Abstract
This study aimed to assess the spectral information potential of images captured with an unmanned aerial vehicle, in the context of crop–weed discrimination. A model is proposed in which the entire image acquisition chain is simulated in order to compute the digital values of image pixels according to several parameters (light, plant characteristics, optical filters, sensors…) to reproduce in-field acquisition conditions. The spectral mixings in the pixels are modeled, based on an image with a 60 mm spatial resolution, to estimate the impact of the resolution on the ability to discriminate small plants. The classification potential (i.e. the ability to separate two classes) in soil and vegetation and in monocotyledon and dicotyledon classes is studied using simulations for different vegetation rates (defined as the proportion of vegetation covering the surface projected in the considered pixel). The classification is unsupervised and based on the Mahalanobis distance computation. The results of soil-vegetation discrimination show that pixels with low vegetation rates can be classified as vegetation: pixels with vegetation rate greater than 0.5 had a probability to be correctly classified between 80 and 100%. Classification between monocotyledonous and dicotyledonous plants requires pixels with a high vegetation rate: to obtain a probability to be correctly classified better than 80%, vegetation rates in the pixels have to be over 0.9. To compare the results with data from real images, the same classification was tested on multispectral images of a weed infested field. The comparison confirmed the ability of the model to assess vegetation–soil and crop–weed discrimination potential for specific sensors (such as the multiSPEC 4C sensor, AIRINOV, Paris, France), where the acquisition chain parameters can be tested.
Similar content being viewed by others
References
ASTM G173-03 (2012). Standard tables for reference solar spectral irradiances: direct normal and hemispherical on 37° tilted surface. ASTM International, West Conshohocken, PA, USA. Retrieved form www.astm.org.
Bird, R. E., & Riordan, C. (1984). Simple Solar Spectral Model for Direct and Diffuse Irradiance on Horizontal and Tilted Planes at the Earth’s Surface for Cloudless Atmospheres. Technical Report No. SERI/TR-215-2436, Golden, CO, USA: Solar Energy Research Institute.
Borra-Serrano, I., Peña, J. M., Torres-Sánchez, J., Mesas-Carrascosa, F. J., & López-Granados, F. (2015). Spatial quality evaluation of resampled unmanned aerial vehicle-imagery for weed mapping. Sensors, 15, 19688–19708.
Bossu, J., Gée, C., Jones, G., & Truchetet, F. (2009). Wavelet transform to discriminate between crop and weed in perspective agronomic images. Computers and Electronics in Agriculture, 65(1), 133–143.
Brown, R. B., Steckler, J.-P. G. A., & Anderson, G. W. (1994). Remote sensing for identification of weeds in no-till corn. Transactions of the ASAE, 37(1), 297–302. doi:10.13031/2013.28084.
Clay, S. A., Lems, G. J., Clay, D. E., Forcella, F., Ellsbury, M. M., & Carlson, C. G. (1999). Sampling weed spatial variability on a fieldwide scale. Weed Science, 47(6), 674–681. doi:10.2307/4046133.
De Castro, A. I., Jurado-Exposito, M., Gomez-Casero, M.-T., & Lopez-Granados, F. (2012). Applying neural networks to hyperspectral and multispectral field data for discrimination of cruciferous weeds in winter crops. The Scientific World Journal. doi:10.1100/2012/630390.
Feyaerts, F., & van Gool, L. (2001). Multi-spectral vision system for weed detection. Pattern Recognition Letters, 22(6–7), 667–674. doi:10.1016/S0167-8655(01)00006-X.
Garcia-Ruiz, F. J., Wulfsohn, D., & Rasmussen, J. (2015). Sugar beet (Beta vulgaris L.) and thistle (Cirsium arvensis L.) discrimination based on field spectral data. Biosystems Engineering, 139, 1–15. doi:10.1016/j.biosystemseng.2015.07.012.
Gausman, H. W. (1985). Plant Leaf Optical Properties in Visible and Near-Infrared Light. Graduate studies No. 29, Lubbock, USA: Texas Tech University.
Gerhards, R., Sökefeld, M., Timmermann, C., Kühbauch, W., & Williams, M. M., II. (2002). Site-specific weed control in maize, sugar beet, winter wheat, and winter barley. Precision Agriculture, 3(1), 25–35. doi:10.1023/A:1013370019448.
Girma, K., Mosali, J., Raun, W. R., Freeman, K. W., Martin, K. L., Solie, J. B., et al. (2005). Identification of optical spectral signatures for detecting cheat and ryegrass in winter wheat. Crop Science, 45, 477–485.
Hadoux, X., Gorretta, N., & Rabatel, G. (2012). Weeds-wheat discrimination using hyperspectral imagery. In CIGR (Ed.), International Conference on Agricultural Engineering. Valence, Spain.
Jones, G., Gée, C., & Truchetet, F. (2009). Assessment of an inter-row weed infestation rate on simulated agronomic images. Computers and Electronics in Agriculture, 67(1–2), 43–50.
Lopez-Granados, F., PeNa-BarragAn, J., Jurado-ExpOsito, M., Francisco-FernAndez, M., Cao, R., Alonso-Betanzos, A., et al. (2008). Multispectral classification of grass weeds and wheat (Triticum durum) using linear and nonparametric functional discriminant analysis and neural networks. Weed Research, 48(1), 28–37.
Mahalanobis, P. C. (1936). On the generalized distance in statistics. Proceedings of the National Institute of Science of India, 12, 49–55.
Martín, C. S., Andújar, D., Barroso, J., Fernández-Quintanilla, C., & Dorado, J. (2016). Weed decision threshold as a key factor for herbicide reductions in site-specific weed management. Weed Technology, 30(4), 888–897. doi:10.1614/WT-D-16-00039.1.
McBratney, A. B., Mendonça Santos, M. L., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1–2), 3–52. doi:10.1016/S0016-7061(03)00223-4.
Meier, U. (2001). Growth stages of mono-and dicotyledonous plants. BBCH Monograph. Braunschweig, Germany: Federal Biological Research Centre for Agriculture and Forestry.
Melnykov, I., & Melnykov, V. (2014). On K-means algorithm with the use of Mahalanobis distances. Statistics & Probability Letters, 84, 88–95. doi:10.1016/j.spl.2013.09.026.
Mesas-Carrascosa, F. J., Torres-Sánchez, J., Clavero-Rumbao, I., García-Ferrer, A., Peña, J.-M., Borra-Serrano, I., et al. (2015). Assessing optimal flight parameters for generating accurate multispectral orthomosaicks by UAV to support site-specific crop management. Remote Sensing, 7(10), 12793–12814. doi:10.3390/rs71012793.
Nordmeyer, H. (2006). Patchy weed distribution and site-specific weed control in winter cereals. Precision Agriculture, 7, 219–231.
Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS ONE, 8(10), e77151. doi:10.1371/journal.pone.0077151.
Peña, J. M., Torres-Sánchez, J., Serrano-Pérez, A., De Castro, A. I., & López-Granados, F. (2015). Quantifying efficacy and limits of unmanned aerial vehicle (UAV) technology for weed seedling detection as affected by sensor resolution. Sensors, 15(3), 5609–5626.
Pérez-Ortiz, M., Pena, J. M., Gutiérrez, P. A., Torres-Sánchez, J., Hervás-Martínez, C., & López-Granados, F. (2015). A semi-supervised system for weed mapping in sunflower crops using unmanned aerial vehicles and a crop row detection method. Applied Soft Computing, 37, 533–544. doi:10.1016/j.asoc.2015.08.027.
Rango, A., Laliberte, A., Herrick, J. E., Winters, C., Havstad, K., Steele, C., et al. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing, 3, 033542.
Rasmussen, J., Nielsen, J., Garcia-Ruiz, F., Christensen, S., & Streibig, J. C. (2013). Potential uses of small unmanned aircraft systems (UAS) in weed research. Weed Research, 53(4), 242–248. doi:10.1111/wre.12026.
Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring Vegetation Systems in the Great Plains with ERTS. In Proceedings of the Third ERTS Symposium, NASA SP-351, NASA, Washington, DC, 1, 309–317.
Shannon, C. E. (1949). Communication in the presence of noise. Proceedings of the IRE, 37(1), 10–21. doi:10.1109/JRPROC.1949.232969.
Shapira, U., Herrmann, I., Karnieli, A., & Bonfil, D. J. (2013). Field spectroscopy for weed detection in wheat and chickpea fields. International Journal of Remote Sensing, 34(17), 6094–6108. doi:10.1080/01431161.2013.793860.
Stafford, J. V., & Miller, P. C. H. (1993). Spatially selective application of herbicide to cereal crops. Computers and Electronics in Agriculture, 9(3), 217–229. doi:10.1016/0168-1699(93)90040-8.
Thornton, P. K., Fawcett, R. H., Dent, J. B., & Perkins, T. J. (1990). Spatial weed distribution and economic thresholds for weed control. Crop Protection, 9(5), 337–342. doi:10.1016/0261-2194(90)90003-P.
Verger, A., Vigneau, N., Chéron, C., Gilliot, J.-M., Comar, A., & Baret, F. (2014). Green area index from an unmanned aerial system over wheat and rapeseed crops. Remote Sensing of Environment, 152, 654–664. doi:10.1016/j.rse.2014.06.006.
Vioix, J. B., Douzals, J. P., & Truchetet, F. (2003). Development of a spatial method for weed detection and localization. In Proceedings of SPIE 5266, Wavelet Applications in Industrial Processing. doi:10.1117/12.516253.
Vrindts, E., De Baerdemaeker, J., & Ramon, H. (2002). Weed Detection Using Canopy Reflection. Precision Agriculture, 3(1), 63–80.
Zhang, C., & Kovacs, J. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. doi:10.1007/s11119-012-9274-5.
Acknowledgements
This project is supported by AIRINOV Company and the ANRT (Association Nationale de la Recherche et de la Technologie). This study is also supported by the program “ANR CoSAC” (ANR-14-CE18-0007).
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Louargant, M., Villette, S., Jones, G. et al. Weed detection by UAV: simulation of the impact of spectral mixing in multispectral images. Precision Agric 18, 932–951 (2017). https://doi.org/10.1007/s11119-017-9528-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-017-9528-3