AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks
<p>A structure of FIS.</p> "> Figure 2
<p>The input–output system’s ANFIS architecture.</p> "> Figure 3
<p>A fuzzy subdivision in two dimensions.</p> "> Figure 4
<p>A full connected neural network’s scheme, showing an example of a single neuron, two layers (L1 with three neurons and L2 with one), one output element, and four input elements [<a href="#B111-applsci-15-00494" class="html-bibr">111</a>].</p> "> Figure 5
<p>The adaptive neural fuzzy rule-based model’s structure.</p> "> Figure 6
<p>The information about testing data of the suggested ANFIS model.</p> "> Figure 7
<p>Neural network diagram (w and b are weight and biases respectively).</p> "> Figure 8
<p>The process of obtaining results that can predict scores with AI methods.</p> ">
Abstract
:Featured Application
Abstract
1. Introduction
- Is it possible to model teachers’ beliefs about mathematical problem solving with artificial intelligence techniques?
- Is there a relationship between the real and artificial mathematical problem-solving belief scores of teachers?
2. Literature Review and Theoretical Foundation
2.1. Mathematical Problem-Solving Beliefs
2.2. Creative Thinking Dispositions
Creative Thinking Disposition and Mathematical Problem-Solving Beliefs
2.3. Gender and Mathematical Problem-Solving Beliefs
2.4. Age and Mathematical Problem-Solving Beliefs
2.5. Level of Education and Mathematical Problem-Solving Beliefs
2.6. School Level and Mathematical Problem-Solving Beliefs
2.7. Teaching Experience and Mathematical Problem-Solving Beliefs
3. Methodology
3.1. Sample Selection
3.1.1. Demographics
3.1.2. Professional Characteristics
3.2. Data Collection and Processing
3.2.1. Information Form
3.2.2. Marmara Creative Thinking Dispositions Scale
3.2.3. Mathematical Problem-Solving Beliefs Scale
3.3. Model Construction
3.3.1. Fuzzy Logic Background and Modeling
- The process of fuzzification converts the effort controllers’ feature values into appropriately linguistic fuzzy information. Grouping variables is a difficult operation to complete. Numerous techniques have been established in the literature, including fuzzy clustering [102], genetic algorithms [103], inductive learning [104], neural network-based methods [105], and statistical applications [106]. This paper used statistical applications to partition data spaces into fuzzy sets.
- The knowledge and rules needed to derive the outputs are stored in a fuzzy rule base. The if–then structure is used to express these rules. Building fuzzy if-then rules can be achieved using the information that is provided and/or expert knowledge. A transition between the input and output fuzzy sets is provided by the rules. While the rules are connected with a logical “or” conjunction, presumed part input fuzzy membership functions (MFs) are combined alternately with the logical “and” or “or” conjunction.
- A fuzzy inference engine uses relevant fuzzy rules and existing facts to derive a reasonable conclusion while accounting for human emotions, cognitive processes, and logical reasoning. The creation of the consequent MFs based on the membership degrees of the premise (previous) part and finally is known as the implication part of a fuzzy system. A triangle membership function, which can be written as follows, was employed in this research:
- The process of defuzzification is what converts the fuzzy outputs of the fuzzy system into values that are clear. Numerous defuzzification techniques exist, including weighted sum (Wtsum) and weighted average (Wtaver).
3.3.2. ANFIS Background and Modeling
- The function in the consequence portion calculates for each implication :
- The weights are computed as follows:
- Given the weighted average of every , the final output deduced from implications is given with the weights as
3.3.3. Artificial Neural Network Background and Modeling
3.4. Data Analysis and Model Validation
- Spearman–Brown Correlation Coefficients: These were used to measure the relationship between real scores (calculated from the Mathematical Problem-Solving Beliefs Scale) and artificial scores predicted by the ANFIS and ANN models. Correlation coefficients were interpreted as follows: 0.00–0.30 (low), 0.30–0.70 (moderate), and 0.70–1.00 (high).
- Training and Testing Data Partitioning: The dataset was split into training (70%), validation (15%), and testing (15%) subsets to rigorously evaluate the performance of the models. This partitioning allowed us to analyze overfitting and generalization capabilities effectively.
- Membership Function Validation: For fuzzy models, defuzzification techniques (such as weighted average methods) were employed to ensure precise mapping between inputs and outputs. Predicted results were cross-checked with real values to confirm alignment within acceptable error ranges.
