Skip to main content
Our study provides novel insights into the biology of influenza A virus (IAV), which is timely in view of the unusually large number of animal and human cases of highly pathogenic avian influenza (HPAI) H5 across Europe, Asia, Africa and... more
Our study provides novel insights into the biology of influenza A virus (IAV), which is timely in view of the unusually large number of animal and human cases of highly pathogenic avian influenza (HPAI) H5 across Europe, Asia, Africa and North America. Currently we face challenges with predicting how the avian reservoir will influence IAV spread because the mechanisms by which different subtypes disperse are not well understood. Our study sought to address this knowledge gap by systematically comparing the evolutionary dynamics that drive IAV transmission across subtypes and bird hosts with the goal of identifying spillover pathways at the wild-domestic interface. By analyzing the evolution of IAV over 10 years at greater taxonomic resolution than previously considered, we uncovered a complex transmission network that relied on ecologically divergent bird hosts. Domestic birds were responsible for slow but steady range expansion of HPAI H5, while wild birds such as geese, swans, gulls and ducks contibuted to rapid but episodic dispersal via uniquely different pathways. By assessing how virus-host systems are coupled, findings from this study have the potential to refine and enhance global surveillance and outbreak prediction.
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating... more
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences... more
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008–2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions with strong seasonality.
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem... more
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of long-term surveillance data demonstrates that meaningful insights can be inferred from integrating ecosystem into phylogeographic reconstructions that may be consequential for pandemic preparedness and livestock protection. It is assumed that AIV outbreaks in poultry are introduced from wild birds. To test this, we incorporated ecosystem and location of isolation into a comparative genetic analysis. We show high rates of viral transmission from domestic to wild birds within a region and,
Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. However, the long-standing dogma that... more
Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. However, the long-standing dogma that reticulate evolutionary processes are likewise advantageous for switching ecological niches, as in microbial pathogen host switch events, has not been explicitly tested. We use data from the influenza genome sequencing project and a phyloge-netic heuristic approach to show that reassortment, a reticulate evolutionary mechanism, predominates over mutational drift in transmission between different host species. Moreover, as host evolutionary distance increases, reassortment is increasingly favored. We conclude that the greater the quantitative difference between ecological niches, the greater the importance of reticulate evolutionary processes in overcoming niche barriers. ecology | reticulate evolution | influenza | host switch | reassortment R eticulate evolutionary processes, such as horizontal gene transfer and genomic reassortment, have been proposed as a major mechanism for microbial evolution (1), aiding in the diversification into new ecological niches (2). In contrast to clonal adaptation through genetic drift over time, reticulate evolutionary processes allow an organism to acquire independently evolved genetic material that can confer new fitness-enhancing traits. Examples include the acquisition of cell surface receptor adaptations (point mutations) in viruses (3) and antibiotic resistance (single genes) (4) and pathogenicity islands (or gene clusters) in bacteria (5). Host switching, defined as a pathogen moving from one host species into another, represents a fitness barrier to microbial pathogens. The acquisition of adaptations through reticulate processes either before or after transmission from one species to another may serve to aid successful pathogen host switches by improving fitness and the likelihood of continued transmission (6). In this sense, reticulate evolution may be viewed as an ecological strategy for switching between ecological niches (such as different host species), complementing but also standing in contrast to the clonal adaptation of a microbial pathogen by genetic drift under selection. To test this idea and its importance in host switch events [which are critical for (re)emerging infectious disease], we provide a quantitative assessment of the relative importance of reticulate processes versus clonal adaptation in aiding the ecological niche switch of a viral pathogen. Data yielded from influenza genome sequencing projects provide a unique opportunity for quantitatively testing this concept and are suitable for the following reasons. First, the influenza A virus (IAV) has a broad host tropism (7) and is capable of infecting organisms spanning millennia of divergence on the tree of life. With different host-specific restriction factors forming an adaptive barrier, each host species may then be viewed as a unique ecological niche for the virus (8). Second, IAV is capable of and frequently undergoes reassortment, which is