


default search action
János Abonyi
Person information
Refine list

refinements active!
zoomed in on ?? of ?? records
view refined list in
export refined list as
2020 – today
- 2024
- [j80]Abdulrahman K. Eesee
, Szilárd Jaskó, György Eigner
, János Abonyi
, Tamás Ruppert
:
Extension of HAAS for the Management of Cognitive Load. IEEE Access 12: 16559-16572 (2024) - [j79]Ádám Ipkovich
, János Abonyi
:
Neighborhood Ranking-Based Feature Selection. IEEE Access 12: 20152-20168 (2024) - [j78]Éva Kenyeres
, János Abonyi
:
Analysis and Clustering-Based Improvement of Particle Filter Optimization Algorithms. IEEE Access 12: 55600-55619 (2024) - [j77]Tamás Kegyes
, Zoltán Süle, János Abonyi:
Disassembly line optimization with reinforcement learning. Central Eur. J. Oper. Res. 32(4): 1115-1142 (2024) - [j76]András Rácz-Szabó
, Tamás Ruppert
, János Abonyi
:
Multilayer Network-Based Evaluation of the Efficiency and Resilience of Network Flows. Complex. 2024 (2024) - [j75]Tuan-anh Tran
, Tamás Ruppert
, János Abonyi:
The Use of eXplainable Artificial Intelligence and Machine Learning Operation Principles to Support the Continuous Development of Machine Learning-Based Solutions in Fault Detection and Identification. Comput. 13(10): 252 (2024) - [j74]Éva Kenyeres
, Alex Kummer
, János Abonyi
:
Machine Learning Classifier-Based Metrics Can Evaluate the Efficiency of Separation Systems. Entropy 26(7): 571 (2024) - [j73]Francesco Pilati
, Andrea Sbaragli
, Tamás Ruppert, János Abonyi:
Goal-oriented clustering algorithm to monitor the efficiency of logistic processes through real-time locating systems. Int. J. Comput. Integr. Manuf. 37(10-11): 1359-1375 (2024) - [j72]Tamás Kegyes
, Alex Kummer
, Zoltán Süle
, János Abonyi
:
Generally Applicable Q-Table Compression Method and Its Application for Constrained Stochastic Graph Traversal Optimization Problems. Inf. 15(4): 193 (2024) - [j71]Róbert Csalódi
, Zsolt Bagyura
, Ágnes Vathy-Fogarassy
, János Abonyi:
Time-dependent frequent sequence mining-based survival analysis. Knowl. Based Syst. 296: 111885 (2024) - [j70]András Darányi
, János Abonyi
:
Fault Diagnostics Based on the Analysis of Probability Distributions Estimated Using a Particle Filter. Sensors 24(3): 719 (2024) - [j69]Tímea Czvetkó, János Abonyi
:
Version [1.0]- HAT-VIS - A MATLAB-based hypergraph visualization tool. SoftwareX 28: 101963 (2024) - [c29]Mónika Gugolya, Tibor Medvegy, János Abonyi, Tamás Ruppert:
Game-Based Design of a Human-Machine Collaboration Monitoring System. APMS (2) 2024: 205-219 - [c28]Zoltán Jeskó, Tuan-anh Tran, Gergely Halász, János Abonyi, Tamás Ruppert:
Enriching Scene-Graph Generation with Prior Knowledge from Work Instruction. APMS (2) 2024: 290-302 - 2023
- [j68]Yuli Sudriani
, Viktor Sebestyén, János Abonyi
:
Surface Water Monitoring Systems - The Importance of Integrating Information Sources for Sustainable Watershed Management. IEEE Access 11: 36421-36451 (2023) - [j67]László Bántay
, János Abonyi:
Frequent pattern mining-based log file partition for process mining. Eng. Appl. Artif. Intell. 123(Part A): 106221 (2023) - [j66]Tímea Czvetkó, János Abonyi
:
Data sharing in Industry 4.0 - AutomationML, B2MML and International Data Spaces-based solutions. J. Ind. Inf. Integr. 33: 100438 (2023) - [j65]Tamás Ruppert
, András Darányi
, Tibor Medvegy
, Dániel Csereklei, János Abonyi
:
