Skip to main content
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the... more
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populu...
In plants, there can be a trade-off between resource allocations to growth vs defense. Here, we use partial correlation analysis of gene expression to make inferences about the nature of this interaction. We studied segregating progenies... more
In plants, there can be a trade-off between resource allocations to growth vs defense. Here, we use partial correlation analysis of gene expression to make inferences about the nature of this interaction. We studied segregating progenies of Interior spruce subject to weevil attack. In a controlled experiment, we measured pre-attack plant growth and post-attack damage with several morphological measures, and profiled transcriptomes of 188 progeny. We used partial correlations of individual transcripts (expressed sequence tags, ESTs) with pairs of growth/defense traits to identify important nodes and edges in the inferred underlying gene network, for example, those pairs of growth/defense traits with high mutual correlation with a single EST transcript. We give a method to identify such ESTs. A terpenoid ABC transporter gene showed strongest correlations (P = 0.019); its transcript represented a hub within the compact 166-member gene-gene interaction network (P = 0.004) of the negativ...
The genus Rhododendron (Ericaceae), with more than 1000 species highly diverse in flower color, is providing distinct ornamental values and a model system for flower color studies. Here, we investigated the divergence between two parental... more
The genus Rhododendron (Ericaceae), with more than 1000 species highly diverse in flower color, is providing distinct ornamental values and a model system for flower color studies. Here, we investigated the divergence between two parental species with different flower color widely used for azalea breeding. Gapless genome assembly was generated for the yellow-flowered azalea, R. molle. Comparative genomics found recent proliferation of LTR-RTs, especially Gypsy, has resulted in a 125 Mb (19%) genome size increase in species-specific regions, and a significant amount of dispersed gene duplicates (13402) and pseudogenes (17437). Metabolomic assessment revealed that yellow flower coloration is attributed to the dynamic changes of carotenoids/flavonols biosynthesis and chlorophyll degradation. Time-ordered gene co-expression networks (TO-GCNs) and the comparison confirmed the metabolome and uncovered the specific gene regulatory changes underpinning the distinct flower pigmentation. B3 a...
Functional traits are organismal attributes that can respond to environmental cues, thereby providing important ecological functions. In addition, an organism's potential for adaptation is defined by the patterns of covariation among... more
Functional traits are organismal attributes that can respond to environmental cues, thereby providing important ecological functions. In addition, an organism's potential for adaptation is defined by the patterns of covariation among groups of functionally related traits. Whether an organism is evolutionarily constrained or has the potential for adaptation is based on the phenotypic integration or modularity of these traits. Here, we revisited leaf morphology in two European sympatric white oaks (Quercus petraea (Matt.) Liebl. and Quercus robur L.), sampling 2098 individuals, across much of their geographical distribution ranges. At the phenotypic level, leaf morphology traditionally encompasses discriminant attributes among different oak species. Here, we estimated in situ heritability, genetic correlation, and integration across such attributes. Also, we performed Selection Response Decomposition to test these traits for potential differences in oak species' evolutionary r...
Background
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the... more
The evolution of sexual dimorphism and expansion of sex chromosomes are both driven through sexual conflict, arising from differing fitness optima between males and females. Here, we pair work in poplar (Populus) describing one of the smallest sex-determining regions known thus far in complex eukaryotes (~100 kbp) with comprehensive tests for sexual dimorphism using >1300 individuals from two Populus species and assessing 96 non-reproductive functional traits. Against expectation, we found sexual homomorphism (no non-reproductive trait differences between the sexes), suggesting that gender is functionally neutral with respect to non-reproductive features that affect plant survival and fitness. Combined with a small sex-determining region, we infer that sexual conflict may be effectively stymied or non-existent within these taxa. Both sexual homomorphism and the small sex-determining region occur against a background of strong environmental selection and local adaptation in Populus. This presents a powerful hypothesis for the evolution of dioecious species. Here, we suggest that environmental selection may be sufficient to suppress and stymy sexual conflict if it acts orthogonal to sexual selection, thereby placing limitations on the evolution of sexual dimorphism and genomic expansion of sex chromosomes.
Research Interests:
Quercus petraea and Q. robur are largely sympatric oak species in western and central Europe and known for their intensive genetic exchange which has made the discovery of species-diagnostic markers a huge challenge. Various natural white... more
Quercus petraea and Q. robur are largely sympatric oak species in western and central Europe and known for their intensive genetic exchange which has made the discovery of species-diagnostic markers a huge challenge. Various natural white oak populations (Q. petraea/Q. robur including mixed stands) were investigated for their variability and differentiation patterns at a β-tubulin gene (qutub8) in a European-wide survey. This gene was chosen as a possible candidate among loci subjected to selection and maintaining integrity between species. Two frequent alleles depicted as indels within qutub8's first intron showed remarkably high interspecific genetic differentiation, with Weir and Cockerham's theta per allele values ranging from 0.17 to 0.30 for one allele and from 0.04 to 0.19 for the other allele in such mixed oak stands where the multi-allelic qutub8 locus showed significant inter-specific F ST. For three mixed stands, qutub8's F ST significantly departed from the expected neutral differentiation patterns (F ST ranging from 0.063 to 0.080 for this multi-allelic marker) and thus could be influenced by selection. Significant associations were found between genotypic variation and leaf dimensions as well as leaf structure patterns, after having accounted for species and stand effects. Qutub8 represents a locus that exhibits significant species differentiation and is linked to morphological discriminant traits. Consequently, qutub8 likely contributes to species divergence within the European white oak complex.
Research Interests:
The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates' offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter... more
The open-pollinated (OP) family testing combines the simplest known progeny evaluation and quantitative genetics analyses as candidates' offspring are assumed to represent independent half-sib families. The accuracy of genetic parameter estimates is often questioned as the assumption of " half-sibling " in OP families may often be violated. We compared the pedigree-vs. marker-based genetic models by analysing 22-yr height and 30-yr wood density for 214 white spruce [Picea glauca (Moench) Voss] OP families represented by 1694 individuals growing on one site in Quebec, Canada. Assuming half-sibling, the pedigree-based model was limited to estimating the additive genetic variances which, in turn, were grossly overestimated as they were confounded by very minor dominance and major additive-by-additive epistatic genetic variances. In contrast, the implemented genomic pairwise realized relationship models allowed the disentanglement of additive from all nonadditive factors through genetic variance decomposition. The marker-based models produced more realistic narrow-sense heritability estimates and, for the first time, allowed estimating the dominance and epistatic genetic variances from OP testing. In addition, the geno-mic models showed better prediction accuracies compared to pedigree models and were able to predict individual breeding values for new individuals from untested families, which was not possible using the pedigree-based model. Clearly, the use of marker-based relationship approach is effective in estimating the quantitative genetic parameters of complex traits even under simple and shallow pedigree structure.
Research Interests:
The field of forest genomics is rapidly expanding, and many new potential uses of the genetic information gained are being developed [1]. Some of these uses are primarily economic in nature, such as increasing the growth rate of trees and... more
The field of forest genomics is rapidly expanding, and many new potential uses of the genetic information gained are being developed [1]. Some of these uses are primarily economic in nature, such as increasing the growth rate of trees and increasing yields for woody biomass, or producing trees with more desirable physiological or wood characteristics. Other uses are additionally advantageous to ecological or social goals, such as pest resistant trees that can withstand the effects of insects or diseases. Yet, to date, no forest products company in Canada has embraced forest genomics into mainstream business activity. This could be due to a number of factors: the lack of familiarity with genomics tools, the lack of expertise to assess genomics within the industry, the costs of applying genomics techniques in tree breeding, the lack of evidence of industrial benefits and the lack of commercialization potential. Here, we conducted an economic assessment of seven forest genomics research projects in Canada, including value judgements on the potential of commercialization and research application. The outcome of our work allowed us to (1) categorize the projects by type including the description of the economic frameworks, (2) undertake an economic assessment of each of these projects, using qualitative and quantitative (if available) information and (3) provide advice and a value judgement on the necessary micro-level economic conditions for application and commercial success. Review Methodology: For the review at hand we researched existing information on economics around novel products and conducted an economic assessment of seven research projects currently funded by the Department of Natural Resources Canada as part of the Genomics Research and Development Initiative. We collected information on how the involved researchers value the achievements of their work and how they perceived the potential for commercialization and further research application. We conducted personal interviews with each of the project principal investigators and the interview questions focussed on the following: (1) purpose/deliverables/status, (2) project methods/tools/limitations/application, (3) method comparison, (4) benefit/limitation, (5) technology transfer potential/application pathway, (6) institutional analysis, (7) impact assessment – obstacles, (8) social and environmental impact assessment and (9) economic impact assessment (at macro and micro level).
Research Interests:
Among the R2R3 MYB transcription factors that involve in the regulation of secondary cell wall formation in
Research Interests:
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular... more
Forest trees generally show high levels of local adaptation and efforts focusing on understanding adaptation to climate will be crucial for species survival and management. Here, we address fundamental questions regarding the molecular basis of adaptation in undomesticated forest tree populations to past climatic environments by employing an integrative quantitative genetics and landscape genomics approach. Using this comprehensive approach, we studied the molecular basis of climate adaptation in 433 Populus trichocarpa (black cottonwood) genotypes originating across western North America. Variation in 74 field-assessed traits (growth, ecophysiology, phenology, leaf stomata, wood, and disease resistance) was investigated for signatures of selection (comparing QST -FST) using clustering of individuals by climate of origin (temperature and precipitation). 29,354 SNPs were investigated employing three different outlier detection methods and marker-inferred relatedness was estimated to obtain the narrow-sense estimate of population differentiation in wild populations. In addition, we compared our results with previously assessed selection of candidate SNPs using the 25 topographical units (drainages) across the P. trichocarpa sampling range as population groupings. Narrow-sense QST for 53% of distinct field traits was significantly divergent from expectations of neutrality (indicating adaptive trait variation); 2,855 SNPs showed signals of diversifying selection and of these, 118 SNPs (within 81 genes) were associated with adaptive traits (based on significant QST). Many SNPs were putatively pleiotropic for functionally uncorrelated adaptive traits, such as autumn phenology, height, and disease resistance. Evolutionary quantitative genomics in P. trichocarpa provides an enhanced understanding regarding the molecular basis of climate-driven selection in forest trees and we highlight that important loci underlying adaptive trait variation also show relationship to climate of origin. We consider our approach the most comprehensive, as it uncovers the molecular mechanisms of adaptation using multiple methods and tests. We also provide a detailed outline of the required analyses for studying adaptation to the environment in a population genomics context to better understand the species’ potential adaptive capacity to future climatic scenarios.
Research Interests:
The development of reproductive structures is still poorly studied in gymnosperms due to limited genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less... more
The development of reproductive structures is still poorly studied in gymnosperms due to limited genomic information and useful genetic tools. The hermaphroditic reproductive structure derived from unisexual gymnosperms is an even less studied aspect of seed plant evolution.
To extend our understanding regarding the molecular mechanism of hermaphroditism and the determination of sexual identity of conifer reproductive structures in general, unisexual and bisexual cones from Pinus tabuliformis were profiled for gene expression using 60K microarrays. Expression patterns of genes during progression of sexual cone development were analysed by RNA-seq.
Results showed that, overall, the transcriptomes of male structures in bisexual cones were more similar to those of female cones. However, the expression of several MADS-box genes in the bisexual cones was similar to male cones at the more juvenile developmental stage, while despite these expression shifts, male structures of bisexual cones and normal male cones were histologically indistinguishable and cone development was continuous.
This study represents a starting point for in-depth analysis of the molecular regulation of cone development and also the origin of hermaphroditism in pine.
Research Interests:
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is... more
Genomic selection (GS) potentially offers an unparalleled advantage over traditional pedigree-based selection (TS) methods by reducing the time commitment required to carry out a single cycle of tree improvement. This quality is particularly appealing to tree breeders, where lengthy improvement cycles are the norm. We explored the prospect of implementing GS for interior spruce (Picea engelmannii × glauca) utilizing a genotyped population of 769 trees belonging to 25 open-pollinated families. A series of repeated tree height measurements through ages 3-40 years permitted the testing of GS methods temporally. The genotyping-by-sequencing (GBS) platform was used for single nucleotide polymorphism (SNP) discovery in conjunction with three unordered imputation methods applied to a data set with 60% missing information. Further, three diverse GS models were evaluated based on predictive accuracy (PA), and their marker effects. Moderate levels of PA (0.31-0.55) were observed and were of sufficient capacity to deliver improved selection response over TS. Additionally, PA varied substantially through time accordingly with spatial competition among trees. As expected, temporal PA was well correlated with age-age genetic correlation (r=0.99), and decreased substantially with increasing difference in age between the training and validation populations (0.04-0.47). Moreover, our imputation comparisons indicate that k-nearest neighbor and singular value decomposition yielded a greater number of SNPs and gave higher predictive accuracies than imputing with the mean. Furthermore, the ridge regression (rrBLUP) and BayesCπ (BCπ) models both yielded equal, and better PA than the generalized ridge regression heteroscedastic effect model for the traits evaluated.
Research Interests:
Background Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and... more
Background
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost.

Results
Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about trait architecture. Finally, using PCA, multi-trait GS prediction models were developed. The EM and kNN-Fam imputation methods were superior for 30 and 60% missing data, respectively. The RR-BLUP GS prediction model produced better accuracies than the GRR indicating that the genetic architecture for these traits is complex. GS prediction accuracies for multi-site were high and better than those of single-sites while multi-site predictability produced the lowest accuracies reflecting type-b genetic correlations and deemed unreliable. The incorporation of genomic information in quantitative genetics analyses produced more realistic heritability estimates as half-sib pedigree tended to inflate the additive genetic variance and subsequently both heritability and gain estimates. Principle component scores as representatives of multi-trait GS prediction models produced surprising results where negatively correlated traits could be concurrently selected for using PCA2 and PCA3.

Conclusions
The application of GS to open-pollinated family testing, the simplest form of tree improvement evaluation methods, was proven to be effective. Prediction accuracies obtained for all traits greatly support the integration of GS in tree breeding. While the within-site GS prediction accuracies were high, the results clearly indicate that single-site GS models ability to predict other sites are unreliable supporting the utilization of multi-site approach. Principle component scores provided an opportunity for the concurrent selection of traits with different phenotypic optima.
Modulation spectroscopy can be an adequate tool to separate a weak system response from a huge background absorption, provided the process under consideration enables a periodic external stimulation. Phase sensitive detection (PSD) is... more
Modulation spectroscopy can be an adequate tool to separate a weak system response from a huge background absorption, provided the process under consideration enables a periodic external stimulation. Phase sensitive detection (PSD) is then used to demodulate the periodic system response. We introduce a new method of PSD that can be used in modulated excitation (ME)-FTIR spectroscopy without the need of a lock-in amplifier or spectrometer build-in hardware. An advantage of this method is that only standard procedures included in all FTIR instruments, such as the measurement of time-resolved spectra, are required. The principal mathematical formalism of the used PSD is described.As an example we show phase-resolved spectra of the amid I′ region obtained from temperature modulated FTIR spectroscopic experiments of RNase A. The advantage of the ME compared to a relaxation process is shown by the power of separation of overlapping absorption bands.
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most... more
Genetic mapping of quantitative traits requires genotypic data for large numbers of markers in many individuals. For such studies, the use of large single nucleotide polymorphism (SNP) genotyping arrays still offers the most cost-effective solution. Herein we report on the design and performance of a SNP genotyping array for Populus trichocarpa (black cottonwood). This genotyping array was designed with SNPs pre-ascertained in 34 wild accessions covering most of the species latitudinal range. We adopted a candidate gene approach to the array design that resulted in the selection of 34 131 SNPs, the majority of which are located in, or within 2 kb of, 3543 candidate genes. A subset of the SNPs on the array (539) was selected based on patterns of variation among the SNP discovery accessions. We show that more than 95% of the loci produce high quality genotypes and that the genotyping error rate for these is likely below 2%. We demonstrate that even among small numbers of samples (n = 10) from local populations over 84% of loci are polymorphic. We also tested the applicability of the array to other species in the genus and found that the number of polymorphic loci decreases rapidly with genetic distance, with the largest numbers detected in other species in section Tacamahaca. Finally, we provide evidence for the utility of the array to address evolutionary questions such as intraspecific studies of genetic differentiation, species assignment and the detection of natural hybrids.
Water stress affecting long-lived trees is an important challenge in forestry. Due to global climate change, forest trees will be threatened by extreme conditions like flooding or drought. It is necessary to understand differences in... more
Water stress affecting long-lived trees is an important challenge in forestry. Due to global climate change, forest trees will be threatened by extreme conditions like flooding or drought. It is necessary to understand differences in stress tolerance within certain species and to investigate putative relations on genomic level. In this study, osmotic stress induced genes of Quercus ssp. were positioned on two genetic linkage maps of oak. An intra-specific cross 3P*A4 of Quercus robur consisting of 88 offspring and an inter-specific cross 11P*QS29 of Q. robur and Q. petraea comprising 72 full-sibs were analyzed for the inheritance of 14 loci represented by 34 individual single nucleotide polymorphisms. Seven genes in the intra-cross, as well as other six genes in the inter-cross could be mapped and one gene could not be localised due to the severe distortion of the segregation. The collection of expressed sequences involved ribosomal proteins, members of the oxylase/oxygenase gene family, betaine aldehyde dehydrogenase, Dc3 promoter-binding factor, a putative member of the nodulin family, glutathione-S-transferase and proteins with unknown functions. In the inter-cross, two linked markers exhibited 89% deficiency of heterozygosity. Thirteen genes were positioned on ten different oak chromosomes and can serve as orthologous markers in comparative mapping studies within Fagaceae.
Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently... more
Establishing links between phenotypes and molecular variants is of central importance to accelerate genetic improvement of economically important plant species. Our work represents the first genome-wide association study to the inherently complex and currently poorly understood genetic architecture of industrially relevant wood traits.Here, we employed an Illumina Infinium 34K single nucleotide polymorphism (SNP) genotyping array that generated 29 233 high-quality SNPs in c. 3500 broad-based candidate genes within a population of 334 unrelated Populus trichocarpa individuals to establish genome-wide associations.The analysis revealed 141 significant SNPs (α ≤ 0.05) associated with 16 wood chemistry/ultrastructure traits, individually explaining 3–7% of the phenotypic variance. A large set of associations (41% of all hits) occurred in candidate genes preselected for their suggested a priori involvement with secondary growth. For example, an allelic variant in the FRA8 ortholog explained 21% of the total genetic variance in fiber length, when the trait's heritability estimate was considered. The remaining associations identified SNPs in genes not previously implicated in wood or secondary wall formation.Our findings provide unique insights into wood trait architecture and support efforts for population improvement based on desirable allelic variants.
High-throughput approaches have been widely applied to elucidate the genetic underpinnings of industrially important wood properties. Wood traits are polygenic in nature, but gene hierarchies can be assessed to identify the most important... more
High-throughput approaches have been widely applied to elucidate the genetic underpinnings of industrially important wood properties. Wood traits are polygenic in nature, but gene hierarchies can be assessed to identify the most important gene variants controlling specific traits within complex networks defining the overall wood phenotype. We tested a large set of genetic, genomic, and phenotypic information in an integrative approach to predict wood properties in Populus trichocarpa.Nine-yr-old natural P. trichocarpa trees including accessions with high contrasts in six traits related to wood chemistry and ultrastructure were profiled for gene expression on 49k Nimblegen (Roche NimbleGen Inc., Madison, WI, USA) array elements and for 28 831 polymorphic single nucleotide polymorphisms (SNPs). Pre-selected transcripts and SNPs with high statistical dependence on phenotypic traits were used in Bayesian network learning procedures with a stepwise K2 algorithm to infer phenotype-centric networks.Transcripts were pre-selected at a much lower logarithm of Bayes factor (logBF) threshold than SNPs and were not accommodated in the networks. Using persistent variables, we constructed cross-validated networks for variability in wood attributes, which contained four to six variables with 94–100% predictive accuracy.Accommodated gene variants revealed the hierarchy in the genetic architecture that underpins substantial phenotypic variability, and represent new tools to support the maximization of response to selection.
In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait... more
In order to uncover the genetic basis of phenotypic trait variation, we used 448 unrelated wild accessions of black cottonwood (Populus trichocarpa) from much of its range in western North America. Extensive data from large-scale trait phenotyping (with spatial and temporal replications within a common garden) and genotyping (with a 34 K Populus single nucleotide polymorphism (SNP) array) of all accessions were used for gene discovery in a genome-wide association study (GWAS).We performed GWAS with 40 biomass, ecophysiology and phenology traits and 29 355 filtered SNPs representing 3518 genes. The association analyses were carried out using a Unified Mixed Model accounting for population structure effects among accessions.We uncovered 410 significant SNPs using a Bonferroni-corrected threshold (P < 1.7 × 10−6). Markers were found across 19 chromosomes, explained 1–13% of trait variation, and implicated 275 unique genes in trait associations. Phenology had the largest number of associated genes (240 genes), followed by biomass (53 genes) and ecophysiology traits (25 genes).The GWAS results propose numerous loci for further investigation. Many traits had significant associations with multiple genes, underscoring their genetic complexity. Genes were also identified with multiple trait associations within and/or across trait categories. In some cases, traits were genetically correlated while in others they were not.
Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation... more
Populus species along with species from the sister genus Salix will provide valuable feedstock resources for advanced second-generation biofuels. Their inherent fast growth characteristics can particularly be exploited for short rotation management, a time and energy saving cultivation alternative for lignocellulosic feedstock supply. Salicaceae possess inherent cell wall characteristics with favorable cellulose to lignin ratios for utilization as bioethanol crop. We review economically important traits relevant for intensively managed biofuel crop plantations, genomic and phenotypic resources available for Populus, breeding strategies for forest trees dedicated to bioenergy provision, and bioprocesses and downstream applications related to opportunities using Salicaceae as a renewable resource. Challenges need to be resolved for every single step of the conversion process chain, i.e., starting from tree domestication for improved performance as a bioenergy crop, bioconversion process, policy development for land use changes associated with advanced biofuels, and harvest and supply logistics associated with industrial-scale biorefinery plants using Populus as feedstock. Significant hurdles towards cost and energy efficiency, environmental friendliness, and yield maximization with regards to biomass pretreatment, saccharification, and fermentation of celluloses and the sustainability of biorefineries as a whole still need to be overcome.
The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood... more
The increasing ecological and economical importance of Populus species and hybrids has stimulated research into the investigation of the natural variation of the species and the estimation of the extent of genetic control over its wood quality traits for traditional forestry activities as well as the emerging bioenergy sector. A realized kinship matrix based on informative, high-density, biallelic single nucleotide polymorphism (SNP) genetic markers was constructed to estimate trait variance components, heritabilities, and genetic and phenotypic correlations.Seventeen traits related to wood chemistry and ultrastructure were examined in 334 9-yr-old Populus trichocarpa grown in a common-garden plot representing populations spanning the latitudinal range 44° to 58.6°. In these individuals, 9342 SNPs that conformed to Hardy–Weinberg expectations were employed to assess the genomic pair-wise kinship to estimate narrow-sense heritabilities and genetic correlations among traits.The range-wide phenotypic variation in all traits was substantial and several trait heritabilities were > 0.6. In total, 61 significant genetic and phenotypic correlations and a network of highly interrelated traits were identified.The high trait variation, the evidence for moderate to high heritabilities and the identification of advantageous trait combinations of industrially important characteristics should aid in providing the foundation for the enhancement of poplar tree breeding strategies for modern industrial use.
Research Interests:
Research Interests:
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic... more
In plants, relationships between resistance to herbivorous insect pests and growth are typically controlled by complex interactions between genetically correlated traits. These relationships often result in tradeoffs in phenotypic expression. In this study we used genetical genomics to elucidate genetic relationships between tree growth and resistance to white pine terminal weevil (Pissodes strobi Peck.) in a pedigree population of interior spruce (Picea glauca, P. engelmannii and their hybrids) that was growing at Vernon, B.C. and segregating for weevil resistance. Genetical genomics uses genetic perturbations caused by allelic segregation in pedigrees to co-locate quantitative trait loci (QTLs) for gene expression and quantitative traits. Bark tissue of apical leaders from 188 trees was assayed for gene expression using a 21.8K spruce EST-spotted microarray; the same individuals were genotyped for 384 SNP markers for the genetic map. Many of the expression QTLs (eQTL) co-localized...
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late... more
Genomic selection (GS) in forestry can substantially reduce the length of breeding cycle and increase gain per unit time through early selection and greater selection intensity, particularly for traits of low heritability and late expression. Affordable next-generation sequencing technologies made it possible to genotype large numbers of trees at a reasonable cost. Genotyping-by-sequencing was used to genotype 1,126 Interior spruce trees representing 25 open-pollinated families planted over three sites in British Columbia, Canada. Four imputation algorithms were compared (mean value (MI), singular value decomposition (SVD), expectation maximization (EM), and a newly derived, family-based k-nearest neighbor (kNN-Fam)). Trees were phenotyped for several yield and wood attributes. Single- and multi-site GS prediction models were developed using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) and the Generalized Ridge Regression (GRR) to test different assumption about tra...