4. Results
4.1. The First Research Question Results
4.2. The Second Research Question Results
5. Discussion and Conclusions
6. Limitations and Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Khoiriyah, A.J.; Husamah, H. Problem-based learning: Creative thinking skills, problem-solving skills, and learning outcome of seventh grade students. J. Pendidik. Biol. Indones. 2018, 4, 151–160. [Google Scholar] [CrossRef]
- Kurniawan, H. Efektifitas pembelajaran problem solving dan investigasi terhadap keterampilan berpikir kritis matematis berbantuan Google Classroom. J. Pendidik. Surya Edukasi (JPSE) 2016, 2, 56–67. [Google Scholar]
- Birgili, B. Creative and critical thinking skills in problem-based learning environments. J. Gift. Educ. Creat. 2015, 2, 71–80. [Google Scholar]
- Susiana, E. IDEAL problem solving dalam pembelajaran matematika. Kreano J. Mat. Kreat.-Inov. 2010, 1, 73–82. [Google Scholar]
- Haavold, P.Ø.; Sriraman, B. Creativity in problem solving: Integrating two different views of insight. ZDM–Math. Educ. 2022, 54, 83–96. [Google Scholar] [CrossRef]
- Lester, F.K. Thoughts about research on mathematical problem-solving instruction. Math. Enthus. 2013, 10, 245–278. [Google Scholar] [CrossRef]
- Nuzliah, N. Kontribusi motivasi belajar, kreativitas terhadap problem solving (pemecahan masalah) siswa dalam belajar serta implikasi terhadap bimbingan dan konseling di SMPN 29 Padang. J. Edukasi 2015, 1, 157–174. [Google Scholar] [CrossRef]
- Jacinto, H. Engaging students in mathematical problem solving with technology during a pandemic: The case of the Tecn@ Mat Club. Educ. Sci. 2023, 13, 271. [Google Scholar] [CrossRef]
- Arifin, Z. Mengembangkan instrumen pengukur critical thinking skills siswa pada pembelajaran matematika abad 21. J. Theorems (Orig. Res. Math.) 2017, 1, 92–100. [Google Scholar]
- Maulidia, F.; Johar, R.; Andariah, A. A case study of students’ creativity in solving mathematical problems through problem-based learning. Infin. J. 2019, 8, 1–10. [Google Scholar] [CrossRef]
- Isaksen, S.G.; Treffinger, D.J. Celebrating 50 years of reflective practice: Versions of creative problem solving. J. Creat. Behav. 2004, 38, 75–101. [Google Scholar] [CrossRef]
- Orhon, G. Yaratıcılık Nörofizyolojik, Felsefi ve Eğitimsel Temelleri, 2nd ed.; Pegem Yayınları: Ankara, Turkey, 2014. [Google Scholar]
- Özgenel, Ç.; Çetin, M. Marmara yaratıcı düşünme eğilimleri ölçeğinin geliştirilmesi: Geçerlik ve güvenirlik çalışması [Development of Marmara creative thinking dispositions scale: Validity and reliability study]. Atatürk Eğit. Fak. Eğit. Bilim. Derg. 2017, 46, 113–132. [Google Scholar]
- Kesici, A. The effect of digital literacy on creative thinking disposition: The mediating role of lifelong learning disposition. J. Learn. Teach. Digit. Age 2022, 7, 260–273. [Google Scholar] [CrossRef]
- Sumarmo, U. Kumpulan Makalah Berpikir dan Disposisi Matematik Serta Pembelajarannya; UPI: Bandung, Indonesia, 2013. [Google Scholar]
- Nasution, E.Y.P.; Yulia, P.; Anggraini, R.S.; Putri, R.; Sari, M. Correlation between mathematical creative thinking ability and mathematical creative thinking disposition in geometry. Present. J. Phys. Conf. Ser. 2021, 1778, 012001. [Google Scholar] [CrossRef]
- Xu, X.; Zhang, Q.; Sun, J.; Wei, Y. A bibliometric review on latent topics and research trends in the growth mindset literature for mathematics education. Front. Psychol. 2022, 13, 1039761. [Google Scholar] [CrossRef]
- Khalid, M.; Saad, S.; Hamid, S.R.A.; Abdullah, M.R.; Ibrahim, H.; Shahrill, M. Enhancing creativity and problem solving skills through creative problem solving in teaching mathematics. Creat. Stud. 2020, 13, 270–291. [Google Scholar] [CrossRef]
- Nilimaa, J. New examination approach for real-world creativity and problem-solving skills in mathematics. Trends High. Educ. 2023, 2, 477–495. [Google Scholar] [CrossRef]
- Meral, S.E.; Şahin, F.T. Okul öncesi öğretmenlerinin yaratıcı düşünme eğilimleri. OPUS Int. J. Soc. Res. 2019, 13, 311–331. [Google Scholar]
- Türkdoğan, M.; Özgenel, M. Öğretmenlerin yaratıcı düşünme eğilimleri ile okul iklimi arasındaki ilişki. E-Uluslar. Eğit. Araşt. Derg. 2021, 12, 190–213. [Google Scholar]
- Kesici, A. Ortaokul ve lise öğretmenlerinin yaratıcı düşünme ve yaşam boyu öğrenme eğilimlerinin incelenmesi. Adnan Menderes Univ. Eğit. Fak. Eğit. Bilim. Derg. 2023, 14, 18–28. [Google Scholar]
- Kelly, M.O.M. An Examination of the Critical and Creative Thinking Dispositions of Teacher Education Students at the Practicum Point; University of Massachusetts Boston: Boston, MA, USA, 2003. [Google Scholar]