Demonstration Laboratory of Industry 4.0 Retrofitting and Operator 4.0 Solutions: Education towards Industry 5.0. Sensors 23(1): 283 (2023) - [j64]János Hegedüs-Kuti
, József Szolosi
, Dániel Varga, János Abonyi
, Mátyás Andó
, Tamás Ruppert
:
3D Scanner-Based Identification of Welding Defects - Clustering the Results of Point Cloud Alignment. Sensors 23(5): 2503 (2023) - [j63]Tuan-anh Tran
, Márta Péntek
, Hossein Motahari-Nezhad
, János Abonyi
, Levente Kovács
, László Gulácsi
, György Eigner
, Zsombor Zrubka
, Tamás Ruppert
:
Heart Rate Variability Measurement to Assess Acute Work-Content-Related Stress of Workers in Industrial Manufacturing Environment - A Systematic Scoping Review. IEEE Trans. Syst. Man Cybern. Syst. 53(11): 6685-6692 (2023) - [c27]László Nagy, Tamás Ruppert, János Abonyi:
Towards an Ontology-Based Fault Detection and Diagnosis Framework - A Semantic Approach. CoDIT 2023: 1267-1272 - [c26]Gergely Halász, Tibor Medvegy
, János Abonyi, Tamás Ruppert:
Indoor Positioning-based Occupational Exposures Mapping and Operator Well-being Assessment in Manufacturing Environment. APMS (1) 2023: 543-555 - 2022
- [j62]Tuan-anh Tran
, Tamás Ruppert
, György Eigner
, János Abonyi:
Retrofitting-Based Development of Brownfield Industry 4.0 and Industry 5.0 Solutions. IEEE Access 10: 64348-64374 (2022) - [j61]Krisztián Bakon
, Tibor Holczinger
, Zoltán Süle
, Szilárd Jaskó
, János Abonyi:
Scheduling Under Uncertainty for Industry 4.0 and 5.0. IEEE Access 10: 74977-75017 (2022) - [j60]Laszlo Gadar, Zsolt Tibor Kosztyán, András Telcs, János Abonyi:
Cooperation patterns in the ERASMUS student exchange network: an empirical study. Appl. Netw. Sci. 7(1): 74 (2022) - [j59]Ádám Sass, Alex Kummer
, János Abonyi:
Multi-agent reinforcement learning-based exploration of optimal operation strategies of semi-batch reactors. Comput. Chem. Eng. 162: 107819 (2022) - [j58]László Bántay
, Gyula Dörgö
, Ferenc Tandari, János Abonyi
:
Simultaneous Process Mining of Process Events and Operator Actions for Alarm Management. Complex. 2022: 8670154:1-8670154:13 (2022) - [j57]Zsolt Tibor Kosztyán
, András Telcs
, János Abonyi
:
A multi-block clustering algorithm for high dimensional binarized sparse data. Expert Syst. Appl. 191: 116219 (2022) - [j56]Beáta Sz. G. Pató
, Klaudia Kovacs, János Abonyi:
Challenges of the Fourth Industrial Revolution in HRM. Int. J. Hum. Cap. Inf. Technol. Prof. 13(1): 1-14 (2022) - [j55]Lalit Maurya
, Viney Lohchab
, Prasant Kumar Mahapatra, János Abonyi:
Contrast and brightness balance in image enhancement using Cuckoo Search-optimized image fusion. J. King Saud Univ. Comput. Inf. Sci. 34(9): 7247-7258 (2022) - [j54]Pál Péter Hanzelik
, Alex Kummer
, János Abonyi
:
Edge-Computing and Machine-Learning-Based Framework for Software Sensor Development. Sensors 22(11): 4268 (2022) - [c25]László Nagy, Tamás Ruppert, János Abonyi:
Human-centered knowledge graph-based design concept for collaborative manufacturing. ETFA 2022: 1-8 - [c24]Tamás Ruppert, Andreas Löcklin, David Romero, János Abonyi:
Intelligent Collaborative Manufacturing Space for Augmenting Human Workers in Semi-Automated Manufacturing Systems. ETFA 2022: 1-7 - [c23]Tuan-anh Tran, János Abonyi, Levente Kovács, György Eigner, Tamás Ruppert:
Heart Rate Variability Measurement to Assess Work-Related Stress of Physical Workers in Manufacturing Industries - Protocol for a Systematic Literature Review. SISY 2022: 313-318 - 2021
- [j53]Róbert Csalódi
, Zsolt Bagyura, János Abonyi:
Mixture of Survival Analysis Models-Cluster-Weighted Weibull Distributions. IEEE Access 9: 152288-152299 (2021) - [j52]Tamás Ruppert
, Róbert Csalódi, János Abonyi:
Estimation of machine setup and changeover times by survival analysis. Comput. Ind. Eng. 153: 107026 (2021) - [j51]Róbert Csalódi
, Zoltán Süle
, Szilárd Jaskó
, Tibor Holczinger
, János Abonyi
:
Industry 4.0-Driven Development of Optimization Algorithms: A Systematic Overview. Complex. 2021: 6621235:1-6621235:22 (2021) - [j50]Tamás Kegyes
, Zoltán Süle
, János Abonyi
:
The Applicability of Reinforcement Learning Methods in the Development of Industry 4.0 Applications. Complex. 2021: 7179374:1-7179374:31 (2021) - [j49]János Abonyi
, Richard Karoly, Gyula Dörgö
:
Event-Tree Based Sequence Mining Using LSTM Deep-Learning Model. Complex. 2021: 7887159:1-7887159:24 (2021) - [j48]László Nagy
, Tamás Ruppert
, János Abonyi
:
Ontology-Based Analysis of Manufacturing Processes: Lessons Learned from the Case Study of Wire Harness Production. Complex. 2021: 8603515:1-8603515:21 (2021) - [j47]Róbert Csalódi
, Zoltán Birkner, János Abonyi
:
Learning Interpretable Mixture of Weibull Distributions - Exploratory Analysis of How Economic Development Influences the Incidence of COVID-19 Deaths. Data 6(12): 125 (2021) - [j46]Laszlo Heinold, Ágnes Bárkányi, János Abonyi:
Test Plan for the Verification of the Robustness of Sensors and Automotive Electronic Products Using Scenario-Based Noise Deployment (SND). Sensors 21(10): 3359 (2021) - [c22]Tuan-anh Tran
, Tamás Ruppert
, György Eigner, János Abonyi:
Real-time locating system and digital twin in Lean 4.0. SACI 2021: 369-374 - 2020
- [b3]Dániel Leitold
, Ágnes Vathy-Fogarassy
, János Abonyi
:
Network-Based Analysis of Dynamical Systems - Methods for Controllability and Observability Analysis, and Optimal Sensor Placement. Springer Briefs in Computer Science, Springer 2020, ISBN 978-3-030-36471-7, pp. 1-85 - [j45]Szilárd Jaskó
, Adrienn Skrop, Tibor Holczinger
, Tibor Chován
, János Abonyi:
Development of manufacturing execution systems in accordance with Industry 4.0 requirements: A review of standard- and ontology-based methodologies and tools. Comput. Ind. 123: 103300 (2020) - [j44]Tamás Ruppert
, János Abonyi:
Integration of real-time locating systems into digital twins. J. Ind. Inf. Integr. 20: 100174 (2020) - [j43]András Rácz-Szabó
, Tamás Ruppert
, László Bántay
, Andreas Löcklin
, László Jakab, János Abonyi
:
Real-Time Locating System in Production Management. Sensors 20(23): 6766 (2020)
2010 – 2019
- 2019
- [j42]Gyula Dörgö, János Abonyi:
Learning and predicting operation strategies by sequence mining and deep learning. Comput. Chem. Eng. 128: 174-187 (2019) - [j41]Alex Kummer
, Tamás Varga
, János Abonyi:
Genetic programming-based development of thermal runaway criteria. Comput. Chem. Eng. 131 (2019) - [j40]János Baumgartner, Zoltán Süle
, Botond Bertók
, János Abonyi:
Test-sequence optimisation by survival analysis. Central Eur. J. Oper. Res. 27(2): 357-375 (2019) - [j39]Daniel Leitold, Ágnes Vathy-Fogarassy
, János Abonyi:
Empirical working time distribution-based line balancing with integrated simulated annealing and dynamic programming. Central Eur. J. Oper. Res. 27(2): 455-473 (2019) - [j38]Gergely Marcell Honti, János Abonyi:
A Review of Semantic Sensor Technologies in Internet of Things Architectures. Complex. 2019: 6473160:1-6473160:21 (2019) - [i2]Dániel Leitold, Ágnes Vathy-Fogarassy