a well-documented reticulate evolutionary process (9–12). Reassortment has also been implicated as an adap-tive evolutionary mechanism in host switching (13, 14), although this is most prevalently observed for pandemic viruses of public health interest for which sequences are available (15). Finally, as a result of surveillance efforts during the last 2 decades, whole-genome sequences have been intensively sampled during a long time frame, with corresponding host species metadata, available in an easily accessible and structured format (16). Because reassortant viruses are the product of two or more genetically distinct viruses coin-fecting the same host, a more complex process than clonal transmission and adaptation, they are expected to occur less frequently. Hence, the global IAV dataset, which stretches over time and space with large sample numbers, provides the necessary scope to detect reassortant viruses at a scale required to quantitatively assess the relative importance of reticulate events in viral host switching. To identify heterologous reassortment events (between distinct influenza lineages) and the hosts species involved, we adapted a phylogenetic heuristic method (17) and mapped out a network of clonal and reassortment descent relationships from a global set of completely sequenced IAV (18,632 viral genomes) downloaded from the Influenza Research Database (16). Briefly, the core logic of the method is as such: For every isolate in the dataset, we look for genomic sources such that the sources found are of maximal similarity across all eight genomic segments (Materials and Methods). Clonal descent involves tracing sources of whole genomes, whereas reassortment descent involves identifying source pairs, in which some segments of a sink virus' genome comes from one source and a complementary set of segments comes from another source. Where either multiple sources or multiple source pairs correspond to the maximal similarity, all are kept as plausible sources, with appropriate weighting applied to avoid double-counting reassortment events (Materials and Methods). In the resulting network, nodes are individual viral isolates, and edges are the clonal or reassortment descent relationships. In this network of viral isolates, clonal descent is mostly structured by host species, with known global patterns of human-to-human Significance Are the processes that result in the exchange of genes between microbes quantitatively advantageous for those microbes when switching between ecological niches? To address this question, we consider the influenza A virus as a model microbe, with its ability to infect multiple host species (ecological niches) and undergo reassortment (exchange genes) with one another. Here, through our analysis of sequence data from the Influenza Research Database and the Barcode of Life Database, we find that the greater the quantitative difference between influenza hosts, the greater the proportion of reassortment events were found. More broadly, for microbes, we infer that reticulate evolutionary processes should be quantitatively favored when switching between ecological niches. Author contributions: E.J.M. designed research; E.J.M. performed research; E.J.M. and J.Z. contributed new reagents/analytic tools; E.J.M., N.J.H., J.Z., K.Y., and J.A.R. analyzed data; and E.J.M., N.J.H., and J.A.R. wrote the paper. The authors declare no conflict of interest.
Research Interests:
Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists... more
Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%-12.5%) in weaned pups and 5.3% (CI: 1.2%-14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%-24.5%) and 50% (CI: 33.7%-66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are both permissive to and tolerant of diverse IAV, possibly representing an endemically infected wild reservoir population.
Synopsis In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship... more
Synopsis In nature, wild birds and influenza A viruses (IAV) are continually co-evolving, locked into a back-and-forth of resistance and conquest that has approached a stable equilibrium over time. This co-evolutionary relationship between bird host and IAV may appear stable at the organismal level, but is highly dynamic at the molecular level manifesting in a constant trade-off between transmissibility and virulence of the virus. Characterizing both sides of the host-virus dynamic has presented a challenge for ecologists and virologists alike, despite the potential for this approach to provide insights into which conditions destabilize the equilibrium state resulting in outbreaks or mortality of hosts in extreme cases. The use of different methods that are either host-centric or virus-centric has made it difficult to reconcile the disparate fields of host ecology and virology for investigating and ultimately predicting wild bird-mediated transmission of IAV. This review distills some of the key lessons learned from virological and ecological studies and explores the promises and pitfalls of both approaches. Ultimately, reconciling ecological and virological approaches hinges on integrating scales for measuring host-virus interactions. We argue that prospects for finding common scales for measuring wild bird-influenza dynamics are improving due to advances in genomic sequencing, host-tracking technology and remote sensing data, with the unit of time (months, year, or seasons) providing a starting point for crossover.