- Lerch, C.M. Control decisions and personal beliefs: Their effect on solving mathematical problems. J. Math. Behav. 2004, 23, 21–36. [Google Scholar] [CrossRef]
- Wilson, J.W.; Fernandez, M.L.; Hadaway, N. Mathematical Problem Solving. In Research Ideas for the Classroom: High School Mathematics; Wilson, P.S., Ed.; Macmillan: New York, NY, USA, 1993. [Google Scholar]
- Schoenfeld, A.H. Beyond the purely cognitive: Belief systems, social cognitions, and metacognitions as driving forces in intellectual performance. Cognit. Sci. 1983, 7, 329–363. [Google Scholar]
- Siswono, T.Y.E.; Kohar, A.W.; Kurniasari, I.; Astuti, Y.P. An investigation of secondary teachers’ understanding and belief on mathematical problem solving. J. Phys. Conf. Ser. 2016, 693, 012015. [Google Scholar] [CrossRef]
- Barlow, A.T.; Cates, J.M. The impact of problem posing on elementary teachers’ beliefs about mathematics and mathematics teaching. Sch. Sci. Math. 2006, 106, 64–73. [Google Scholar] [CrossRef]
- Mkomange, W.C.; Ajagbe, M.A. Prospective secondary teachers’ beliefs about mathematical problem solving. Int. J. Res. Manag. Technol. (IJRMT) 2012, 2, 154–163. [Google Scholar]
- Sağlam, Y.; Dost, Ş. Pre-service science and mathematics teachers’ beliefs about mathematical problem solving. Procedia Soc. Behav. Sci. 2014, 116, 303–306. [Google Scholar] [CrossRef]
- Wilkins, J.; Brand, B. Change in pre-service teachers’ beliefs: An evaluation of a mathematics methods course. Sch. Sci. Math. 2004, 104, 226–232. [Google Scholar] [CrossRef]
- Gabriel, F.; Signolet, J.; Westwell, M. A machine learning approach to investigating the effects of mathematics dispositions on mathematical literacy. Int. J. Res. Method Educ. 2018, 41, 306–327. [Google Scholar] [CrossRef]
- Ford, M.I. Teachers’ beliefs about mathematical problem solving in the elementary school. Sch. Sci. Math. 1994, 94, 314–322. [Google Scholar] [CrossRef]
- Siswono, T.Y.E.; Kohar, A.W.; Hartono, S. Secondary teachers’ mathematics-related beliefs and knowledge about mathematical problem-solving. Present. J. Phys. Conf. Ser. 2017, 812, 012046. [Google Scholar] [CrossRef]
- Harisman, Y.; Kusumah, Y.S.; Kusnandi, K. Beliefs of junior high school teachers on learning process on mathematical problem solving. Present. J. Phys. Conf. Ser. 2019, 1157, 032112. [Google Scholar] [CrossRef]
- Fitzpatrick, C. Adolescent mathematical problem solving: The role of metacognition, strategies and beliefs. In Proceedings of the Annual Meeting of the American Educational Research Association, New Orleans, LA, USA, 4–8 April 1994. [Google Scholar]
- McLeod, D.B.; McLeod, S.H. Synthesis—beliefs and mathematics education: Implications for learning, teaching, and research. In Beliefs: A Hidden Variable in Mathematics Education? Springer: Dordrecht, The Netherlands, 2002; pp. 115–123. [Google Scholar]
- Schwitzgebel, E. Belief. In The Routledge Companion to Epistemology; Routledge: London, UK, 2011. [Google Scholar]
- Kloosterman, P.; Raymond, A.M.; Emenaker, C. Students’ beliefs about mathematics: A three-year study. Elem. Sch. J. 1996, 97, 39–56. [Google Scholar] [CrossRef]
- Prendergast, M.; Breen, C.; Bray, A.; Faulkner, F.; Carroll, B.; Quinn, D.; Carr, M. Investigating secondary students’ beliefs about mathematical problem-solving. Int. J. Math. Educ. Sci. Technol. 2018, 49, 1203–1218. [Google Scholar] [CrossRef]
- Memnun, D.S.; Hart, L.C.; Akkaya, R. A research on the mathematical problem-solving beliefs of mathematics, science and elementary pre-service teachers in Turkey in terms of different variables. Int. J. Humanit. Soc. Sci. 2012, 2, 172–184. [Google Scholar]
- Raymond, A.M. Inconsistency between a beginning elementary school teacher’s mathematics beliefs and teaching practices. J. Res. Math. Educ. 1997, 28, 552–575. [Google Scholar] [CrossRef]
- Kloosterman, P.; Stage, F.K. Measuring beliefs about mathematical problem-solving. Sch. Sci. Math. 1992, 92, 109–115. [Google Scholar] [CrossRef]
- Mason, L. High school students’ beliefs about maths, mathematical problem solving, and their achievement in maths: A cross-sectional study. Educ. Psychol. Int. J. Exp. Educ. Psychol. 2003, 23, 73–84. [Google Scholar] [CrossRef]
- Schoenfeld, A.H. Mathematical Problem Solving; Academic Press: New York, NY, USA, 1985. [Google Scholar]
- Frank, M.L. Problem solving and mathematical beliefs. Arith. Teach. 1988, 35, 32–34. [Google Scholar] [CrossRef]