, János Abonyi:
Network-based Observability and Controllability Analysis of Dynamical Systems: the NOCAD toolbox. F1000Research 8: 646 (2019) - 2018
- [j37]Gyula Dörgö
, János Abonyi:
Sequence Mining Based Alarm Suppression. IEEE Access 6: 15365-15379 (2018) - [j36]Gyula Dörgö
, Kristof Varga, János Abonyi:
Hierarchical Frequent Sequence Mining Algorithm for the Analysis of Alarm Cascades in Chemical Processes. IEEE Access 6: 50197-50216 (2018) - [j35]Laszlo Gadar, Zsolt Tibor Kosztyán, János Abonyi:
The Settlement Structure Is Reflected in Personal Investments: Distance-Dependent Network Modularity-Based Measurement of Regional Attractiveness. Complex. 2018: 1306704:1-1306704:16 (2018) - [j34]Tamás Ruppert
, Gergely Marcell Honti, János Abonyi
:
Multilayer Network-Based Production Flow Analysis. Complex. 2018: 6203754:1-6203754:15 (2018) - [j33]Tamás Ruppert
, János Abonyi:
Software Sensor for Activity-Time Monitoring and Fault Detection in Production Lines. Sensors 18(7): 2346 (2018) - [j32]Daniel Leitold
, Ágnes Vathy-Fogarassy
, János Abonyi:
Network Distance-Based Simulated Annealing and Fuzzy Clustering for Sensor Placement Ensuring Observability and Minimal Relative Degree. Sensors 18(9): 3096 (2018) - 2016
- [j31]András Király, Ágnes Vathy-Fogarassy
, János Abonyi:
Geodesic distance based fuzzy c-medoid clustering - searching for central points in graphs and high dimensional data. Fuzzy Sets Syst. 286: 157-172 (2016) - [c21]Richard Karoly, János Abonyi:
Multi-temporal sequential pattern mining based improvement of alarm management systems. SMC 2016: 3870-3875 - [p3]Tibor Kulcsar, Barbara Farsang, Sándor Zoltán Németh
, János Abonyi:
Multivariate Statistical and Computational Intelligence Techniques for Quality Monitoring of Production Systems. Intelligent Decision Making in Quality Management 2016: 237-263 - 2015
- [b2]Tamás Kenesei, János Abonyi:
Interpretability of Computational Intelligence-Based Regression Models. Springer Briefs in Computer Science, Springer 2015, ISBN 978-3-319-21941-7, pp. 1-63 - [j30]András Király, János Abonyi:
Redesign of the supply of mobile mechanics based on a novel genetic optimization algorithm using Google Maps API. Eng. Appl. Artif. Intell. 38: 122-130 (2015) - [j29]Zoltán Bankó, János Abonyi:
Mixed dissimilarity measure for piecewise linear approximation based time series applications. Expert Syst. Appl. 42(21): 7664-7675 (2015) - 2014
- [j28]András Király, Asta Laiho, János Abonyi, Attila Gyenesei:
Novel techniques and an efficient algorithm for closed pattern mining. Expert Syst. Appl. 41(11): 5105-5114 (2014) - [c20]András Király, Ágnes Vathy-Fogarassy
, János Abonyi:
Fuzzy c-Medoid Graph Clustering. ICAISC (2) 2014: 738-748 - [i1]Tamás Varga, András Király, János Abonyi:
Improvement of PSO algorithm by memory based gradient search - application in inventory management. CoRR abs/1410.5652 (2014) - 2013
- [b1]Ágnes Vathy-Fogarassy
, János Abonyi
:
Graph-Based Clustering and Data Visualization Algorithms. Springer Briefs in Computer Science, Springer 2013, ISBN 978-1-4471-5157-9, pp. I-XIII, 1-110 - [j27]Tamás Kenesei, János Abonyi:
Hinging hyperplane based regression tree identified by fuzzy clustering and its application. Appl. Soft Comput. 13(2): 782-792 (2013) - 2012
- [j26]Tamás Kenesei, János Abonyi:
Interpretable support vector regression. Artif. Intell. Res. 1(2): 11-21 (2012) - [j25]Zoltán Bankó, János Abonyi:
Correlation based dynamic time warping of multivariate time series. Expert Syst. Appl. 39(17): 12814-12823 (2012) - [c19]András Király, János Abonyi, Asta Laiho, Attila Gyenesei:
Biclustering of High-throughput Gene Expression Data with Bicluster Miner. ICDM Workshops 2012: 131-138 - 2011
- [p2]András Király, János Abonyi:
Optimization of Multiple Traveling Salesmen Problem by a Novel Representation Based Genetic Algorithm. Intelligent Computational Optimization in Engineering 2011: 241-269
2000 – 2009
- 2009
- [j24]Tamás Varga
, Ferenc Szeifert, János Abonyi:
Decision tree and first-principles model-based approach for reactor runaway analysis and forecasting. Eng. Appl. Artif. Intell. 22(4-5): 569-578 (2009) - [j23]Ágnes Vathy-Fogarassy
, János Abonyi:
Local and global mappings of topology representing networks. Inf. Sci. 179(21): 3791-3803 (2009) - [c18]Balazs Balaskó, Sándor Zoltán Németh, János Abonyi:
Integrated process and control system model for product quality control - A soft-sensor based application. ECC 2009: 3498-3502 - [c17]János Abonyi:
Supervised Fuzzy Clustering Based Initialization of Fuzzy Partitions for Decision Tree Induction. WSC 2009: 31-39 - [c16]Zoltán Bankó, János Abonyi:
Dynamic Time Warping of Segmented Time Series. WSC 2009: 117-125 - 2008
- [j22]Ferenc Peter Pach, Attila Gyenesei, János Abonyi:
Compact fuzzy association rule-based classifier. Expert Syst. Appl. 34(4): 2406-2416 (2008) - [j21]Ferenc Peter Pach, Attila Gyenesei, János Abonyi:
MOSSFARM: Model structure selection by fuzzy association rule mining. J. Intell. Fuzzy Syst. 19(6): 399-407 (2008) - [j20]Ágnes Vathy-Fogarassy
, Agnes Werner-Stark, János Abonyi:
Topology Representing Networks for the Visualization of Manifolds. J. Math. Model. Algorithms 7(4): 351-370 (2008) - [j19]Ágnes Vathy-Fogarassy
, Attila Kiss
, János Abonyi:
Topology Representing Network Map - A New Tool for Visualization of High-Dimensional Data. Trans. Comput. Sci. 1: 61-84 (2008) - [p1]Balazs Feil, János Abonyi:
Introduction to Fuzzy Data Mining Methods. Handbook of Research on Fuzzy Information Processing in Databases 2008: 55-95 - 2007
- [j18]Balazs Feil, Balazs Balasko, János Abonyi:
Visualization of fuzzy clusters by fuzzy Sammon mapping projection: application to the analysis of phase space trajectories. Soft Comput. 11(5): 479-488 (2007) - [c15]Tamás Kenesei, Johannes A. Roubos, János Abonyi:
A Combination-of-Tools Method for Learning Interpretable Fuzzy Rule-Based Classifiers from Support Vector Machines. IDEAL 2007: 477-486 - [c14]Ágnes Vathy-Fogarassy
, Agnes Werner-Stark, Balázs Gaál, János Abonyi:
Visualization of Topology Representing Networks. IDEAL 2007: 557-566 - [c13]Tamás Kenesei, Balazs Feil, János Abonyi:
Fuzzy Clustering for the Identification of Hinging Hyperplanes Based Regression Trees. WILF 2007: 179-186 - [c12]Ágnes Vathy-Fogarassy
, Attila Kiss
, János Abonyi:
Improvement of Jarvis-Patrick Clustering Based on Fuzzy Similarity. WILF 2007: 195-202 - 2006
- [j17]Peter Pach, Balazs Feil, Sándor Zoltán Németh
, Peter Arva, János Abonyi:
Process-Data-Warehousing-Based Operator Support System for Complex Production Technologies. IEEE Trans. Syst. Man Cybern. Part A 36(1): 136-153 (2006) - [c11]Ágnes Vathy-Fogarassy
, Attila Kiss
, János Abonyi:
Hybrid Minimal Spanning Tree and Mixture of Gaussians Based Clustering Algorithm. FoIKS 2006: 313-330 - [c10]Balazs Balasko, János Madár, János Abonyi:
Additive Sequential Evolutionary Design of Experiments. ICAISC 2006: 324-333 - 2005
- [j16]Balazs Feil, János Abonyi, Sándor Zoltán Németh
, Peter Arva:
Monitoring process transitions by Kalman filtering and time-series segmentation. Comput. Chem. Eng. 29(6): 1423-1431 (2005) - [j15]János Madár, János Abonyi, Ferenc Szeifert:
Interactive evolutionary computation in process engineering. Comput. Chem. Eng. 29(7): 1591-1597 (2005) - [j14]János Madár, János Abonyi, Ferenc Szeifert:
Feedback linearizing control using hybrid neural networks identified by sensitivity approach. Eng. Appl. Artif. Intell. 18(3): 343-351 (2005) - [j13]János Abonyi, Balazs Feil, Sándor Zoltán Németh
, Peter Arva:
Modified Gath-Geva clustering for fuzzy segmentation of multivariate time-series. Fuzzy Sets Syst. 149(1): 39-56 (2005) - [j12]János Abonyi, Balazs Feil, Ajith Abraham:
Computational Intelligence in Data Mining. Informatica (Slovenia) 29(1): 3-12 (2005) - [c9]János Madár, János Abonyi, Ferenc Szeifert:
Interactive Particle Swarm Optimization. ISDA 2005: 314-319 - 2004
- [j11]János Madár, Ferenc Szeifert, Lajos Nagy
, Tibor Chován
, János Abonyi:
Tendency model-based improvement of the slave loop in cascade temperature control of batch process units. Comput. Chem. Eng. 28(5): 737-744 (2004) - [j10]Stanimir Mollov, Robert Babuska
, János Abonyi, Henk B. Verbruggen:
Effective optimization for fuzzy model predictive control. IEEE Trans. Fuzzy Syst. 12(5): 661-675 (2004) - [c8]János Abonyi, Robert Babuska:
FUZZSAM - visualization of fuzzy clustering results by modified Sammon mapping. FUZZ-IEEE 2004: 365-370 - [c7]Daniela Girimonte, Robert Babuska, János Abonyi:
Fuzzy clustering for selecting structure of nonlinear models with mixed discrete and continuous inputs. FUZZ-IEEE 2004: 383-387 - [c6]Balazs Feil, János Abonyi, Peter Pach, Sándor Zoltán Németh, Peter Arva, Miklos Nemeth, Gabor Nagy:
Semi-mechanistic Models for State-Estimation - Soft Sensor for Polymer Melt Index Prediction. ICAISC 2004: 1111-1117 - [c5]János Abonyi, Balazs Feil, Sándor Zoltán Németh, Peter Arva, Robert Babuska:
State-space reconstruction and prediction of chaotic time series based on fuzzy clustering. SMC (3) 2004: 2374-2380 - 2003
- [j9]János Abonyi, Sándor Zoltán Németh, Csaba Vincze, Peter Arva:
Process analysis and product quality estimation by Self-Organizing Maps with an application to polyethylene production. Comput. Ind. 52(3): 221-234 (2003) - [j8]János Abonyi, Johannes A. Roubos, Ferenc Szeifert:
Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization. Int. J. Approx. Reason. 32(1): 1-21 (2003) - [j7]Johannes A. Roubos, Magne Setnes, János Abonyi:
Learning fuzzy classification rules from labeled data. Inf. Sci. 150(1-2): 77-93 (2003) - [j6]János Abonyi, Ferenc Szeifert:
Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit. Lett. 24(14): 2195-2207 (2003) - [c4]János Abonyi, Robert Babugkao, Balazs Feil:
Structure selection for nonlinear input-output models based on fuzzy cluster analysis. FUZZ-IEEE 2003: 464-469 - [c3]János Abonyi, Balazs Feil, Sándor Zoltán Németh, Peter Arva:
Fuzzy Clustering Based Segmentation of Time-Series. IDA 2003: 275-285 - 2002
- [j5]János Abonyi, Robert Babuska
, Ferenc Szeifert:
Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. Part B 32(5): 612-621 (2002) - 2001
- [j4]János Abonyi, Lajos Nagy
, Ferenc Szeifert:
Fuzzy model-based predictive control by instantaneous linearization. Fuzzy Sets Syst. 120(1): 109-122 (2001) - [j3]János Abonyi, Robert Babuska, Ferenc Szeifert:
Fuzzy modeling with multivariate membership functions: gray-box identification and control design. IEEE Trans. Syst. Man Cybern. Part B 31(5): 755-767 (2001) - [c2]János Abonyi, Johannes A. Roubos, Marcel Oosterom, Ferenc Szeifert:
Compact TS - Fuzzy Models Through Clustering and OLS Plus FIS Model Reduction. FUZZ-IEEE 2001: 1420-1423 - 2000
- [j2]János Abonyi, Lajos Nagy
, Ferenc Szeifert:
Hybrid fuzzy convolution modelling and identification of chemical process systems. Int. J. Syst. Sci. 31(4): 457-466 (2000) - [j1]János Abonyi, Robert Babuska, Henk B. Verbruggen, Ferenc Szeifert:
Incorporating prior knowledge in fuzzy model identification. Int. J. Syst. Sci. 31(5): 657-667 (2000) - [c1]János Abonyi, Robert Babuska:
Local and global identification and interpretation of parameters in Takagi-Sugeno fuzzy models. FUZZ-IEEE 2000: 835-840
Coauthor Index

manage site settings
To protect your privacy, all features that rely on external API calls from your browser are turned off by default. You need to opt-in for them to become active. All settings here will be stored as cookies with your web browser. For more information see our F.A.Q.
Unpaywalled article links
Add open access links from to the list of external document links (if available).
Privacy notice: By enabling the option above, your browser will contact the API of unpaywall.org to load hyperlinks to open access articles. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Unpaywall privacy policy.
Archived links via Wayback Machine
For web page which are no longer available, try to retrieve content from the of the Internet Archive (if available).
Privacy notice: By enabling the option above, your browser will contact the API of archive.org to check for archived content of web pages that are no longer available. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Internet Archive privacy policy.
Reference lists
Add a list of references from ,
, and
to record detail pages.
load references from crossref.org and opencitations.net
Privacy notice: By enabling the option above, your browser will contact the APIs of crossref.org, opencitations.net, and semanticscholar.org to load article reference information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the Crossref privacy policy and the OpenCitations privacy policy, as well as the AI2 Privacy Policy covering Semantic Scholar.
Citation data
Add a list of citing articles from and
to record detail pages.
load citations from opencitations.net
Privacy notice: By enabling the option above, your browser will contact the API of opencitations.net and semanticscholar.org to load citation information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the OpenCitations privacy policy as well as the AI2 Privacy Policy covering Semantic Scholar.
OpenAlex data
Load additional information about publications from .
Privacy notice: By enabling the option above, your browser will contact the API of openalex.org to load additional information. Although we do not have any reason to believe that your call will be tracked, we do not have any control over how the remote server uses your data. So please proceed with care and consider checking the information given by OpenAlex.
last updated on 2025-03-04 21:10 CET by the dblp team
all metadata released as open data under CC0 1.0 license
see also: Terms of Use | Privacy Policy | Imprint