A comparison of stable hydrogen isotope values (2H) in sheath feathers and feathers from the previous molt cycle in the same sample of Bar-headed Geese. (A) is the isoscape of predicted 2 H values for east-central Asia, with feather... more
A comparison of stable hydrogen isotope values (2H) in sheath feathers and feathers from the previous molt cycle in the same sample of Bar-headed Geese. (A) is the isoscape of predicted 2 H values for east-central Asia, with feather collection sites depicted as small black dots, small open circles and zones delineated by dashed lines correspond to important breeding sites/regions. The isoscape was used to generate a probability-of-origin surface for each feather in the sample, and (B) and (C) are the averaged probability surfaces for new and old feathers. The color pattern for (B) and (C) represents quartiles for the distribution of probabilities associated with new feathers.
Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a... more
Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values o...
... 2000, Hudson et al. 2002, Collinge and Ray 2006). Many diseases that are transmissible between humans and wild birds have gained considerable atention in recent years from both scientific and sociological perspectives (Collinge and... more
... 2000, Hudson et al. 2002, Collinge and Ray 2006). Many diseases that are transmissible between humans and wild birds have gained considerable atention in recent years from both scientific and sociological perspectives (Collinge and Ray 2006, Altizer et al. 2011). ...
ABSTRACT Ross River virus (RRV) is a mosquito-transmitted Alphavirus emerging in urban centres throughout Australia. The Common brushtail possum (Trichosurus vulpecula), a native marsupial that has successfully adapted to human... more
ABSTRACT Ross River virus (RRV) is a mosquito-transmitted Alphavirus emerging in urban centres throughout Australia. The Common brushtail possum (Trichosurus vulpecula), a native marsupial that has successfully adapted to human settlement, has been implicated as a maintenance reservoir for RRV. In the present study, RRV exposure was assessed amongst 72 urban-adapted possums from Northern Sydney and ten possums from a woodland area, remote from urbanisation. Serological screening was performed using an enzyme-linked immunosorbent assay to detect RRV antibodies in possum sera. Findings indicated that both possum populations from urban and woodland habitats were negative for the presence of RRV antibodies. Lack of exposure to RRV highlights that the host status of possums is contingent upon factors other than their abundance and proximity to human settlement. In view of the potential for climate change to favour transmission of mosquito-borne disease in Australia, identification of wildlife populations entirely absent of RRV may prove useful for monitoring the predicted spread of the virus.
Expansion of human settlement has increased the interface between people and bandicoots with implications for the emergence and spread of zoonotic parasites. The host status of bandicoots inhabiting suburban areas and their potential role... more
Expansion of human settlement has increased the interface between people and bandicoots with implications for the emergence and spread of zoonotic parasites. The host status of bandicoots inhabiting suburban areas and their potential role in Cryptosporidium transmission remains unresolved. Our study aimed to determine the prevalence and identity of Cryptosporidium in two sympatric bandicoot species. Cryptosporidium signatures were detected in twelve bandicoot faecal samples (n=98) through amplification of the 18S rRNA. Phylogenetic inference placed the isolates in a clade with Cryptosporidium parvum, a species with a broad host range and zoonotic potential, or loosely related to Cryptosporidium hominis. However, the identity of the bandicoot isolates was not fully resolved and whether they were infected or simply passively transmitting oocysts is unknown. This study revealed that free-ranging bandicoots of northern Sydney were shedding Cryptosporidium oocysts at a prevalence of 12.2% (95% CI [6.76, 20.8]), similar to marsupial species that act as reservoirs for Cryptosporidium. Our findings expand the range of hosts known to shed Cryptosporidium in urban areas.
In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran... more
In alpine Australia, Orthoptera are abundant, dominant herbivores, important prey species, and hosts for parasites and parasitoids. Despite the central role of orthopterans in alpine ecosystems, the impact of parasites on orthopteran populations is under-explored. In this study we describe the relationship between parasite prevalence and host sex, body size and year of collection. We accessed an existing, preserved collection of 640 Kosciuscola tristis collected from across its range between 2007 and 2011. Upon dissection we collected juvenile parasites and used molecular tools to identify them to three families (Nematoda; Mermithidae, and Arthropoda: Diptera: Tachinidae and Sarcophagidae). The prevalence of nematodes ranged from 3.5% to 25.0% and dipterans from 2.4% to 20.0%. Contrary to predictions, we found no associations between parasite prevalence and grasshopper sex or size. Although there was an association between prevalence of both nematodes and dipterans with year of collection, this is likely driven by a small sample size in the first year. Our results provide a foundation for future studies into parasite prevalence within the alpine environment and the abiotic factors that might influence these associations.
