[go: up one dir, main page]

Skip to main content

Multivariate Statistical and Computational Intelligence Techniques for Quality Monitoring of Production Systems

  • Chapter
  • First Online:
Intelligent Decision Making in Quality Management

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 97))

  • 2296 Accesses

Abstract

The ISO 9001:2008 quality management standard states that organizations shall plan and implement monitoring, measurement, analysis and improvement processes to demonstrate conformity to product requirements. According to the standard, detailed analysis of data is required for this purpose. The analysis of data should also provide information related to characteristics and trends of processes and products, including opportunities for preventive action. The preliminary aim of this chapter is to show how intelligent techniques can be used to design data–driven tools that are able to support the organization to continuously improve the effectiveness of their production according to the Plan—Do—Check—Act (PDCA) methodology. The chapter focuses on the application of data mining and multivariate statistical tools for process monitoring and quality control. Classical multivariate tools such as PLS and PCA are presented along with their nonlinear variants. Special attention is given to software sensors used to estimate product quality. Practical application examples taken from chemical and oil and gas industries illustrate the applicability of the discussed techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abbas, O., et al.: PLS regression on spectroscopic data for the prediction of crude oil quality: API gravity and aliphatic/aromatic ratio. Fuel 98, 5–14 (2012)

    Article  Google Scholar 

  • Abonyi, J., Feil, B.: Computational intelligence in data mining. Informatica 29, 3–12 (2005)

    Google Scholar 

  • Abonyi, J., Babuska, R., Szeifert, F.: Modified Gath-Geva fuzzy clustering for identification of Takagi-Sugeno fuzzy models. IEEE Trans. Syst. Man Cybern. B Cybern. 32(5), 612–621 (2002)

    Article  Google Scholar 

  • Alander, J.T., et al.: Process error detection using self-organizing feature maps, Artif. Neural Netw. 2, 1229–1232 (1991)

    Google Scholar 

  • Alhoniemi, E., et al.: Process monitoring and modeling using the self-organizing map. Integr. Comput. Aided Eng. 6, 3–14 (1999)

    Google Scholar 

  • Astudillo, C.A., Oommen, B.J.: Self-organizing maps whose topologies can be learned with adaptive binary search trees using conditional rotations. Pattern Recogn. 47, 96–113 (2014)

    Article  Google Scholar 

  • Bao, X., Dai, L.: Partial least squares with outlier detection in spectral analysis: a tool to predict gasoline properties. Fuel 88(7), 1216–1222 (2009)

    Article  Google Scholar 

  • Borosy, A.P.: Quantitative composition-property modelling of rubber mixtures by utilizing artificial neural networks. Chemom. Intell. Lab. Syst. 47, 227–238 (1998)

    Google Scholar 

  • Chen, G., McAvoy, T.J., Piovoso, M.J.: A multivariate statistical controller for on-line quality improvement. J. Process Control 8(2), 139–149 (1998)

    Article  Google Scholar 

  • Chiang, L.H., Russel, E.L., Braatz, R.D.: Fault Detection and Diagnosis in Industrial Systems. Springer, London (2001)

    Book  MATH  Google Scholar 

  • CRISP-DM Cross Industry Standard Process for Data Mining (2000). http://en.wikipedia.org/wiki/Cross_Industry_Standard_Process_for_Data_Mining

  • Ergon, R.: Informative PLS score-loading plots for process understanding and monitoring. J. Process Control 14, 889–897 (2004)

    Article  MathSciNet  Google Scholar 

  • Fujiwara, K., Sawada, H., Kano, M.: Input variable selection for PLS modeling using nearest correlation spectral clustering. Chemometr. Intell. Lab. Syst. 118, 109–119 (2012)

    Article  Google Scholar 

  • Fustes, D., et al.: SOM ensemble for unsupervised outlier analysis. Application to outlier identification in the Gaia astronomical survey. Expert Syst. Appl. 40(5), 1530–1541 (2013)

    Article  Google Scholar 

  • Garcia-Ruiz, R., et al.: Suitability of enzyme activities for the monitoring of soil quality improvement in organic agricultural systems. Soil Biol. Biochem. 40(9), 2137–2145 (2008)