- Schoenfeld, A.H. Learning to think mathematically: Problem solving, metacognition and sense making in mathematics. In Handbook of Research on Mathematics Teaching and Learning; Groups, D.A., Ed.; Macmillan Publishing Company: New York, NY, USA, 1992. [Google Scholar]
- Ernest, P. The impact of beliefs on the teaching of mathematics. In Mathematics Teaching: The State of the Art; Ernest, P., Ed.; Falmer: New York, NY, USA, 1989; pp. 249–253. [Google Scholar]
- Thompson, A.G. The relationship between teachers’ conceptions of mathematics and mathematics teaching to instructional practice. Educ. Stud. Math. 1984, 15, 105–127. [Google Scholar] [CrossRef]
- Beswick, K. Teachers’ beliefs about school mathematics and mathematicians’ mathematics and their relationship to practice. Educ. Stud. Math. 2012, 79, 127–147. [Google Scholar] [CrossRef]
- Robinson, K. Yaratıcılık: Aklın Sınırlarını Aşmak [Out of Our Minds: Learning to Be Creative]; Koldaş, N.G., Translator; Kitap Yayınevi: İstanbul, Turkey, 2008. [Google Scholar]
- Sukarso, A.; Widodo, A.; Rochintaniawati, D.; Purwianingsih, W. The potential of students’ creative disposition as a perspective to develop creative teaching and learning for senior high school biological science. Present. J. Phys. Conf. Ser. 2019, 1157, 022092. [Google Scholar] [CrossRef]
- Plucker, J.A.; Beghetto, R.A.; Dow, G.T. Why isn’t creativity more important to educational psychologists? Potentials, pitfalls, and future directions in creativity research. Educ. Psychol. 2004, 39, 83–96. [Google Scholar] [CrossRef]
- Sternberg, R.J. The assessment of creativity: An investment-based approach. Creat. Res. J. 2012, 24, 3–12. [Google Scholar] [CrossRef]
- Morris, C.G. Psikolojiyi Anlamak; Ayvaşık, B.; Sayıl, M., Translators; Türk Psikologlar Derneği Yayını: Ankara, Turkey, 2002. [Google Scholar]
- Atan, T.; Göçer, S.; Ünver, Ş. Farklı branşlardaki sporcuların atılganlık ile problem çözme becerileri arasındaki ilişki. In Proceedings of the 3rd International Eurasian Conference on Sport Education and Society, Mardin Artuklu University, Mardin, Turkey, 5–18 November 2018. [Google Scholar]
- Sağır, M.; Kökocak, S. Sınıf öğretmenlerinin sınıf yönetimi kaygı düzeyleri ile problem çözme becerileri arasındaki ilişki. Ulus. Liderlik Eğit. Derg. 2023, 7, 114–131. [Google Scholar]
- Kalaycı, N. Sosyal Bilimlerde Problem Çözme ve Uygulamalar; Gazi Kitabevi: Ankara, Turkey, 2001. [Google Scholar]
- Liljedahl, P.; Sriraman, B. Musings on mathematical creativity. For. Learn. Math. 2006, 26, 17–19. [Google Scholar]
- Tyagi, T.K. Is there a causal relation between mathematical creativity and mathematical problem-solving performance? Int. J. Math. Educ. Sci. Technol. 2016, 47, 388–394. [Google Scholar] [CrossRef]
- Grégoire, J. Understanding creativity in mathematics for improving mathematical education. J. Cogn. Educ. Psychol. 2016, 15, 24–36. [Google Scholar] [CrossRef]
- Novita, R.; Putra, M. Using task like PISA’s problem to support student’s creativity in mathematics. J. Math. Educ. 2016, 7, 31–42. [Google Scholar] [CrossRef]
- Leikin, R. Problem-solving preferences of mathematics teachers: Focusing on symmetry. J. Math. Teach. Educ. 2003, 6, 297–329. [Google Scholar] [CrossRef]
- Andrews, P.; Xenofontos, C. Analysing the relationship between the problem-solving-related beliefs, competence and teaching of three Cypriot primary teachers. J. Math. Teach. Educ. 2015, 18, 299–325. [Google Scholar] [CrossRef]
- Chapman, O. Mathematics teachers’ knowledge for teaching problem solving. LUMAT: Int. J. Math. Sci. Technol. Educ. 2015, 3, 19–36. [Google Scholar] [CrossRef]
- Mejía-Rodríguez, A.M.; Luyten, H.; Meelissen, M.R. Gender differences in mathematics self-concept across the world: An exploration of student and parent data of TIMSS 2015. Int. J. Sci. Math. Educ. 2021, 19, 1229–1250. [Google Scholar] [CrossRef]
- Aksu, M.; Demir, C.E.; Sümer, Z.H. Students’ beliefs about mathematics: A descriptive study. Eğit. Bilim 2002, 27, 72–77. [Google Scholar]
- Duatepe Paksu, A. Comparing teachers’ beliefs about mathematics in terms of their branches and gender. Hacet. Univ. J. Educ. 2008, 35, 87–97. [Google Scholar]
- Giovanni, P.; Sangcap, A. Mathematics-related beliefs of Filipino college students: Factors affecting mathematics and problem solving performance. Procedia Soc. Behav. Sci. 2010, 8, 465–475. [Google Scholar]
- Soytürk, İ. Sınıf öğretmeni adaylarının matematik okuryazarlığı öz-yeterlikleri ve matematiksel problem çözmeye yönelik inançlarının araştırılması. Master’s Thesis, İstanbul University, İstanbul, Turkey. Available online: https://tez.yok.gov.tr/UlusalTezMerkezi (accessed on 25 August 2024).