Research Interests:
Emerging RNA virus infections are a growing concern among domestic bird and poultry industries due to the severe impact it can have on the flock health and economic livelihoods. Avian paramyxoviruses (APMV) are pathogenic, negative sense... more
Emerging RNA virus infections are a growing concern among domestic bird and poultry industries due to the severe impact it can have on the flock health and economic livelihoods. Avian paramyxoviruses (APMV) are pathogenic, negative sense RNA viruses that cause serious infections in the respiratory and central nervous system. APMV was detected in multiple avian species during the 2017 migration season in Ukraine, and studied using PCR, virus isolation, and sequencing. Of the 4090 wild bird samples, eleven swabs were isolated in chicken embryos and identified for APMV serotype by hemagglutinin inhibition test: APMV-1, APMV-4, APMV-6, APMV-7. At a variety of sites in Ukraine we characterized the virulence of the virus and further analyzed and predicted the potential risks of spillover to immunologically naïve populations. RNA was extracted and amplified using a multiplex-tiling primer approach to encompass full cDNA genomes. Full-length APMV-1 (n=5) and APMV-6 (n=2) genomes were sequen...
Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk... more
Avian influenza viruses can pose serious risks to agricultural production, human health, and wildlife. An understanding of viruses in wild reservoir species across time and space is important to informing surveillance programs, risk models, and potential population impacts for vulnerable species. Although it is recognized that influenza A virus prevalence peaks in reservoir waterfowl in late summer through autumn, temporal and spatial variation across species has not been fully characterized. We combined two large influenza databases for North America and applied spatiotemporal models to explore patterns in prevalence throughout the annual cycle and across the continental United States for 30 waterfowl species. Peaks in prevalence in late summer through autumn were pronounced for dabbling ducks in the genera Anas and Spatula, but not Mareca. Spatially, areas of high prevalence appeared to be related to regional duck density, with highest predicted prevalence found across the upper M...
Phocine distemper virus (PDV) is a morbillivirus that circulates within pinnipeds in the North Atlantic. PDV has caused two known unusual mortality events (UMEs) in western Europe (1988, 2002), and two UMEs in the northwest Atlantic... more
Phocine distemper virus (PDV) is a morbillivirus that circulates within pinnipeds in the North Atlantic. PDV has caused two known unusual mortality events (UMEs) in western Europe (1988, 2002), and two UMEs in the northwest Atlantic (2006, 2018). Infrequent cross-species transmission and waning immunity are believed to contribute to periodic outbreaks with high mortality in western Europe. The viral ecology of PDV in the northwest Atlantic is less well defined and outbreaks have exhibited lower mortality than those in western Europe. This study sought to understand the molecular and ecological processes underlying PDV infection in eastern North America. We provide phylogenetic evidence that PDV was introduced into northwest Atlantic pinnipeds by a single lineage and is now endemic in local populations. Serological and viral screening of pinniped surveillance samples from 2006 onward suggest there is continued circulation of PDV outside of UMEs among multiple species with and without...
SummarySARS-CoV-2 (CoV-2), which surfaced in late 2019 in Wuhan City, China, most likely originated in bats and rapidly spread among humans globally, harming and disrupting livelihoods worldwide. Early into the pandemic, reports of CoV-2... more
SummarySARS-CoV-2 (CoV-2), which surfaced in late 2019 in Wuhan City, China, most likely originated in bats and rapidly spread among humans globally, harming and disrupting livelihoods worldwide. Early into the pandemic, reports of CoV-2 diagnoses in pets and other animals emerged, including dogs, cats, farmed mink and some large felids (tigers and lions) from various countries. While most CoV-2 positive animals were confirmed to have been in close contact with CoV-2 positive humans, there has been a paucity of published evidence to-date describing risk factors associated with CoV-2 transmission among humans and domestic and wild animals. The COVID-19 Human-Animal Interactions Survey (CHAIS) was developed through a cross-CEIRS Center collaboration to provide a standardized survey describing human-animal interaction during the pandemic and to evaluate behavioral, spatiotemporal, and biological risk factors associated with bi-directional zoonotic transmission of CoV-2 within household...
Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to SARS-CoV-2 infection and onward transmission. Here, we report the results of a... more
Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to SARS-CoV-2 infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic COVID-19. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on RT-PCR and ELISA. To better understand this discrepancy in experimental and natural infection in ferrets, we compared SARS-CoV-2 sequences from natural and experimental mustelid infections and identified two surface glycoprotein (Spike) mutations associated with mustelids. While we found evidence that ACE2 provides a weak host barrier, one mutation only seen in ferrets is located in the novel S1/S2 cleavage site and is computationally predicted to decrease furin activity. These data support that host factors interacting w...
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among... more
Arctic regions are ecologically significant for the environmental persistence and geographic dissemination of influenza A viruses (IAVs) by avian hosts and other wildlife species. Data describing the epidemiology and ecology of IAVs among wildlife in the arctic are less frequently published compared to southern temperate regions, where prevalence and subtype diversity are more routinely documented. Following PRISMA guidelines, this systematic review addresses this gap by describing the prevalence, spatiotemporal distribution, and ecological characteristics of IAVs detected among wildlife and the environment in this understudied region of the globe. The literature search was performed in PubMed and Google Scholar using a set of pre-defined search terms to identify publications reporting on IAVs in Arctic regions between 1978 and February 2022. A total of 2125 articles were initially screened, 267 were assessed for eligibility, and 71 articles met inclusion criteria. IAVs have been de...
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two... more
A unique pattern of highly pathogenic avian influenza (HPAI) H5N1 outbreaks has emerged along the Central Asia Flyway, where infection of wild birds has been reported with steady frequency since 2005. We assessed the potential for two hosts of HPAI H5N1, the bar-headed goose (Anser indicus) and ruddy shelduck (Tadorna tadorna), to act as agents for virus dispersal along this ‘thoroughfare’. We used an eco-virological approach to compare the migration of 141 birds marked with
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating... more
Sampling of mallards in Alaska during September 2014-April 2015 identified low pathogenic avian influenza A virus (subtypes H5N2 and H1N1) that shared ancestry with highly pathogenic reassortant H5N2 and H5N1 viruses. Molecular dating indicated reassortment soon after interhemispheric movement of H5N8 clade 2.3.4.4, suggesting genetic exchange in Alaska or surrounds before outbreaks.
Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists... more
Influenza A virus (IAV) has been associated with multiple unusual mortality events (UMEs) in North Atlantic pinnipeds, frequently attributed to spillover of virus from wild-bird reservoirs. To determine if endemic infection persists outside of UMEs, we undertook a multiyear investigation of IAV in healthy, live-captured Northwest Atlantic gray seals (Halichoerus grypus). From 2013 to 2015, we sampled 345 pups and 57 adults from Cape Cod, MA, USA and Nova Scotia, Canada consistently detecting IAV infection across all groups. There was an overall viral prevalence of 9.0% (95% confidence interval (CI): 6.4%-12.5%) in weaned pups and 5.3% (CI: 1.2%-14.6%) in adults, with seroprevalences of 19.3% (CI: 15.0%-24.5%) and 50% (CI: 33.7%-66.4%), respectively. Positive sera showed a broad reactivity to diverse influenza subtypes. IAV status did not correlate with measures of animal health nor impact animal movement or foraging. This study demonstrated that Northwest Atlantic gray seals are bot...
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences... more
Influenza A Viruses (IAV) in nature must overcome shifting transmission barriers caused by the mobility of their primary host, migratory wild birds, that change throughout the annual cycle. Using a phylogenetic network of viral sequences from North American wild birds (2008-2011) we demonstrate a shift from intraspecific to interspecific transmission that along with reassortment, allows IAV to achieve viral flow across successive seasons from summer to winter. Our study supports amplification of IAV during summer breeding seeded by overwintering virus persisting locally and virus introduced from a wide range of latitudes. As birds migrate from breeding sites to lower latitudes, they become involved in transmission networks with greater connectivity to other bird species, with interspecies transmission of reassortant viruses peaking during the winter. We propose that switching transmission dynamics may be a critical strategy for pathogens that infect mobile hosts inhabiting regions w...
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem... more
Despite evidence for avian influenza A virus (AIV) transmission between wild and domestic ecosystems, the roles of bird migration and poultry trade in the spread of viruses remain enigmatic. In this study, we integrate ecosystem interactions into a phylogeographic model to assess the contribution of wild and domestic hosts to AIV distribution and persistence. Analysis of globally sampled AIV datasets shows frequent two-way transmission between wild and domestic ecosystems. In general, viral flow from domestic to wild bird populations was restricted to within a geographic region. In contrast, spillover from wild to domestic populations occurred both within and between regions. Wild birds mediated long-distance dispersal at intercontinental scales whereas viral spread among poultry populations was a major driver of regional spread. Viral spread between poultry flocks frequently originated from persistent lineages circulating in regions of intensive poultry production. Our analysis of ...
Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a... more
Satellite-based tracking of migratory waterfowl is an important tool for understanding the potential role of wild birds in the long-distance transmission of highly pathogenic avian influenza. However, employing this technique on a continental scale is prohibitively expensive. This study explores the utility of stable isotope ratios in feathers in examining both the distances traveled by migratory birds and variation in migration behavior. We compared the satellite-derived movement data of 22 ducks from 8 species captured at wintering areas in Bangladesh, Turkey, and Hong Kong with deuterium ratios (δD) of these and other individuals captured at the same locations. We derived likely molting locations from the satellite tracking data and generated expected isotope ratios based on an interpolated map of δD in rainwater. Although δD was correlated with the distance between wintering and molting locations, surprisingly, measured δD values were not correlated with either expected values o...
Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are... more
Wild birds have been implicated in the spread of highly pathogenic avian influenza (HPAIV) of the H5N1 subtype, prompting surveillance along migratory flyways. Sampling of wild birds is often conducted in remote regions, but results are often delayed because of limited local analytical capabilities, difficulties with sample transportation and permitting, or problems keeping samples cold in the field. In response to these challenges, the performance of a portable real-time, reverse transcriptase-polymerase chain reaction (rRT-PCR) unit (RAPID((R)), Idaho Technologies, Salt Lake City, UT) that employed lyophilized reagents (Influenza A Target 1 Taqman; ASAY-ASY-0109, Idaho Technologies) was compared to virus isolation combined with real-time RT-PCR conducted in a laboratory. This study included both field- and experimental-based sampling. Field samples were collected from migratory shorebirds captured in northern California, while experimental samples were prepared by spiking fecal material with an H6N2 AIV isolate. Results indicated that the portable rRT-PCR unit had equivalent specificity to virus isolation with no false positives, but sensitivity was compromised at low viral titers. Use of portable rRT-PCR with lyophilized reagents may expedite surveillance results, paving the way to a better understanding of wild bird involvement in HPAIV H5N1 transmission.
We examined whether host traits influenced the occurrence of avian influenza virus (AIV) in Anatidae (ducks, geese, swans) at wintering sites in... more
We examined whether host traits influenced the occurrence of avian influenza virus (AIV) in Anatidae (ducks, geese, swans) at wintering sites in California's Central Valley. In total, 3487 individuals were sampled at Sacramento National Wildlife Refuge and Conaway Ranch Duck Club during the hunting season of 2007-08. Of the 19 Anatidae species sampled, prevalence was highest in the northern shoveler (5.09%), followed by the ring-necked duck (2.63%), American wigeon (2.57%), bufflehead (2.50%), greater white-fronted goose (2.44%), and cinnamon teal (1.72%). Among host traits, density of lamellae (filtering plates) of dabbling ducks was significantly associated with AIV prevalence and the number of subtypes shed by the host, suggesting that feeding methods may influence exposure to viral particles.
