Abstract
As data analysis tasks often have to face the analysis of huge and complex data sets there is a need for new algorithms that combine vector quantization and mapping methods to visualize the hidden data structure in a low-dimensional vector space. In this paper a new class of algorithms is defined. Topology representing networks are applied to quantify and disclose the data structure and different nonlinear mapping algorithms for the low-dimensional visualization are applied for the mapping of the quantized data. To evaluate the main properties of the resulted topology representing network based mapping methods a detailed analysis based on the wine benchmark example is given.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bernstein, M., de Silva, V., Langford, J.C., Tenenbaum, J.B.: Graph approximations to geodesics on embedded manifolds. Techn. Rep., Stanford Univ. (2000)
Borg, I., Groenen, P.: Modern Multidimensional Scaling: Theory and Applications. Springer Series in Statistics. Springer, New York (1997)
Estévez, P.A., Figueroa, C.J.: Online data visualization using the neural gas network. Neural Networks 19(6), 923–934 (2006)
Estévez, P.A., Chong, A.M., Held, C.M., PerezC., A.: Nonlinear Projection Using Geodesic Distances and the Neural Gas Network. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4131, pp. 464–473. Springer, Heidelberg (2006)
Hebb, D.O.: The organization of behavior. John Wiley and Son Inc., New York (1949)
Hoteling, H.: Analysis of a complex of statistical variables into principal components. Journal of Education Psychology 24, 417–441 (1933)
Jolliffe, I.T.: Principal Component Analysis. Springer, New York (1996)
Kohonen, T.: Self-Organising Maps, 2nd edn. Springer, Berlin (1995)
Kaski, S., Nikkilä, J., Oja, M., Venna, J., Törönen, P., Castrén, E.: Trustworthiness and metrics in visualizing similarity of gene expression. BMC Bioinf. 4(48) (2003)
MacQueen, J.B.: Some Methods for classification and Analysis of Multivariate Observations. In: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)
Martinetz, T.M., Schulten, K.J.: A neural-gas network learns topologies. In: Kohonen, T., Mäkisara, K., Simula, O., Kangas, J. (eds.) Artificial Neural Netw., pp. 397–402 (1991)
Martinetz, T.M., Shulten, K.J.: Topology representing networks. Neural Networks 7(3), 507–522 (1994)
Muhammed, H.H.: Unsupervised Fuzzy Clustering Using Weighted Incremental Neural Networks. International Journal of Neural Systems 14(6), 355–371 (2004)
Sammon, J.W.: A Non-Linear Mapping for Data Structure Analysis. IEEE Trans. on Computers C18(5), 401–409 (1969)
Si, J., Lin, S., Vuong, M.-A.: Dynamic topology representing networks. Neural Networks 13, 617–627 (2000)
Vathy-Fogarassy, A., Kiss, A., Abonyi, J.: Topology Representing Network Map–A new Tool for Visualization of High-Dimensional Data. In: LNCS Transactions on Computational Science (to appear)
Venna, J., Kaski, S.: Local multidimensional scaling. Neural Networks 19, 889–899 (2006)
Yin, H.: ViSOM–A novel method for multivariate data projection and structure visualisation. IEEE Trans. on Neural Networks 13, 237–243 (2002)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Vathy-Fogarassy, A., Werner-Stark, A., Gal, B., Abonyi, J. (2007). Visualization of Topology Representing Networks. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_57
Download citation
DOI: https://doi.org/10.1007/978-3-540-77226-2_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77225-5
Online ISBN: 978-3-540-77226-2
eBook Packages: Computer ScienceComputer Science (R0)