- Abedalaziz, N.; Akmar, S. Epistemology beliefs about mathematical problem solving among Malaysian students. OIDA Int. J. Sustain. Dev. 2012, 5, 59–74. [Google Scholar]
- Schommer-Aikins, M.; Duell, O.K.; Hutter, R. Epistemological beliefs, mathematical problem-solving beliefs, and academic performance of middle school students. Elem. Sch. J. 2005, 105, 289–304. [Google Scholar] [CrossRef]
- Bal, A.P. Examination of the mathematical problem-solving beliefs and success levels of primary school teacher candidates through the variables of mathematical success and gender. Educ. Sci. Theory Pract. 2015, 15, 1373–1390. [Google Scholar]
- Sintema, E.J.; Jita, T. Gender differences in high school students’ beliefs about mathematical problem solving. Int. J. Learn. Teach. Educ. Res. 2022, 21, 395–417. [Google Scholar] [CrossRef]
- Schommer, M. The influence of age and education on epistemological beliefs. Br. J. Educ. Psychol. 1998, 68, 551–562. [Google Scholar] [CrossRef]
- Abubakar, R.B.; Bada, I.A. Age and gender as determinants of academic achievements in college mathematics. Asian J. Nat. Appl. Sci. 2012, 1, 121–127. [Google Scholar]
- Mozahem, N.A.; Boulad, F.M.; Ghanem, C.M. Secondary school students and self-efficacy in mathematics: Gender and age differences. Int. J. Sch. Educ. Psychol. 2021, 9, S142–S152. [Google Scholar] [CrossRef]
- D’Zurilla, T.J.; Maydeu-Olivares, A.; Kant, G.L. Age and gender differences in social problem-solving ability. Pers. Individ. Differ. 1998, 25, 241–252. [Google Scholar] [CrossRef]
- Thornton, W.J.; Dumke, H.A. Age differences in everyday problem-solving and decision-making effectiveness: A meta-analytic review. Psychol. Aging 2005, 20, 85. [Google Scholar] [CrossRef] [PubMed]
- Şekerli, N. Ebeveynlerin Evlilikte Problem çözme Becerileri Ile öz-Anlayış özelliklerinin Bazı sosyo-Demografik Değişkenler Açısından Incelenmesi. Master’s Thesis, İstanbul Gelişim Üniversitesi Lisansüstü Eğitim Enstitüsü, Istanbul, Turkey, 2021. [Google Scholar]
- Turhan, M.; Yaraş, Z. Lisansüstü programların öğretmen, yönetici ve denetmenlerin mesleki gelişimine katkısı. Elektron. Sos. Bilim. Derg. 2013, 12, 200–218. [Google Scholar]
- Ceylan, R.; Bıçakçı, M.Y.; Aral, N.; Gürsoy, F. Okul öncesi eğitim kurumunda çalışan öğretmenlerin problem çözme becerilerinin incelenmesi. Trak. Univ. Soc. Sci. J. 2012, 14, 85–98. [Google Scholar]
- Baykul, Y. İlköğretimde Matematik öğretimi: 6–8 Sınıflar; Pegem Akademi: Ankara, Turkey, 2009. [Google Scholar]
- Demirtaş, H.; Dönmez, B. Ortaöğretimde görev yapan öğretmenlerin problem çözme becerilerine ilişkin algıları. İnönü Univ. Eğit. Fak. Derg. 2008, 9, 177–198. [Google Scholar]
- Ulupınar, S. Hemşirelik Eğitiminin öğrencilerin Sorun çözme Becerilerine Etkisi, Unpublished. Ph.D. Dissertation, İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü Hemşirelik Anabilim Dalı, İstanbul, Turkey, 1997. [Google Scholar]
- Williams, D.J.; Noyes, J.M. Effect of experience and mode of presentation on problem solving. Comput. Human Behav. 2007, 23, 258–274. [Google Scholar] [CrossRef]
- Rice, J.K. The Impact of Teacher Experience: Examining the Evidence and Policy Implications; Brief No. 11; National Center for Analysis of Longitudinal Data in Education Research, Duke University: Durham, NC, USA, 2010. [Google Scholar]
- Borko, H.; Livingston, C. Cognition and improvisation: Differences in mathematics instruction by expert and novice teachers. Am. Educ. Res. J. 1989, 26, 473–498. [Google Scholar] [CrossRef]
- Borko, H.; Shavelson, R.J. Teacher Decision Making 1. In Dimensions of Thinking and Cognitive Instruction; Routledge: London, UK, 2013. [Google Scholar]
- Adeyemi, T.O. Teachers’ teaching experience and students’ learning outcomes in secondary schools in Ondo State, Nigeria. Educ. Res. Rev. 2008, 3, 204. [Google Scholar]
- Ewetan, T.O.; Ewetan, O.O. Teachers’ teaching experience and academic performance in mathematics and English language in public secondary schools in Ogun State, Nigeria. Int. J. Humanit. Soc. Sci. Educ. 2015, 2, 123–134. [Google Scholar]
- Can, K.; Uluçınar Sağır, Ş. Sınıf öğretmenlerinin bilişötesi öğrenme stratejileri, özyeterlik algısı ve problem çözme becerileri arasındaki ilişkinin incelenmesi. Int. J. Soc. Sci. Educ. Res. 2018, 4, 81–95. [Google Scholar]
- Simkus, J. Cross-Sectional Study: Definition, Designs & Examples. Simply Psychol. 2023. Available online: https://www.simplypsychology.org/what-is-a-cross-sectional-study.html (accessed on 14 July 2024).
- Anelli, D.; Sica, F. The financial feasibility analysis of urban transformation projects: An application of a quick assessment model. In International Symposium: New Metropolitan Perspectives; Springer International Publishing: Cham, Switzerland, 2020; pp. 462–474. [Google Scholar]
- Xie, L.; Feng, X.; Zhang, C.; Dong, Y.; Huang, J.; Liu, K. Identification of urban functional areas based on the multimodal deep learning fusion of high-resolution remote sensing images and Social Perception Data. Buildings 2022, 12, 556. [Google Scholar] [CrossRef]
- Dörnyei, Z. Research Methods in Applied Linguistics; Oxford University Press: New York, NY, USA, 2007. [Google Scholar]
- Saumure, K.; Given, L.M. Convenience sample. In The SAGE Encyclopedia of Qualitative Research Methods; SAGE: Newcastle upon Tyne, UK, 2008; Volume 2, pp. 124–125. [Google Scholar]
- Hacıömeroğlu, G. Matematiksel problem çözmeye ilişkin inanç ölçeği’nin Türkçe’ye uyarlama çalışması. Dicle Univ. Ziya Gökalp Eğit. Fak. Derg. 2011, 17, 119–132. [Google Scholar]
- Zadeh, L. Fuzzy Sets. Inf. Control 1965, 338, 338–353. [Google Scholar] [CrossRef]
- Şen, Z. Fuzzy Logic Modeling Principles in Engineering; Su Vakfı Yayınları: İstanbul, Turkey, 2004. [Google Scholar]
- Huang, S.J.; Chiu, N.H. Applying fuzzy neural network to estimate software development effort. Appl. Intell. 2009, 30, 73–83. [Google Scholar] [CrossRef]
- Yoshinari, Y.; Pedrycz, W.; Hirota, K. Construction of fuzzy models through clustering techniques. Fuzzy Sets Syst. 1993, 54, 157–165. [Google Scholar] [CrossRef]
- Karr, C.L.; Gentry, E.J. Fuzzy control of pH using genetic algorithms. IEEE Trans. Fuzzy Syst. 1993, 1, 46–53. [Google Scholar] [CrossRef]
- Ross, J.T. Fuzzy Logic with Engineering Applications; McGraw Hill, Inc.: New York, NY, USA, 1995. [Google Scholar]
- Takagi, H.; Hayashi, I. NN-driven fuzzy reasoning. Int. J. Approx. Reason. 1991, 5, 191–212. [Google Scholar] [CrossRef]
- Dubois, D.; Prade, H. Fuzzy Sets and Systems: Theory and Applications; Academic: New York, NY, USA, 1980. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy identification of systems and its application to modeling and control. IEEE Trans. Syst. Man Cybern. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Jang, J.S.R. ANFIS: Adaptive network based fuzzy inference system. IEEE Trans. Syst. Man Cybern. 1993, 23, 665–684. [Google Scholar] [CrossRef]
- Parkavi, R.; Karthikeyan, P. Predicting academic performance of learners with the three domains of learning data using neuro-fuzzy model and machine learning algorithms. J. Eng. Res. 2023, 12, 397–411. [Google Scholar]
- Mabel, M.C.; Fernandez, E. Analysis of wind power generation and prediction using ANN: A case study. Renew. Energy 2008, 33, 986–992. [Google Scholar] [CrossRef]
- Hagan, T.M.; Demuth, H.B.; Beale, M. Neural Network Design; PWS Publishing Company: Boston, MA, USA, 1996. [Google Scholar]
- Zupan, J.; Gasteiger, J. Neural Networks in Chemistry and Drug Design; Wiley-VCH: Weinheim, Germany, 1999. [Google Scholar]
- Strik, D.P.; Domnanovich, A.M.; Zani, L.; Braun, R.; Holubar, P. Prediction of trace compounds in biogas from anaerobic digestion using the MATLAB Neural Network Toolbox. Environ. Model. Softw. 2005, 20, 803–810. [Google Scholar] [CrossRef]
- Kasabov, N.K. Foundations of Neural Networks, Fuzzy Systems and Knowledge Engineering; MIT Press: Cambridge, MA, USA, 1998. [Google Scholar]
- Büyüköztürk, Ş. Sosyal Bilimler Için Veri Analizi el Kitabı, 22nd ed.; Pegem Akademi: Ankara, Turkey, 2016. [Google Scholar]
- Büyüköztürk, Ş.; Cokluk, O.; Köklü, N. Sosyal Bilimler Için Istatistik; Pegem Akademi: Ankara, Turkey, 2010. [Google Scholar]
- URL-1. Available online: https://www.istmer.com/korelasyon-katsayisi-istatistiksel/ (accessed on 27 September 2024).
- Göktepe Körpeoğlu, S.; Göktepe Yıldız, S. Using artificial intelligence to predict students’ STEM attitudes: An adaptive neural-network-based fuzzy logic model. Int. J. Sci. Educ. 2024, 46, 1001–1026. [Google Scholar] [CrossRef]
- Çetinkaya, A.; Baykan, Ö.K. Prediction of middle school students’ programming talent using artificial neural networks. Eng. Sci. Technol. Int. J. 2020, 23, 1301–1307. [Google Scholar] [CrossRef]
- Göktepe Körpeoğlu, S.; Göktepe Yıldız, S. Prediction of metacognition awareness of middle school students: Comparison of ANN, ANFIS and statistical techniques. Avr. Bilim Tek. Derg. 2022, 38, 450–461. [Google Scholar]
Kolmogorov–Smirnov | |||
---|---|---|---|
Statistic | df | Sig. | |
Real scores | 0.089 | 133 | 0.003 |
Artificial ANFIS scores | 0.095 | 133 | 0.000 |
Artificial ANN scores | 0.072 | 133 | 0.036 |
Input Variables | Output Variable | |||||
---|---|---|---|---|---|---|
Gender | Age | Level of Education | School Level | Teaching Experience | Creative Thinking Disposition | Teachers’ MPSBs |
Male | Young | Under graduate | Primary school | 0–5 years | low | low |
Female | Middle Aged | Graduate | Middle school | 6–11 years | middle | middle |
Aged | Doctorate | Secondary school | 11–15 years | high | high | |
16–19 years | ||||||
20 and over |
Gender | Age | Level of Education | School Level | Teaching Experience | CTD Scores | Real MPSB Scores | ANFIS Scores |
---|---|---|---|---|---|---|---|
1 | 52 | 1 | 1 | 5 | 108 | 112 | 111.99 |
2 | 40 | 1 | 1 | 5 | 93 | 103 | 106.50 |
1 | 33 | 2 | 2 | 3 | 125 | 120 | 119.99 |
1 | 38 | 1 | 2 | 2 | 100 | 122 | 121.99 |
2 | 33 | 1 | 2 | 3 | 97 | 114 | 113.99 |
2 | 42 | 1 | 2 | 3 | 106 | 110 | 110.00 |
2 | 32 | 2 | 3 | 1 | 86 | 102 | 101.99 |
1 | 53 | 1 | 1 | 5 | 110 | 106 | 106.00 |
1 | 29 | 1 | 2 | 2 | 114 | 125 | 124.99 |
1 | 47 | 1 | 2 | 5 | 100 | 109 | 109.00 |
2 | 33 | 1 | 2 | 2 | 98 | 113 | 112.99 |
2 | 41 | 1 | 2 | 3 | 90 | 126 | 125.99 |
2 | 47 | 1 | 2 | 5 | 117 | 116 | 116.02 |
1 | 56 | 1 | 2 | 5 | 97 | 109 | 112.86 |
2 | 39 | 1 | 1 | 3 | 96 | 113 | 113.00 |
2 | 46 | 1 | 2 | 5 | 119 | 100 | 99.96 |
2 | 40 | 1 | 1 | 3 | 94 | 110 | 109.99 |
2 | 44 | 1 | 1 | 3 | 92 | 108 | 108.00 |
2 | 41 | 1 | 1 | 5 | 91 | 106 | 103.58 |
2 | 43 | 2 | 2 | 5 | 125 | 114 | 113.99 |
Gender | Age | Level of Education | School Level | Teaching Experience | CTD Scores | Real MPSB Scores | ANFIS Scores |
---|---|---|---|---|---|---|---|
0 | 0.56 | 0 | 0 | 1 | 0.59 | 0.44 | 0.44 |
1 | 0.31 | 0 | 0 | 1 | 0.23 | 0.32 | 0.40 |
0 | 0.16 | 0.5 | 0.5 | 0.5 | 1 | 0.55 | 0.59 |
0 | 0.27 | 0 | 0.5 | 0.25 | 0.40 | 0.57 | 0.55 |
1 | 0.16 | 0 | 0.5 | 0.5 | 0.33 | 0.47 | 0.50 |
1 | 0.35 | 0 | 0.5 | 0.5 | 0.54 | 0.42 | 0.55 |
