Abstract
We present a modified fuzzy c-medoid algorithm to find central objects in graphs. Initial cluster centres are determined by graph centrality measures. Cluster centres are fine-tuned by minimizing fuzzy-weighted geodesic distances calculated by Dijkstra’s algorithm. Cluster validity indices show significant improvement against fuzzy c-medoid clustering.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Wu, A.Y., Garland, M., Han, J.: Mining scale-free networks using geodesic clustering. In: Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2004, p. 719 (2004), http://dx.doi.org/10.1145/1014052.1014146 , doi:10.1145/1014052.1014146
Kim, J., Shim, K.-H., Choi, S.: Soft geodesic kernel k-means. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2007, Honolulu, Hawaii, vol. 2, pp. II–429–II–432 (2007)
Asgharbeygi, N., Maleki, A.: Geodesic k-means clustering. In: 19th International Conference on Pattern Recognition, ICPR 2008, Tampa, Florida, pp. 1–4 (2008)
Economou, G., Pothos, V., Ifantis, A.: Geodesic distance and mst-based image segmentation. In: XII European Signal Processing Conference (EUSIPCO 2004), pp. 941–944 (2004)
Galluccio, L., Michel, O., Comon, P., Hero III, A.O.: Graph based k-means clustering. Signal Processing 92(9), 1970–1984 (2012)
Galluccio, L., Michel, O.J.J., Comon, P.: Unsupervised clustering on multi-components datasets: Applications on images and astrophysics data. In: Proceedings of the 16th European Signal Processing Conference, EUSIPCO-2008, Lausanne, Lausanne, pp. 1–6 (2008)
Ren, Q., Zhuo, X.: Application of an improved k-means algorithm in gene expression data analysis. In: 2011 IEEE International Conference on Systems Biology (ISB), pp. 87–91 (2011)
Feil, B., Abonyi, J.: Geodesic distance based fuzzy clustering. In: Saad, A., Dahal, K., Sarfraz, M., Roy, R. (eds.) Soft Computing in Industrial Applications. Advances in Soft Computing, vol. 39, pp. 50–59. Springer, Heidelberg (2007)
Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3), 522–576 (1994)
Martinetz, T., Schulten, K.: Artificial Neural Networks. In: Ch. A ”Neural-Gas’ Network Learns Topologies, pp. 397–402. Elsevier, Amsterdam (1991)
Hebb, D.: The organization of behavior. John Wiley and Son (1949)
Freeman, L.: A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977)
Sabidussi, G.: The centrality index of a graph. Psychometrika 31, 581–603 (1966)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Király, A., Vathy-Fogarassy, Á., Abonyi, J. (2014). Fuzzy c-Medoid Graph Clustering. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds) Artificial Intelligence and Soft Computing. ICAISC 2014. Lecture Notes in Computer Science(), vol 8468. Springer, Cham. https://doi.org/10.1007/978-3-319-07176-3_64
Download citation
DOI: https://doi.org/10.1007/978-3-319-07176-3_64
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-07175-6
Online ISBN: 978-3-319-07176-3
eBook Packages: Computer ScienceComputer Science (R0)