of Nebraska-Lincoln: Lincoln, NE, USA, 2018. [Google Scholar]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Blackmer, T.M.; Schepers, J.S. Techniques for monitoring crop nitrogen status in corn. Commun. Soil Sci. Plant Anal. 1994, 25, 1791–1800. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Gritz, Y.; Merzlyak, M.N. Relationships between leaf chlorophyll content and spectral reflectance and algorithms for non-destructive chlorophyll assessment in higher plant leaves. J. Plant Physiol. 2003, 160, 271–282. [Google Scholar] [CrossRef]
- Viña, A.; Gitelson, A.A.; Nguy-Robertson, A.L.; Peng, Y. Comparison of different vegetation indices for the remote assessment of green leaf area index of crops. Remote Sens. Environ. 2011, 115, 3468–3478. [Google Scholar] [CrossRef]
- ESRI ArcGIS Desktop 2017. Available online: https://desktop.arcgis.com/ (accessed on 6 April 2020).
- Scharf, P.C.; Lory, J.A. Calibrating corn color from aerial photographs to predict sidedress nitrogen need. Agron. J. 2002, 94, 397–404. [Google Scholar] [CrossRef]
- Ag Leader Technology Ag Leader SMS Advanced. Available online: https://www.agleader.com/farm-management/sms-software/ (accessed on 6 April 2020).
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 6 April 2020).
- Varvel, G.E.; Schepers, J.S.; Francis, D.D. Ability for In-Season Correction of Nitrogen Deficiency in Corn Using Chlorophyll Meters. Soil Sci. Soc. Am. J. 1997, 61, 1233–1239. [Google Scholar] [CrossRef]
- USDA-ARS Yield Editor. Available online: https://www.ars.usda.gov/research/software/?modeCode=50-70-10-00 (accessed on 6 April 2020).
- SAS Institute SAS/STAT User’s Guide 2013; SAS Institute Inc.: Carry, NC, USA, 2013.
- Thompson, L.J.; Glewen, K.L.; Bartels, M.; Ingram, T.; Krienke, B.; Lesoing, G.; Melvin, S.; Mueller, N.; Nygren, A.; Proctor, C.; et al. Nebraska Extension on-Farm Research: 2018 Growing Season Results; University of Nebraska-Lincoln: Lincoln, NE, USA, 2019. [Google Scholar]
- Earl, H.J.; Davis, R.F. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 2003, 95, 688–696. [Google Scholar] [CrossRef]
- Mulla, D.J.; Strock, J.S.; Schepers, J.S.; Raun, W.R. Nitrogen Transport Processes in Soil. In Nitrogen in Agricultural Systems; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2008; pp. 367–406. [Google Scholar]
- Puntel, L.A.; Pagani, A.; Archontoulis, S.V. Development of a nitrogen recommendation tool for corn considering static and dynamic variables. Eur. J. Agron. 2019, 105, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Banger, K.; Yuan, M.; Wang, J.; Nafziger, E.D.; Pittelkow, C.M. A vision for incorporating environmental effects into nitrogen management decision support tools for U.S. maize production. Front. Plant Sci. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krienke, B.T. Assessing Factors Influencing Maize Yield Response To Nitrogen Using Remote Sensing Technologies. Ph.D. Dissertation, University of Nebraska-Lincoln, Lincoln, NE, USA, 2015. [Google Scholar]
- Holcomb, J.C.; Sullivan, D.M.; Horneck, D.A.; Clough, G.H. Effect of Irrigation Rate on Ammonia Volatilization. Soil Sci. Soc. Am. J. 2011, 75, 2341–2347. [Google Scholar] [CrossRef]
- Çakir, R. Effect of water stress at different development stages on vegetative and reproductive growth of corn. Field Crop. Res. 2004, 89, 1–16. [Google Scholar] [CrossRef]