    Article  Google Scholar 

  • Ge, Z.: Two-level PLS model for quality prediction of multiphase batch processes. Chemometr. Intell. Lab. Syst. 130, 29–36 (2014)

    Article  Google Scholar 

  • Ghosh, S., Roy, M., Ghosh, A.: Semi-supervised change detection using modified self-organizing feature map neural network. Appl. Soft Comput. 15, 1–20 (2014)

    Article  Google Scholar 

  • Godoy, J.L., Vega, J.R., Marchetti, J.L.: Relationships between PCA and PLS-regression. Chemom. Intell. Lab. Syst. 130, 182–191 (2014)

    Google Scholar 

  • Harris, T., Kohonen, A.: S.O.M. based, machine health monitoring systems which enables diagnosis of faults not seen in the training set. Proc. Int. Conf. Neural Netw. (IJCNN’93) Nagoya, Japan 1, 947–950 (1993)

    Google Scholar 

  • Höskuldsson, A.: A combined theory for PCA and PLS. J. Chemom. 9(2), 91–123 (1995). doi:10.1002/cem.1180090203

    Article  Google Scholar 

  • Hu, W., Storer, R., Georgakis, C.: Disturbance detection and isolation by dynamic principal component analysis. Chemometr. Intell. Lab. Syst. 30(1), 179–196 (1995)

    Article  Google Scholar 

  • Ivanova, I., Kubat, M.: Initialization of neural networks by means of decision trees. Knowl. Based Syst. 8, 333–344 (1995)

    Article  Google Scholar 

  • Jang, J.-S.R., Sun, C.T.: Functional equivalence between radial basis function networks and fuzzy inference systems. IEEE Trans. Neural Netw. 4, 156–159 (1993)

    Google Scholar 

  • Janné, K., et al.: Hierarchical principal component analysis (PCA) and projection to latent structure (PLS) technique on spectroscopic data as a data pretreatment for calibration. J. Chemom. 15(4), 203–213 (2001). doi:10.1002/cem.677

    Article  Google Scholar 

  • Jeackle, C., MacGregor, J.: Product design through multivariate statistical analysis of process data. Am. Inst. Chem. Eng. J. 44(5), 1105–1118 (1998)

    Article  Google Scholar 

  • Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer Series in Statistics (2008)

    Google Scholar 

  • Juntunen, P., et al.: Cluster analysis by self-organizing maps: an application to the modelling of water quality in a treatment process. Appl. Soft Comput. 13(7), 3191–3196 (2013)

    Article  Google Scholar 

  • Kalteh, A.M., Hjorth, P., Berndtsson, R.: Review of the self-organizing map (SOM) approach in water resources: analysis, modelling and application. Environ. Model Softw. 23(7), 835–845 (2008)

    Article  Google Scholar 

  • Kano, M., Nakagawa, Y.: Data-based process monitoring, process control, and quality improvement: recent developments and applications in steel industry. Comput. Chem. Eng. 32(1–2), 12–24 (2008)

    Article  Google Scholar 

  • Karlsson, A.: The use of principal component analysis (PCA) for evaluating results from pig meat quality measurements. Meat Sci. 31(4), 423–433 (1992)

    Article  Google Scholar 

  • Kassalin, M., Kangas, J., Simula, O.: Process state monitoring using self-organizing maps. Artif. Neural Netw. 2, 1531–1534 (1992)

    Article  Google Scholar 

  • Kenesei, T., Abonyi, J.: Hinging hyperplane based regression tree identified by fuzzy clustering and its application. Appl. Soft Comput. J. 13(2), 782–792 (2013)

    Article  Google Scholar 

  • Kettaneh, N., Berglund, A., Wold, S.: PCA and PLS with very large data sets. Comput. Stat. Data Anal. 48, 69–85 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Kohonen, T.: The self-organizing map. Proc. IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  • Kohonen, T.: Self-Organizing Maps, 3rd edn. Springer Series in Information Sciences (2001)

    Google Scholar 

  • Kresta, J.V.: The application of partial least squares to problems in chemical engineering, PhD Theis, McMaster University (1992). http://hdl.handle.net/11375/8576