The common brushtail possum (Trichosurus vulpecula) is one of the most abundant native marsupials in urban Australia, having successfully adapted to utilize anthropogenic resources. The habituation of possums to food and shelter available... more
The common brushtail possum (Trichosurus vulpecula) is one of the most abundant native marsupials in urban Australia, having successfully adapted to utilize anthropogenic resources. The habituation of possums to food and shelter available in human settlements has facilitated interaction with people, pets, and zoo animals, increasing the potential for transmission of zoonotic Cryptosporidium pathogens. This study sought to examine the identity and prevalence of Cryptosporidium species occurring in possums adapted to urban settings compared to possums inhabiting remote woodlands far from urban areas and to characterize the health of the host in response to oocyst shedding. Findings indicated that both populations were shedding oocysts of the same genotype (brushtail possum 1 [BTP1]) that were genetically and morphologically distinct from zoonotic species and genotypes and most closely related to Cryptosporidium species from marsupials. The urban population was shedding an additional f...
12 Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift 13 and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. 14 However, the long-standing dogma... more
12 Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift 13 and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. 14 However, the long-standing dogma that reticulate evolutionary processes are likewise 15 advantageous for switching ecological niches, as in microbial pathogen host switch events, has 16 not been explicitly tested. We use data from the influenza genome sequencing project and a 17 phylogenetic heuristic approach to show that reassortment, a reticulate evolutionary mechanism, 18 predominates over mutational drift in transmission between different host species. Moreover, as 19 host evolutionary distance increases, reassortment is increasingly favored. We conclude that the 20 greater the quantitative difference between ecological niches, the greater the importance of 21 reticulate evolutionary processes in overcoming niche barriers. 22 . CC-BY-NC-ND 4.0 International license peer-reviewed...
Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia:... more
Although zebra finches (Taeniopygia guttata) have been used in biomedical research for many years, no published reports are available about euthanizing these small birds. In this study, we compared 5 methods for zebra finch euthanasia: sodium pentobarbital (NaP) given intracoelomically with physical restraint but no anesthesia; isoflurane anesthesia followed by intracoelomic injection of NaP; and CO2 asphyxiation at 20%, 40%, and 80% chamber displacement rates (percentage of chamber volume per minute). Birds undergoing euthanasia were videorecorded and scored by 2 observers for behaviors potentially related to discomfort or distress. Time to recumbency and time until respiratory arrest (RA) were also assessed. RA was achieved faster by using NaP in a conscious bird compared to using isoflurane anesthesia followed by NaP; however, neither method caused behaviors that might affect animal welfare, such as open-mouth breathing, to any appreciable extent. Among the CO2 treatment groups, ...
Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward... more
Ferrets (Mustela putorius furo) are mustelids of special relevance to laboratory studies of respiratory viruses and have been shown to be susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and onward transmission. Here, we report the results of a natural experiment where 29 ferrets in one home had prolonged, direct contact and constant environmental exposure to two humans with symptomatic disease, one of whom was confirmed positive for SARS-CoV-2. We observed no evidence of SARS-CoV-2 transmission from humans to ferrets based on viral and antibody assays. To better understand this discrepancy in experimental and natural infection in ferrets, we compared SARS-CoV-2 sequences from natural and experimental mustelid infections and identified two surface glycoprotein Spike (S) mutations associated with mustelids. While we found evidence that angiotensin-converting enzyme II provides a weak host barrier, one mutation only seen in ferrets is located in th...
Wellfleet Bay virus (WFBV) is a recently described orthomyxovirus isolated from the tissues of Common Eiders (Somateria mollissima) collected during recurrent mortality events on Cape Cod, Massachusetts, USA. Coastal Massachusetts is the... more
Wellfleet Bay virus (WFBV) is a recently described orthomyxovirus isolated from the tissues of Common Eiders (Somateria mollissima) collected during recurrent mortality events on Cape Cod, Massachusetts, USA. Coastal Massachusetts is the only location where disease or mortality associated with this virus has been detected in wild birds, and a previous seroprevalence study found a significantly higher frequency of viral exposure in eiders from this location than from other areas sampled in North America. This suggests that coastal Massachusetts is an epicenter of WFBV exposure, but the reason for this is unknown. Opportunistic sampling of sympatric species and testing of banked serum was used to investigate potential host range and spatiotemporal patterns of WFBV exposure. Antibodies were detected in Herring Gulls (Larus argentatus), Ring-billed Gulls (Larus delawarensis), a White-winged Scoter (Melanitta fusca), and a Black Scoter (Melanitta nigra). These findings demonstrate the li...
Low-pathogenic avian influenza viruses (LPAIVs) of the H5 subtype can mutate to highly pathogenic forms, potentially destabilizing the poultry industry. Wild migratory birds are considered a natural reservoir of LPAIVs capable of... more
Low-pathogenic avian influenza viruses (LPAIVs) of the H5 subtype can mutate to highly pathogenic forms, potentially destabilizing the poultry industry. Wild migratory birds are considered a natural reservoir of LPAIVs capable of dispersing both high- and low-pathogenic forms of the virus. Therefore, surveillance and characterization of AIV in wild birds are essential. Here, we report on the isolation and genetic characterization of 10 AIVs of the H5N2 subtype obtained through surveillance in Hokkaido, Japan, during 2009 and 2011. Full-genome sequencing revealed that the H5 and N2 genes of these isolates are all closely related to each other, belonging to the Eurasian avian-like lineage, but they are unrelated to H5 highly pathogenic strains of clade 2.3.4.4. The internal genes of the isolates were found to be diverse, consistent with our hypothesis that these H5N2 strains have undergone multiple reassortment events. Even though all of the H5N2 isolates were characterized as LPAIV b...
H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird... more
H9N2 influenza A viruses are on the list of potentially pandemic subtypes. Therefore, it is important to understand how genomic reassortment and genetic polymorphisms affect phenotypes of H9N2 viruses circulating in the wild bird reservoir. A comparative genetic analysis of North American H9N2 isolates of wild bird origin identified a naturally occurring reassortant virus containing gene segments derived from both North American and Eurasian lineage ancestors. The PB2 segment of this virus encodes 10 amino acid changes that distinguish it from other H9 strains circulating in North America. G590S, one of the 10 amino acid substitutions observed, was present in ~12% of H9 viruses worldwide. This mutation combined with R591 has been reported as a marker of pathogenicity for human pandemic 2009 H1N1 viruses. Screening by polymerase reporter assay of all the natural polymorphisms at these two positions identified G590/K591 and S590/K591 as the most active, with the highest polymerase act...
Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. However, the long-standing dogma that... more
Reticulate evolution is thought to accelerate the process of evolution beyond simple genetic drift and selection, helping to rapidly generate novel hybrids with combinations of adaptive traits. However, the long-standing dogma that reticulate evolutionary processes are likewise advantageous for switching ecological niches, as in microbial pathogen host switch events, has not been explicitly tested. We use data from the influenza genome sequencing project and a phylogenetic heuristic approach to show that reassortment, a reticulate evolutionary mechanism, predominates over mutational drift in transmission between different host species. Moreover, as host evolutionary distance increases, reassortment is increasingly favored. We conclude that the greater the quantitative difference between ecological niches, the greater the importance of reticulate evolutionary processes in overcoming niche barriers.
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated... more
Studies of pathogen transmission typically overlook that wildlife hosts can include both migrant and resident populations when attempting to model circulation. Through the application of stable isotopes in flight feathers, we estimated the migration strategy of mallards (Anas platyrhynchos) occurring on California wintering grounds. Our study demonstrates that mallards- a principal host of avian influenza virus (AIV) in nature, contribute differently to virus gene flow depending on migration strategy. No difference in AIV prevalence was detected between resident (9.6%), intermediate-distance (9.6%) and long-distance migrants (7.4%). Viral diversity among the three groups was also comparable, possibly owing to viral pool mixing when birds converge at wetlands during winter. However, migrants and residents contributed differently to the virus gene pool at wintering wetlands. Migrants introduced virus from northern breeding grounds (Alaska and the NW Pacific Rim) into the wintering population, facilitating gene flow at continental scales, but circulation of imported virus appeared to be limited. In contrast, resident mallards acted as AIV reservoirs facilitating year-round circulation of limited subtypes (i.e. H5N2) at lower latitudes. This study supports a model of virus exchange in temperate regions driven by the convergence of wild birds with separate geographic origins and exposure histories.