1 | 0.14 | 0.5 | 1 | 0 | 0.07 | 0.31 | 0.46 |
0 | 0.58 | 0 | 0 | 1 | 0.64 | 0.36 | 0.47 |
0 | 0.08 | 0 | 0.5 | 0.25 | 0.73 | 0.61 | 0.55 |
0 | 0.45 | 0 | 0.5 | 1 | 0.40 | 0.40 | 0.48 |
1 | 0.16 | 0 | 0.5 | 0.25 | 0.35 | 0.46 | 0.49 |
1 | 0.33 | 0 | 0.5 | 0.5 | 0.16 | 0.63 | 0.472 |
1 | 0.45 | 0 | 0.5 | 1 | 0.80 | 0.50 | 0.49 |
0 | 0.64 | 0 | 0.5 | 1 | 0.33 | 0.40 | 0.48 |
1 | 0.29 | 0 | 0 | 0.5 | 0.30 | 0.46 | 0.50 |
1 | 0.43 | 0 | 0.5 | 1 | 0.85 | 0.28 | 0.49 |
1 | 0.31 | 0 | 0 | 0.5 | 0.26 | 0.42 | 0.50 |
1 | 0.39 | 0 | 0 | 0.5 | 0.21 | 0.39 | 0.52 |
1 | 0.33 | 0 | 0 | 1 | 0.19 | 0.36 | 0.39 |
1 | 0.37 | 0.5 | 0.5 | 1 | 1 | 0.47 | 0.40 |
Correlations | |||||||
---|---|---|---|---|---|---|---|
Real Scores | Artificial ANFIS Scores | Artificial ANN Scores | |||||
Spearman’s rho | Real scores | Correlation Coefficient | 1.000 | 0.564 ** | 0.422 ** | ||
Sig. (2-tailed) | . | 0.000 | 0.000 | ||||
N | 133 | 133 | 133 | ||||
Bootstrap c | Bias | 0.000 | −0.003 | −0.004 | |||
Std. Error | 0.000 | 0.081 | 0.078 | ||||
95% Confidence Interval | Lower | 1.000 | 0.397 | 0.254 | |||
Upper | 1.000 | 0.718 | 0.559 | ||||
Artificial ANFIS scores | Correlation Coefficient | 0.564 ** | 1.000 | 0.357 ** | |||
Sig. (2-tailed) | 0.000 | . | 0.000 | ||||
N | 133 | 133 | 133 | ||||
Bootstrap c | Bias | −0.003 | 0.000 | 0.001 | |||
Std. Error | 0.081 | 0.000 | 0.091 | ||||
95% Confidence Interval | Lower | 0.397 | 1.000 | 0.171 | |||
Upper | 0.718 | 1.000 | 0.523 | ||||
Artificial ANN scores | Correlation Coefficient | 0.422 ** | 0.357 ** | 1.000 | |||
Sig. (2-tailed) | 0.000 | 0.000 | . | ||||
N | 133 | 133 | 133 | ||||
Bootstrap c | Bias | −0.004 | 0.001 | 0.000 | |||
Std. Error | 0.078 | 0.091 | 0.000 | ||||
95% Confidence Interval | Lower | 0.254 | 0.171 | 1.000 | |||
Upper | 0.559 | 0.523 | 1.000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Göktepe Körpeoğlu, S.; Filiz, A.; Göktepe Yıldız, S. AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks. Appl. Sci. 2025, 15, 494. https://doi.org/10.3390/app15020494
Göktepe Körpeoğlu S, Filiz A, Göktepe Yıldız S. AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks. Applied Sciences. 2025; 15(2):494. https://doi.org/10.3390/app15020494
Chicago/Turabian StyleGöktepe Körpeoğlu, Seda, Ahsen Filiz, and Sevda Göktepe Yıldız. 2025. "AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks" Applied Sciences 15, no. 2: 494. https://doi.org/10.3390/app15020494
APA StyleGöktepe Körpeoğlu, S., Filiz, A., & Göktepe Yıldız, S. (2025). AI-Driven Predictions of Mathematical Problem-Solving Beliefs: Fuzzy Logic, Adaptive Neuro-Fuzzy Inference Systems, and Artificial Neural Networks. Applied Sciences, 15(2), 494. https://doi.org/10.3390/app15020494