  • Kresta, J.V., Macgregor, F.F., Marlin, T.E.: Multivariate statistical monitoring of process operating performance. Can. J. Chem. Eng. 69(1), 35–47 (1992). doi:10.1002/cjce.5450690105

    Google Scholar 

  • Kuentz, V., Saracco, J.: Cluster-based sliced inverse regression. J. Korean Stat. Soc. 39, 251–267 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  • Lakshminarayanan, S., et al.: New product design via analysis of historical databases. Comput. Chem. Eng. 24, 671–676 (2000)

    Article  Google Scholar 

  • Li, K.-C.: Sliced inverse regression for dimension reduction (2012). www.jstor.org/stable/2290563. Accessed 19 Dec 2013

  • Lue, H.-H.: Sliced inverse regression for multivariate response regression. J. Stat. Plan. Inference 139, 2656–2664 (2009)

    Google Scholar 

  • MacGregor, J.F., Kourti, T.: Statistical process control of multivariate processes. Control Eng. Pract. 3(3), 403–414 (1995)

    Article  Google Scholar 

  • Martin, E.B., et al.: Batch process monitoring for consistent production. Comput. Chem. Eng. 20, S599–S605 (1996)

    Article  Google Scholar 

  • Mele, P.M., Crowley, D.E.: Application of self-organizing maps for assessing soil biological quality. Agric. Ecosyst. Environ. 126(3–4), 139–152 (2008)

    Article  Google Scholar 

  • Montgomery D.C.: Introduction to Statistical Quality Control, John Wiley, New York (2009)

    Google Scholar 

  • Moteki, Y., Arai, Y.: Operation planning and quality design of a polymer process. In: IFAC DYCORD, pp. 159–165 (1986)

    Google Scholar 

  • Munoz, A., Muruzábal, J.: Self-organizing maps for outlier detection. Neurocomputing 18, 33–60 (1998)

    Article  Google Scholar 

  • Murray-Smith, R., Johansen, T.A.: Multiple Model Approaches to Nonlinear Modeling and Control. Taylor & Francis, London (1997)

    Google Scholar 

  • Nagy, G.: The polyethylene, Magyar Kémikusok Lapja (MKL). Hungary 52(5), 233–242 (1997)

    Google Scholar 

  • Nelson, P.R.C., MacGregor, J.F., Taylor, P.A.: The impact of missing measurements on PCA and PLS prediction and monitoring applications. Chemometr. Intell. Lab. Syst. 80(1), 1–12 (2006)

    Article  Google Scholar 

  • Nicolai, B.M., et al.: Nondestructive measurement of fruit and vegetable quality by means of NIR spectroscopy: a review. Postharvest Biol. Technol. 46(2), 99–118 (2007)

    Article  Google Scholar 

  • Ochocka, R.J., Wesolowski, M., Lamparczyk, H.: Thermoanalysis supported by principal component analysis (PCA) in quality assessment of essential oil samples. Thermochim. Acta 210, 151–162 (1992)

    Article  Google Scholar 

  • Olawoyin, R., et al.: Application of artificial neural network (ANN)–self-organizing map (SOM) for the categorization of water, soil and sediment quality in petrochemical regions. Expert Syst. Appl. 40(9), 3634–3648 (2013)

    Article  Google Scholar 

  • Pal, N.R.: Soft computing for feature analysis. Fuzzy Sets Syst. 103, 201–221 (1999)

    Article  MathSciNet  Google Scholar 

  • Pereira, A.F.C., et al.: NIR spectrometric determination of quality parameters in vegetable oils using iPLS and variable selection. Food Res. Int. 41(4), 341–348 (2008)

    Article  Google Scholar 

  • Poggy, G., Cozzolino, D., Verdoliva, L.: Self-organizing maps for the design of multiple description vector quantizers. Neurocomputing 122, 298–309 (2013)

    Article  Google Scholar 

  • Pölzlbauer, G.: Survey and comparison of quality measures for self-organizing maps. In: Fifth Workshop on Data Analysis (WDA) (2004). www.ifs.tuwien.ac.at/~poelzlbauer/publications/Poe04WDA.pdf. Accessed 17 Dec 2013