- Van Es, H.M.; Kay, B.D.; Melkonian, J.J.; Sogbedji, J.M.; Bruulsma, T.W. Nitrogen management for maize in humid regions: Case for a dynamic modeling approach. In Proceedings of the Integrating Weather Variability into Nitrogen Recommendations, Indianapolis, IN, USA, 15 November 2006. [Google Scholar]
- Tremblay, N.; Bouroubi, Y.M.; Bélec, C.; Mullen, R.W.; Kitchen, N.R.; Thomason, W.E.; Ebelhar, S.; Mengel, D.B.; Raun, W.R.; Francis, D.D.; et al. Corn response to nitrogen is influenced by soil texture and weather. Agron. J. 2012, 104, 1658–1671. [Google Scholar] [CrossRef] [Green Version]
- Gramig, B.M.; Massey, R.; Yun, S. Do Nitrogen application decision-making under climate risk in the U.S. Corn Belt. Clim. Risk Manag. 2017, 15, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Roberts, D.F. An Integrated Crop- and Soil- Based Strategy for Variable-Rate Nitrogen Management in Corn. Ph.D. Thesis, University of Nebraska-Lincoln, Lincoln, NE, USA, 2009; p. 242. [Google Scholar]
- Shapiro, C.A.; Ferguson, R.B.; Wortmann, C.S.; Maharjan, B.; Krienke, B. Nutrient Management Suggestions for Corn; University of Nebraska-Lincoln: Lincoln, NE, USA, 2019; pp. 1–7. [Google Scholar]
- Roberts, D.F.; Kitchen, N.R.; Scharf, P.C.; Sudduth, K.A. Will variable-rate nitrogen fertilization using corn canopy reflectance sensing deliver environmental benefits? Agron. J. 2010, 102, 85–95. [Google Scholar] [CrossRef] [Green Version]
- Maestrini, B.; Basso, B. Drivers of within-field spatial and temporal variability of crop yield across the US Midwest. Sci. Rep. 2018, 8, 1–9. [Google Scholar] [CrossRef]
- Wu, T.; Zhang, L.; Huang, C. An analysis of shadow effects on spectral vegetation indices using a ground-based imaging spectrometer. Work. Hyperspectral Image Signal Process. Evol. Remote Sens. 2015, 2015, 2188–2192. [Google Scholar]
- Shiratsuchi, L.; Ferguson, R.; Shanahan, J.; Adamchuk, V.; Rundquist, D.; Marx, D.; Slater, G. Water and nitrogen effects on active canopy sensor vegetation indices. Agron. J. 2011, 103, 1815–1826. [Google Scholar] [CrossRef] [Green Version]
- Schepers, J.S.; Blackmer, T.M.; Wilhelm, W.W.; Resende, M. Transmittance and reflectance measurements of corn leaves from plants with different nitrogen and water supply. J. Plant Physiol. 1996, 148, 523–529. [Google Scholar] [CrossRef] [Green Version]
- Schlemmer, M.R.; Francis, D.D.; Shanahan, J.F.; Schepers, J.S. Remotely Measuring Chlorophyll Content in Corn Leaves with Differing. Agron. J. 2005, 97, 106–112. [Google Scholar] [CrossRef] [Green Version]
- Clay, D.E.; Kim, K.I.; Chang, J.; Clay, S.A.; Dalsted, K. Characterizing water and nitrogen stress in corn using remote sensing. Agron. J. 2006, 98, 579–587. [Google Scholar] [CrossRef]
- Datt, B. Visible/near infrared reflectance and chlorophyll content in eucalyptus leaves. Int. J. Remote Sens. 1999, 20, 2741–2759. [Google Scholar] [CrossRef]
- Havlin, J.; Tisdale, S.; Nelson, W.; Beaton, J. Soil Fertility and Fertilizers, 8th ed.; Pearson: London, UK, 2013. [Google Scholar]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 15th ed.; Pearson: London, UK, 2017. [Google Scholar]
- Meisinger, J.J.; Calderon, F.J.; Jenkinson, D.S.; Schepers, J.S.; Raun, W.R. Soil Nitrogen Budgets. In Nitrogen in Agricultural Systems2; Schepers, J.S., Raun, W.R., Eds.; American Society of Agronomy, Inc.: Madison, WI, USA; Crop Science Society of America, Inc.: Madison, WI, USA; Soil Science Society of America, Inc.: Madison, WI, USA, 2008. [Google Scholar]
- Dumont, B.; Basso, B.; Bodson, B.; Destain, J.P.; Destain, M.F. Assessing and modeling economic and environmental impact of wheat nitrogen management in Belgium. Environ. Model. Softw. 2016, 79, 184–196. [Google Scholar] [CrossRef] [Green Version]
- Batchelor, W.D.; Basso, B.; Paz, J.O. Examples of strategies to analyze spatial and temporal yield variability using crop models. Eur. J. Agron. 2002, 18, 141–158. [Google Scholar] [CrossRef]
- Basso, B.; Sartori, L.; Cammarano, D.; Fiorentino, C.; Grace, P.R.; Fountas, S.; Sorensen, C.A. Environmental and economic evaluation of N fertilizer rates in a maize crop in Italy: A spatial and temporal analysis using crop models. Biosyst. Eng. 2012, 113, 103–111. [Google Scholar] [CrossRef]
- Basso, B.; Dumont, B.; Cammarano, D.; Pezzuolo, A.; Marinello, F.; Sartori, L. Environmental and economic benefits of variable rate nitrogen fertilization in a nitrate vulnerable zone. Sci. Total Environ. 2016, 545–546, 227–235. [Google Scholar] [CrossRef] [Green Version]
- McClure, G.A.; Jansen, J.A. 2018 Nebraska Farm Custom Rates; University of Nebraska-Lincoln: Lincoln, NE, USA, 2018. [Google Scholar]
- Matese, A.; Toscano, P.; Di Gennaro, S.F.; Genesio, L.; Vaccari, F.P.; Primicerio, J.; Belli, C.; Zaldei, A.; Bianconi, R.; Gioli, B. Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sens. 2015, 7, 2971–2990. [Google Scholar] [CrossRef] [Green Version]
- Ransom, C. Improving Corn Nitrogen Rate Recommendations Through Tool Fusion. In Proceedings of the 14th International Conference on Precision Agriculture, Montreal, QC, Canada, 24–27 June 2018. [Google Scholar]
- Hunt, E.R.; Daughtry, C.S.T. What good are unmanned aircraft systems for agricultural remote sensing and precision agriculture? Int. J. Remote Sens. 2018, 39, 5345–5376. [Google Scholar] [CrossRef] [Green Version]
ZP17 | YL18 | DA18 | |||||
---|---|---|---|---|---|---|---|
Farmer | UAV_84 | UAV_112 | Farmer | UAV_112 | Farmer | UAV_112 | |
Base N (kg ha−1) | 179 | 84 | 112 | 179 | 112 | 202 | 112 |
In-Season N (kg ha−1) | 45 | 114 | 83.6 | 0 | 28 | 0 | 59 |
Total N (kg ha−1) | 224 ± 0 | 198 ± 6.1 | 196 ± 5.2 | 179 ± 0 | 140 ± 0 | 202 ± 0 | 171 ± 0 |
Yield (Mg ha−1) | 15.5 ± 0.5 a † | 15.5 ± 0.4 a | 15.4 ± 0.8 a | 12.7 ± 0.3 a | 12.6 ± 0.2 a | 11.5 ± 0.3 a | 11.5 ± 0.1 a |
PFPN (kg grain kg N−1) | 68.9 ± 2.3 a | 78.3 ± 3.9 b | 78.9 ± 3.2 b | 70.9 ± 1.7 a | 90.1 ± 1.6 b | 56.9 ± 1.5 a | 67.0 ± 0.4 b |
Marginal Net Return (USD ha−1) | 1704.6 ± 63.4 a | 1711.2 ± 55.7 a | 1711.5 ± 97.8 a | 1498.6 ± 39.5 a | 1455.5 ± 29.0 a | 1331.6 ± 38.5 a | 1286.6 ± 7.8 a |
Delta SI | −0.041 ± 0.92 b | −0.018 ± 0.004 a | −0.026 ± 0.01 a | −0.020 ± 0.008 a | −0.027 ± 0.004 a | 0.003 ± 0.004 a | −0.007 ± 0.008 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thompson, L.J.; Puntel, L.A. Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a Practical Decision Support System for Precision Nitrogen Management in Corn. Remote Sens. 2020, 12, 1597. https://doi.org/10.3390/rs12101597
Thompson LJ, Puntel LA. Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a Practical Decision Support System for Precision Nitrogen Management in Corn. Remote Sensing. 2020; 12(10):1597. https://doi.org/10.3390/rs12101597
Chicago/Turabian StyleThompson, Laura J., and Laila A. Puntel. 2020. "Transforming Unmanned Aerial Vehicle (UAV) and Multispectral Sensor into a Practical Decision Support System for Precision Nitrogen Management in Corn" Remote Sensing 12, no. 10: 1597. https://doi.org/10.3390/rs12101597