  • Principe, J.C., Wang, L., Motter, M.A.: Local dynamic modeling with self-organizing maps and applications to nonlinear system identification and control. Proc. IEEE 86(11), 2241–2258 (1998)

    Article  Google Scholar 

  • Sánchez-Martos, F., Jiménez-Espinosa, R., Pulido-Bosch, A.: Mapping groundwater quality variables using PCA and geostatistics: a case study of Bajo Andarax, southeastern Spain. Hydrol. Sci. J.-des Sciences Hydrologiques 46(2), 227–242 (2001)

    Article  Google Scholar 

  • Sethi, L.K.: Entropy nets: from decision trees to neural networks. Proc. IEEE 78, 1605–1613 (1990)

    Article  Google Scholar 

  • Simula, O., et al.: Analysis and modeling of complex systems using the self-organizing map. In Neuro-Fuzzy Techniques for Intelligent Information Systems, pp. 3–22. Springer, New York (1999)

    Google Scholar 

  • Steenkamp, J.B.E.M., van Trijp, H.C.M.: Quality guidance: a consumer-based approach to food quality improvement using partial least squares. Eur. Rev. Agric. Econ. 23(2), 195–215 (1996). doi:10.1093/erae/23.2.195

    Article  Google Scholar 

  • Tryba, V., Goser, K.: Self-organizing feature maps for process control in chemistry. Artif. Neural Netw. 847–852 (1991)

    Google Scholar 

  • Valova, I., et al.: Initialization Issues in Self-organizing Maps. Procedia Comput. Sci. 20, 52–57 (2013)

    Article  Google Scholar 

  • Vinzi, V., et al.: Handbook of Partial Least Squares. In: Springer Handbooks of Computational Statistics (2010)

    Google Scholar 

  • Wang, D., Srinivasan, R.: Eliminating the effect of multivariate outliers in pls-based models for inferring process quality. Comput. Aided Chem. Eng. 26, 755–760 (2009)

    Article  Google Scholar 

  • Wang X.Z.: Data Mining and Knowledge Discovery for Process Monitoring and Control. Springer, New York (1999)

    Google Scholar 

  • Wise, B.M., Gallagher, N.B.: The process chemometrics approach to process monitoring and fault detection. Journal of Process Control 6(6), 329–348 (1996). doi:http://dx.doi.org/10.1016/0959-1524(96)00009-1

    Google Scholar 

  • Vesanto, J., Himberg, J., Alhoniemi, E., Parhankangas, J.: SOM Tooolbox for MATLAB (2015). The Toolbox can be downloaded for free from http://www.cis.hut.fi/projects/somtoolbox

  • Yamashita, Y.: Supervised learning for the analysis of the process operational data. Comput. Chem. Eng. 24, 471–474 (2000)

    Article  Google Scholar 

  • Zadeh, L.A.: Soft computing and fuzzy logic. Software, IEEE 11(6), 48–56 (1994)

    Google Scholar 

  • Zhang, J., Martin, E.B., Morris, A.J.: Process monitoring using non-linear statistical techniques. Chem. Eng. J. 67, 181–189 (1997)

    Article  Google Scholar 

Download references

Acknowledgments

The work was supported by the frames of TÁMOP-4.2.2.C-11/1/KONV-2012-0004—National Research Center for Development and Market Introduction of Advanced Information and Communication Technologies and TÁMOP 4.2.4. A/2-11- 1-2012-0001 “National Excellence Program—Elaborating and operating an inland student and researcher personal support system”. These projects were subsidized by the European Union and co-financed by the European Social Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to János Abonyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kulcsár, T., Farsang, B., Németh, S., Abonyi, J. (2016). Multivariate Statistical and Computational Intelligence Techniques for Quality Monitoring of Production Systems. In: Kahraman, C., Yanik, S. (eds) Intelligent Decision Making in Quality Management. Intelligent Systems Reference Library, vol 97. Springer, Cham. https://doi.org/10.1007/978-3-319-24499-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24499-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24497-6

  • Online ISBN: 978-3-319-24499-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics