[go: up one dir, main page]

WO2024237152A1 - 熱伝導性シート - Google Patents

熱伝導性シート Download PDF

Info

Publication number
WO2024237152A1
WO2024237152A1 PCT/JP2024/017187 JP2024017187W WO2024237152A1 WO 2024237152 A1 WO2024237152 A1 WO 2024237152A1 JP 2024017187 W JP2024017187 W JP 2024017187W WO 2024237152 A1 WO2024237152 A1 WO 2024237152A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive sheet
less
component
residual stress
Prior art date
Application number
PCT/JP2024/017187
Other languages
English (en)
French (fr)
Inventor
崇則 伊藤
晃洋 遠藤
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2024237152A1 publication Critical patent/WO2024237152A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular

Definitions

  • the present invention relates to a thermally conductive sheet.
  • Patent Document 1 proposes a sheet that can conform to electronic components with low load by specifying the average particle size of the thermally conductive filler.
  • Patent Document 2 reports an example of improving flexibility and reducing compressive load by providing irregularities on the surface of a thermally conductive sheet.
  • Patent Document 3 proposes a sheet with excellent flexibility that exhibits a compressive residual stress of 0.1 MPa or less by specifying the viscosity of the polymer component.
  • thermally conductive sheets used in automotive environments need to have a small difference between maximum stress and residual stress, and need to be both easy to crush and have appropriate resilience due to rubber elasticity, and further improvement was needed in this regard.
  • the present invention aims to provide a thermally conductive sheet that has excellent thermal conductivity, a small difference between maximum stress and residual stress, and a good balance of compressibility and recovery properties, making it suitable for use as a heat dissipation material for a wide range of in-vehicle electrical equipment.
  • the present invention has been made to solve the above problems, and provides the following thermally conductive sheet.
  • the present invention provides: (a) Organopolysiloxane having 2 to 10 alkenyl groups only on the molecular side chains: 100 parts by mass; (b) Organohydrogenpolysiloxane having hydrosilyl groups at both ends: an amount such that the number of moles of hydrosilyl groups is in the range of 0.75 to 1.3 of the number of moles of alkenyl groups derived from component (a); (c) Thermally conductive filler: 1,000 to 4,200 parts by mass; (d) Platinum-based curing catalyst: 0.1 to 1,000 ppm by weight of platinum group element relative to component (a); (e) a thermally conductive sheet comprising a cured product of a silicone composition containing 15 to 200 parts by mass of a dimethylpolysiloxane having one end blocked with a trialkoxysilyl group, the thermally conductive sheet having a hardness of 7 or less as measured with an Asker C hardness scale; The thermal conductive sheet is characterized in that, when the thermal is
  • Such a thermally conductive sheet has excellent thermal conductivity, a small difference between maximum stress and residual stress, and a good balance between compressibility and recovery.
  • the thermally conductive filler (c) is preferably one or more selected from aluminum oxide, aluminum hydroxide, magnesium oxide, and aluminum nitride.
  • Thermal conductive sheets using such thermally conductive fillers have good thermal conductivity and filling properties.
  • thermally conductive filler (c) above may be crushed, rounded, or spherical.
  • the average particle size of the thermally conductive filler (c) is 0.5 to 100 ⁇ m.
  • Particles with an average particle size of 0.5 to 10 ⁇ m or crushed or rounded shapes can increase thermal conductivity by forming efficient heat conduction paths.
  • the thermal conductivity is 2.0 W/m-K or higher.
  • the thermally conductive sheet can be used for heating elements that generate a large amount of heat.
  • the present invention by appropriately crosslinking an organopolysiloxane having alkenyl groups only on the molecular side chains with an organohydrogenpolysiloxane having hydrosilyl groups at both ends, it is possible to obtain a silicone polymer with an appropriate crosslink density and which maintains good compressibility and residual stress. Furthermore, by blending a thermally conductive filler that imparts thermal conductivity with a surface treatment agent having a trialkoxy group at one end, the interaction between the filler surface and the polymer is strengthened, thereby improving the residual stress. Such sheets have an excellent balance between maximum stress and residual stress, making them suitable for use in a variety of electronic components for use in automobiles.
  • the present invention will be described in detail below, but the present invention is not limited thereto.
  • the present inventors have searched for a silicone composition that has a small difference between the maximum stress and the residual stress required for a thermally conductive sheet, and that can combine ease of crushing with rebound properties due to appropriate rubber elasticity, and have found that the above-mentioned object can be achieved by a thermally conductive sheet characterized in that the thermally conductive sheet has a hardness of 7 or less as measured by an Asker C hardness tester, a maximum stress of 0.7 MPa or less when the thermally conductive sheet with an initial thickness of 1.5 mm is compressed 50% at a compression speed of 3 mm/min, a residual stress of 0.1 MPa or more, and a ratio of the maximum stress to the residual stress of 7/1 or less.
  • a thermally conductive sheet characterized in that the thermally conductive sheet has a hardness of 7 or less as measured by an Asker C hardness tester, a maximum stress of 0.7 MPa or less when the thermally conductive
  • (a) Organopolysiloxanes with 2 to 10 alkenyl groups only in the side chains of the molecular chain
  • the alkenyl-containing organopolysiloxanes of component (a) contain 2 to 10 alkenyl groups only in the side chains of each molecule, and are generally linear in that the main chain is basically composed of repeating diorganosiloxane units and both ends of the molecular chain are blocked with triorganosiloxy groups.
  • the molecular structure may include a branched structure or may be cyclic, but linear diorganopolysiloxanes are preferred in terms of physical properties such as the mechanical strength of the cured product.
  • component (a) is the structure shown in the following general formula (1):
  • R 1 is independently a group selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 10 carbon atoms;
  • X is an alkenyl group having 2 to 6 carbon atoms;
  • n is 0 or an integer of 1 or more;
  • m is an integer of 2 or more.
  • the bonds of the siloxane units enclosed in parentheses with m and n may be block or random.
  • examples of R 1 include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, and hexyl, cycloalkyl groups such as cyclopentyl, cyclohexyl, and cycloheptyl, aryl groups such as phenyl, tolyl, and xylyl, and aralkyl groups such as benzyl and 2-phenylethyl.
  • alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, and hexyl
  • cycloalkyl groups such as cyclopentyl, cyclohexyl, and cycloheptyl
  • aryl groups such as pheny
  • Representative groups have 1 to 7 carbon atoms, and particularly representative groups have 1 to 5 carbon atoms, and are preferably alkyl groups such as methyl, ethyl, and propyl, and phenyl.
  • R 1 may have some of its hydrogen atoms substituted with halogen atoms such as fluorine.
  • examples of the alkenyl group for X include those having 2 to 6 carbon atoms, such as a vinyl group, an allyl group, a propenyl group, an isopropenyl group, a butenyl group, and a hexenyl group.
  • a vinyl group and an allyl group are preferred, and a vinyl group is particularly preferred.
  • n is 0 or an integer of 1 or more
  • m is an integer of 2 to 10.
  • n and m are preferably integers that satisfy 10 ⁇ n+m ⁇ 5,000, more preferably 50 ⁇ n+m ⁇ 1,000, and even more preferably 100 ⁇ n+m ⁇ 500 and 0.001 ⁇ m/(n+m) ⁇ 0.05.
  • the bonds of the siloxane units enclosed in parentheses with m and n above may be block or random.
  • Organohydrogenpolysiloxane The organohydrogenpolysiloxane of component (b) must have at least two, and preferably from two to four, hydrogen atoms directly bonded to silicon atoms (hydrosilyl groups) per molecule, with hydrosilyl groups at both ends. If the number of hydrosilyl groups is less than two, there is a risk that the composition will not cure.
  • An example of the organohydrogenpolysiloxane is represented by the following general formula (2). (In the general formula (2), R1 is the same as above. o is an integer of 0 or more and less than 200, and p is an integer of 0 or more and less than 200. The bonds of the siloxane units enclosed in parentheses with o and p may be block or random.)
  • R 1 is, as in the above general formula (1), a group independently selected from an alkyl group having 1 to 10 carbon atoms, an aryl group having 6 to 10 carbon atoms, and an aralkyl group having 7 to 10 carbon atoms. Specific examples and preferred aspects thereof are the same as those listed in the above general formula (1).
  • o represents an integer of 0 or more and less than 200
  • p represents an integer of 0 or more and less than 200.
  • the amount of component (b) added is such that the hydrosilyl groups derived from component (b) are 0.75 to 1.3 moles per mole of alkenyl groups derived from component (a), preferably 0.78 to 1.25 moles, and more preferably 0.9 to 1.2 moles.
  • component (b) in this range, the difference between maximum stress and residual stress is reduced, resulting in a sheet with well-balanced compression properties.
  • thermally conductive filler which is component (c) can be any of the substances generally considered to be thermally conductive fillers, such as non-magnetic metals such as copper and aluminum, metal oxides such as aluminum oxide, silicon dioxide, magnesium oxide, beryllium oxide, titanium oxide and zirconium oxide, metal nitrides such as aluminum nitride, silicon nitride and boron nitride, metal hydroxides such as aluminum hydroxide and magnesium hydroxide, artificial diamond and silicon carbide.
  • non-magnetic metals such as copper and aluminum
  • metal oxides such as aluminum oxide, silicon dioxide, magnesium oxide, beryllium oxide, titanium oxide and zirconium oxide
  • metal nitrides such as aluminum nitride, silicon nitride and boron nitride
  • metal hydroxides such as aluminum hydroxide and magnesium hydroxide, artificial diamond and silicon carbide.
  • thermally conductive filler preferably has an average particle size of 0.5 to 100 ⁇ m, more preferably 1 to 80 ⁇ m. These fillers may be used alone or in combination. It is also possible to use two or more types of particles with different average particle sizes.
  • the particle size of the thermally conductive filler is measured using a laser diffraction/scattering type particle size distribution measuring device, for example, Microtrac MT3300EX (Nikkiso), and the average particle size is a volume-based value (when the volume distribution of particles is measured and the particles are divided into two at this average particle size, this refers to the diameter at which the larger and smaller sides are equal in amount).
  • a laser diffraction/scattering type particle size distribution measuring device for example, Microtrac MT3300EX (Nikkiso)
  • the average particle size is a volume-based value (when the volume distribution of particles is measured and the particles are divided into two at this average particle size, this refers to the diameter at which the larger and smaller sides are equal in amount).
  • the shape of the thermally conductive filler is preferably crushed, rounded, or spherical, and a combination of different shapes can be used.
  • those with an average particle size of 10 to 100 ⁇ m are preferably spherical from the viewpoint of packing properties, and those with an average particle size of 0.5 to 10 ⁇ m are preferably crushed or rounded because they can get into the gaps between larger particle size fillers and efficiently form a heat conduction path.
  • the term “spherical” refers to a thermally conductive filler with an aspect ratio of 1.5 or less
  • the term “crushed or rounded” refers to a thermally conductive filler with an aspect ratio of more than 1.5.
  • the term “fractured” includes angular portions, and the term “rounded” refers to a rounded shape.
  • the amount of component (c) must be 1,000 to 4,200 parts by mass, and preferably 1,500 to 3,800 parts by mass, per 100 parts by mass of component (a). If the amount is less than 1,000 parts by mass, the resulting composition will have poor thermal conductivity and the thermally conductive sheet will have poor storage stability. On the other hand, if it exceeds 4,200 parts by mass, the sheet will become hard and brittle, the maximum stress will increase, and high compression will be difficult.
  • platinum-based curing catalyst of component (d) is a catalyst for promoting the addition reaction between the alkenyl group derived from component (a) and the Si-H group derived from component (b), and examples of platinum-based catalysts well known as catalysts used in hydrosilylation reactions include platinum group metals such as platinum (including platinum black), rhodium, and palladium, H 2 PtCl 4.nH 2 O, H 2 PtCl 6.nH 2 O, NaHPtCl 6.nH 2 O, KHPtCl 6.nH 2 O, Na 2 PtCl 6.nH 2 O, K 2 PtCl 4.nH 2 O, PtCl 4.nH 2 O , PtCl 2 , and Na 2 HPtCl 4.nH 2 O.
  • platinum group metals such as platinum (including platinum black), rhodium, and palladium
  • platinum group metals such as platinum (including platinum black), rhodium, and palladium
  • platinum group metals such as platinum (including platinum black
  • n is an integer of 0 to 6, preferably 0 or 6
  • chloroplatinic acid and chloroplatinate salts include alcohol-modified chloroplatinic acid (see U.S. Pat. No. 3,220,972), complexes of chloroplatinic acid and olefins (see U.S. Pat. Nos.
  • platinum black platinum group metals such as palladium supported on a support such as alumina, silica or carbon, rhodium-olefin complexes, chlorotris(triphenylphosphine)rhodium (Wilkinson's catalyst), complexes of platinum chloride, chloroplatinic acid or chloroplatinate salts with vinyl group-containing siloxanes, particularly vinyl group-containing cyclic siloxanes.
  • the amount of component (d) used is 0.1 to 1,000 ppm, preferably 1 to 500 ppm, calculated as the volume of the platinum group metal element relative to component (a).
  • dimethylpolysiloxane having one end blocked with a trialkoxysilyl group is used as a surface treatment agent. Specifically, it can be represented by the following general formula (3).
  • R2 is independently an alkyl group having 1 to 6 carbon atoms, preferably a methyl group or an ethyl group.
  • q is an integer from 5 to 100, preferably an integer from 10 to 60.
  • the amount of component (e) added is 15 to 200 parts by mass, preferably 30 to 150 parts by mass, per 100 parts by mass of component (a). If the amount of component (e) is less than 15 parts by mass, the wettability of the thermally conductive filler (c) and the polymer is poor, and there are problems with the moldability of the sheet and the maximum stress during compression. On the other hand, if it exceeds 200 parts by mass, oil separation is easily induced, the storage stability of the material is poor, and the residual stress during compression is reduced.
  • additives for improving functions such as a reaction control agent for adjusting the curing rate, a pigment or dye for coloring, a flame retardant, an internal release agent for facilitating release from a mold or separator film, and a plasticizer for adjusting the viscosity of the composition or the hardness of a molded product.
  • reaction control agents and plasticizers are examples of reaction control agents and plasticizers, but the present invention is not limited to these.
  • the composition of the present invention further comprises (f) a plasticizer represented by the following general formula (4):
  • R 6 are each independently a monovalent hydrocarbon group having 1 to 8 carbon atoms and containing no aliphatic unsaturated bonds, and d is an integer of 5 to 2,000.
  • the organopolysiloxane may include an organopolysiloxane having a kinematic viscosity of 10 to 100,000 mm 2 /s at 25° C. as measured with a Cannon-Fenske viscometer, which is represented by the following formula:
  • the component is not particularly limited as long as it is appropriately used to impart properties such as viscosity adjusting properties to the thermally conductive composition. One type may be used alone, or two or more types may be used in combination.
  • the R 6s are each independently a monovalent hydrocarbon group having 1 to 8 carbon atoms and containing no aliphatic unsaturated bonds, specifically a group selected from an alkyl group having 1 to 8 carbon atoms, an aryl group having 6 to 8 carbon atoms, and an aralkyl group having 7 to 8 carbon atoms.
  • Examples include alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, tert-butyl, pentyl, neopentyl, hexyl, heptyl, and octyl, cycloalkyl groups such as cyclopentyl, cyclohexyl, and cycloheptyl, aryl groups such as phenyl, tolyl, and xylyl, and aralkyl groups such as benzyl, phenylethyl, phenylpropyl, and methylbenzyl. Methyl, ethyl, propyl, and phenyl groups are preferred, and methyl and phenyl groups are particularly preferred.
  • the kinematic viscosity of the organopolysiloxane at 25°C measured with a Canon-Fenske viscometer is preferably 10 to 100,000 mm2 /s, and particularly preferably 100 to 10,000 mm2 /s. If the kinematic viscosity is 10 mm2 /s or more, the cured product of the resulting composition will not exhibit oil bleeding. If the kinematic viscosity is 100,000 mm2 /s or less, the resulting thermally conductive composition will have good flexibility.
  • d may be any value that allows the kinematic viscosity of the organopolysiloxane to fall within the above-mentioned range, and is preferably an integer from 5 to 2,000, and more preferably an integer from 10 to 1,000.
  • the amount of component (f) in the composition of the present invention is not particularly limited, and may be any amount that provides the desired effect as a plasticizer. Typically, it is preferably 1 to 20 parts by mass, and more preferably 2 to 10 parts by mass, per 100 parts by mass of component (a). When the amount of component (f) is within the above range, the thermally conductive composition before curing tends to maintain good fluidity and workability, and it also becomes easier to fill the composition with the thermally conductive filler of component (c).
  • reaction inhibitor (g) any of the known addition reaction inhibitors used in normal addition reaction curing silicone compositions can be used. Examples include acetylene compounds such as 1-ethynyl-1-hexanol and 3-butyn-1-ol, various nitrogen compounds, organic phosphorus compounds, oxime compounds, organic chloro compounds, etc. The amount used is preferably about 0.01 to 1 part by mass.
  • the viscosity of the thermally conductive silicone composition of the present invention at 25°C is preferably 500 Pa ⁇ s or less, more preferably 350 Pa ⁇ s or less. If it is within this range, the thermally conductive silicone composition can be discharged by a pump, so that the thermally conductive sheet can be molded with good yield. In particular, if the viscosity is 300 Pa ⁇ s or less, it is preferable because the moldability is better.
  • the lower limit of the viscosity is not particularly limited, but is usually about 10 Pa ⁇ s. The viscosity is measured using a modular rheometer, MARS40, manufactured by HAAKE Corporation.
  • the thermally conductive silicone composition of the present invention can be applied to a substrate such as a resin film and cured to obtain a thermally conductive sheet.
  • the resin film can be selected from those that can withstand heat treatment after lamination and have a heat distortion temperature of 100° C. or higher, such as PET, PBT, and polycarbonate films.
  • a post-metering type blade coater, gravure coater, kiss roll coater, spray coater, etc. can be used as a coating device for applying the organohydrogenpolysiloxane oil to the resin film in a uniform thickness.
  • Curing conditions can be the same as those for known addition reaction curing silicone rubber compositions, and the composition may be cured at room temperature, but may also be heated if necessary.
  • the curing conditions are preferably 100°C to 150°C for 1 to 40 minutes, and more preferably 110°C to 130°C for 10 to 20 minutes.
  • the hardness of the thermally conductive sheet in the present invention is preferably 7 or less, more preferably 5 or less. If the hardness exceeds 7, it is difficult to obtain a desired good maximum stress.
  • the lower limit of the hardness is not particularly specified, but may be 1 or more.
  • the thermal conductivity of the molded article in the present invention is desirably 2.0 W/m-K or more, more preferably 2.5 W/m-K or more, measured at 25°C by the hot disk method. If the thermal conductivity is 2.0 W/m-K or more, it can be applied to a heating body with a large amount of heat.
  • the upper limit of the thermal conductivity is preferably 5.0 W/m-K, although the higher the better.
  • the compressive stress of the thermally conductive sheet in the present invention was measured using an autograph manufactured by Shimadzu Corporation. This device is equipped with a sample stage and a compression load cell, and a thermally conductive sheet is sandwiched between aluminum plates of a specified size, placed on the stage, and compressed to a specified thickness by the load cell. The maximum stress at 50% compression and the residual stress after stress relaxation by holding the sheet in compression for one minute were measured for an initial thickness of 1.5 mm. Detailed measurement conditions are described below.
  • the thermally conductive sheet having an initial thickness of 1.5 mm when compressed by 50% at a compression speed of 3 mm/min, the maximum stress is 0.7 MPa or less, but the lower limit can be 0.1 MPa.
  • the residual stress under the above compression conditions is 0.1 MPa or more, but the upper limit can be 0.7 MPa.
  • the ratio of the maximum stress to the residual stress is 7/1 or less, but the lower limit can be 1.
  • Such a thermal conductive sheet has a small difference between the maximum stress and the residual stress, and has a good balance between compressibility and recovery, and can therefore be used in various electronic parts for vehicles and the like.
  • Component (b) organohydrogenpolysiloxane
  • (c) Component A thermally conductive filler having an average particle size as follows: (c-1) Average particle size: 1 ⁇ m: aluminum hydroxide (c-2) Average particle size: 8 ⁇ m: aluminum hydroxide (c-3) Average particle size: 50 ⁇ m: aluminum hydroxide (c-4) Average particle size: 1 ⁇ m: alumina (c-5) Average particle size: 10 ⁇ m: alumina (c-6) Average particle size: 45 ⁇ m: alumina (c-7) Average particle size: 75 ⁇ m: alumina The above average particle sizes were measured using a Microtrac MT3300EX (Nikkiso).
  • Examples 1 to 6 and Comparative Examples 1 to 6 The components (a), (c), (e) and (f) were added in the amounts shown in Tables 1 and 2, and kneaded for 60 minutes in a planetary mixer. To this were added the components (d) and (g) in the amounts shown in Tables 1 and 2, and an effective amount of an internal release agent for promoting release from the separator was further added, followed by kneading for a further 30 minutes. The component (b) was further added in a prescribed amount shown in Tables 1 and 2, and the mixture was kneaded for 30 minutes to obtain a composition.
  • Thermal conductivity The compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were cured into sheets of 6 mm thickness, and two of the sheets were used to measure the thermal conductivity of the sheets using a thermal conductivity meter (TPA-501, product name of Kyoto Electronics Manufacturing Co., Ltd.). The results are shown in Tables 1 and 2.
  • Compressive stress The compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were cured into sheets of 1.5 mm thickness, and the maximum stress and residual stress at 50% compression were measured under the conditions described above using the Shimadzu autograph. The results are shown in Tables 1 and 2.
  • thermally conductive sheets were molded within the ranges described in the present invention, and exhibited good thermal conductivity.
  • the ratio of maximum stress to residual stress at 50% compression was 7/1 or less, providing a heat dissipation member suitable for in-vehicle electronic components, etc.
  • the ratio (H/Vi) of the number of moles of hydrosilyl groups derived from component (b) to the number of moles of vinyl groups derived from component (a) exceeded 1.3, so the maximum stress of the sheet increased and high compression was difficult.
  • the ratio H/Vi was below 0.75, so the residual stress of the sheet was below 0.1 MPa and the sheet had difficulty in restoring.
  • Comparative Example 3 the amount of the thermally conductive filler exceeded 4200 parts by mass, so the maximum stress of the sheet exceeded 0.7 MPa, and the sheet had poor compressibility.
  • Comparative Example 4 the amount of the thermally conductive filler was less than 1000 parts by mass, so the sheet had poor thermal conductivity and was difficult to apply to high heat generating bodies.
  • Comparative Example 5 the amount of the surface treatment agent was less than 15 parts by mass, so the maximum stress of the sheet was high and it was difficult to achieve high compression.
  • Comparative Example 6 the amount of the surface treatment agent was more than 200 parts by mass, so the residual stress of the sheet was low and there was a problem with the restoring ability.
  • the present specification includes the following aspects. [1]: (a) Organopolysiloxane having 2 to 10 alkenyl groups only on the molecular side chains: 100 parts by mass; (b) Organohydrogenpolysiloxane having hydrosilyl groups at both ends: an amount such that the number of moles of hydrosilyl groups is in the range of 0.75 to 1.3 of the number of moles of alkenyl groups derived from component (a); (c) Thermally conductive filler: 1,000 to 4,200 parts by mass; (d) Platinum-based curing catalyst: 0.1 to 1,000 ppm by weight of platinum group elements relative to component (a); (e) A thermally conductive sheet comprising a cured product of a silicone composition containing 15 to 200 parts by mass of a dimethylpolysiloxane having one end blocked with a trialkoxysilyl group, the thermally conductive sheet having a hardness of 7 or less as measured with an Asker C hardness tester; A thermally conductive sheet characterized in that
  • the present invention is not limited to the above-described embodiments.
  • the above-described embodiments are merely examples, and anything that has substantially the same configuration as the technical idea described in the claims of the present invention and exhibits similar effects is included within the technical scope of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、(a)分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン、(b)両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサン、(c)熱伝導性充填材、(d)白金系硬化触媒、及び(e)片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンを含むシリコーン組成物の硬化物からなり、アスカーC硬度計で測定した硬さが7以下であり、初期厚さ1.5mmの前記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であり、残留応力が0.1MPa以上であり、かつ、前記最大応力と前記残留応力との比率が7/1以下のものである熱伝導性シートである。これにより、各種車載電装品に対して幅広く適用できる放熱部材として、熱伝導性に優れ、最大応力と残留応力の差が小さく、圧縮性、復元性のバランスが良好な熱伝導性シートが提供される。

Description

熱伝導性シート
 本発明は熱伝導性シートに関する。
 電子部材の小型化、高集積化により、熱伝導性シートは優れた熱伝導性に加えて、組み付け加工時の最大応力が低く、発熱部材にできるだけ負荷を与えない軟らかいシートが求められている。特許文献1には、熱伝導性充填材の平均粒径を規定することにより、低荷重で電子部品に追従できるシートが提案されている。特許文献2には、熱伝導性シートの表面に凹凸を設ける事で、柔軟性を向上させ、圧縮荷重を低減する例が報告されている。特許文献3には、ポリマー成分の粘度を規定することで、圧縮残留応力が0.1MPa以下を示すような柔軟性に優れるシートが提案されている。
 しかし、車載向けの各種電子部品においては、組み付け加工時の最大応力は低い方が好ましいが、実装後、車の振動により生じる熱伝導性シートと電子部品とのクリアランスの変動に追従できるような復元性(一定以上の残留応力)を併せ持つ事が要求されている。
 すなわち、車載環境で使用される熱伝導性シートにおいては、最大応力と残留応力の差が小さく、潰しやすさと適度なゴム弾性による反発を両立させる事が必要であり、この点において、さらなる改善が必要であった。
特開2003-253136号公報 特開2001-217360号公報 特許第6705067号公報
 本発明は、各種車載電装品に対して幅広く適用できるよう放熱部材として、熱伝導性に優れ、最大応力と残留応力の差が小さく、圧縮性、復元性のバランスが良好な熱伝導性シートを提供することを目的とする。
 本発明は、上記課題を解決するためになされたもので、下記熱伝導性シートを提供する。
 即ち、本発明は、
 (a)分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン:100質量部
(b)両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が(a)成分由来のアルケニル基のモル数の0.75~1.3の範囲となる量
(c)熱伝導性充填材:1,000~4,200質量部
(d)白金系硬化触媒:(a)成分に対して白金族元素重量換算で0.1~1,000ppm
(e)片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン:15~200質量部
を含むシリコーン組成物の硬化物からなる熱伝導性シートであって、前記熱伝導性シートのアスカーC硬度計で測定した硬さが7以下であり、
初期厚さ1.5mmの前記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であり、残留応力が0.1MPa以上であり、かつ、前記最大応力と前記残留応力との比率が7/1以下のものであることを特徴とする熱伝導性シートを提供する。
 このような熱伝導性シートであれば、熱伝導性に優れ、最大応力と残留応力の差が小さく、圧縮性、復元性のバランスも良好なものとなる。
 上記(c)熱伝導性充填材が、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、及び窒化アルミニウムから選択した1種以上であることが好ましい。
 このような熱伝導性充填材を用いた熱伝導性シートは、熱伝導性及び充填性が良い。
 上記(c)熱伝導性充填材の形状が、破砕状、丸み状、または球状であるものとすることができる。
 上記(c)熱伝導性充填材の平均粒径が0.5~100μmであることが好ましい。
 平均粒径0.5~10μmであるものや、破砕状又は丸み状のものは効率的な熱伝導パスを形成させることにより熱伝導性を高めることができる。
 この場合、熱伝導率が2.0W/m-K以上であることが好ましい。
 熱伝導性シートの熱伝導率が2.0W/m-K以上であれば、該熱伝導性シートを発熱量の大きい発熱体に適用することができる。
 本発明によって、分子鎖側鎖のみにアルケニル基を有するオルガノポリシロキサンと、両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサンとを適切に架橋させることで、架橋密度を適切な範囲とでき、良好な圧縮性と残留応力を維持したシリコーンポリマーを得ることができる。
 さらに、熱伝導率を付与する熱伝導性充填材を片末端にトリアルコキシ基を持つ表面処理剤と配合することにより、フィラー表面とポリマー間の相互作用が強まり、残留応力を向上させることができる。
 このようなシートは、最大応力と残留応力のバランスに優れるため、車載向けの各種電子部品に使用することができる。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 本発明者は、熱伝導性シートに要望されている最大応力と残留応力の差が小さく、潰しやすさと適度なゴム弾性による反発特性を兼ね備え得るシリコーン組成物につき探求したところ、分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン、両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサン、熱伝導性充填材、白金系硬化触媒、片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンを含むシリコーン組成物であって、上記熱伝導性シートのアスカーC硬度計で測定した硬さが7以下であり、初期厚さ1.5mmの上記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であり、残留応力が0.1MPa以上であり、かつ、上記最大応力と上記残留応力との比率が7/1以下のものであることを特徴とする熱伝導性シートであれば、上記目的を達成できることを見出し、本発明を完成させた。以下、各成分につき説明する。
 (a)分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン
 (a)成分であるアルケニル基含有オルガノポリシロキサンは、1分子中の側鎖部分のみに2~10個のアルケニル基を含有するもので、通常は主鎖部分が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のものであるのが一般的である。分子構造の一部に分枝状の構造を含んだものであってもよく、また環状体であってもよいが、硬化物の機械的強度等、物性の点から直鎖状のジオルガノポリシロキサンが好ましい。(a)成分の一例として、下記一般式(1)で示される構造が挙げられる。
Figure JPOXMLDOC01-appb-C000001
(一般式(1)中、Rは、独立して炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基から選ばれる基であり、Xは炭素数2~6のアルケニル基であり、nは0又は1以上の整数であり、mは2以上の整数である。なお、m及びnを付した括弧で括られたシロキサン単位の結合は、ブロックであってもランダムであってもよい。)
 一般式(1)中、Rの例としては、たとえばメチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基等のアルキル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、キシリル基等のアリール基、ベンジル基、2-フェニルエチル基等のアラルキル基等が挙げられる。代表的なものは炭素原子数が1~7、特に代表的なものは炭素原子数が1~5のものであり、好ましくは、メチル基、エチル基、プロピル基等のアルキル基及びフェニル基である。
 なお、これらRの水素原子の一部がフッ素などのハロゲン原子で置換されたものを用いてもよい。
 一般式(1)中、Xのアルケニル基としては、例えばビニル基、アリル基、プロペニル基、イソプロペニル基、ブテニル基、ヘキセニル基等の炭素原子数2~6のものが挙げられ、中でもビニル基、アリル基が好ましく、特にビニル基が好ましい。
 一般式(1)中、nは0又は1以上の整数であり、mは2~10の整数である。また、n及びmは、10≦n+m≦5,000を満たす整数であるのが好ましく、より好ましくは、50≦n+m≦1,000であり、更に好ましくは、100≦n+m≦500かつ0.001≦m/(n+m)≦0.05を満足する整数である。なお、上記m及びnを付した括弧で括られたシロキサン単位の結合は、ブロックであってもランダムであってもよい。
 (b)オルガノハイドロジェンポリシロキサン
(b)成分のオルガノハイドロジェンポリシロキサンは、1分子中に2個以上、好ましくは2~4個のケイ素原子に直接結合した水素原子(ヒドロシリル基)、その両末端にヒドロシリル基を有することが必要である。ヒドロシリル基の数が2個未満の場合、硬化しない恐れがある。
 オルガノハイドロジェンポリシロキサンの例としては下記一般式(2)のような構造で表される。
Figure JPOXMLDOC01-appb-C000002
(一般式(2)中、Rは上記と同じである。oは0以上200未満の整数、pは0以上200未満の整数である。なお、上記o及びpを付した括弧で括られたシロキサン単位の結合は、ブロックであってもランダムであってもよい。)
 上記一般式(2)中、Rは、上記一般式(1)で示されたのと同様、独立して炭素数1~10のアルキル基、炭素数6~10のアリール基、炭素数7~10のアラルキル基から選ばれる基である。これらの具体例、好ましい態様などは、上記一般式(1)で挙げられたものと同じものが挙げられる。上記一般式(2)中のoは、0以上200未満の整数、pは0以上200未満の整数を表す。これらの数値は(b)成分の平均構造式での数値を示しているものであり、各分子レベルについては制限されるものでない。なお、上記o及びpを付した括弧で括られたシロキサン単位の結合は、ブロックであってもランダムであってもよい。
 これら(b)成分の添加量は、(b)成分由来のヒドロシリル基が(a)成分由来のアルケニル基1モルに対して0.75~1.3となる量、好ましくは0.78~1.25モルとなる量、さらに好ましくは、0.9~1.2モルとなる量である。(b)成分をこの範囲としてシートを形成した場合、最大応力と残留応力の差を低減し、圧縮特性のバランスの良いシートとなる。
 (c)熱伝導性充填材
 (c)成分である熱伝導性充填材は、銅やアルミニウム等の非磁性の金属、酸化アルミニウム、二酸化ケイ素、酸化マグネシウム、酸化ベリリウム、酸化チタン、酸化ジルコニウム等の金属酸化物、窒化アルミニウム、窒化ケイ素、窒化ホウ素等の金属窒化物、水酸化アルミニウム、水酸化マグネシウム等の金属水酸化物、人工ダイヤモンドあるいは炭化ケイ素等一般に熱伝導充填材とされる物質を用いることができる。
 特に、熱伝導性とシリコーンに対する充填性の観点から、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、及び窒化アルミニウムを使用するのが好ましい。
 これら熱伝導性充填材は、平均粒径が0.5~100μmであることが好ましく、より好ましくは1~80μmを用いることができる。これら充填材は1種単独で用いても良いし、複数種を混合して用いても良い。平均粒径の異なる粒子を2種以上用いることも可能である。
 なお熱伝導性充填材の粒径は、レーザー回折・散乱式の粒子径分布測定装置、例えばマイクロトラックMT3300EX(日機装)を用いて測定され、平均粒径は体積基準の値(粒体の体積分布を測定した際、この平均粒径を境に2つに分けた時、大きい側と小さい側が等量になる径を指す。)である。
 熱伝導性充填材の形状は、破砕状、丸み状、または球状であることが好ましく、複数の違う形状のものを組み合わせて用いることができる。特に、平均粒径10~100μmのものは、充填性の観点から球状が好ましく、平均粒径0.5~10μmのものは、大粒径の充填材の間に入り込み熱伝導パスを効率的に形成する事から、破砕状または丸み状が好ましい。本発明において、球状とは、アスペクト比が1.5以下である熱伝導性充填材を指し、破砕状または丸み状とは、アスペクト比が1.5を超える熱伝導性充填材を指す。
さらに、破砕状とは角張った部位を含んでおり、丸み状とは丸みを帯びた形状である。 
 (c)成分の配合量は、(a)成分100質量部に対して1,000~4,200質量部であることが必要であり、好ましくは1,500~3,800質量部である。この配合量が1,000質量部未満の場合、得られる組成物の熱伝導率に乏しく、熱伝導性シートは保存安定性の乏しいものとなる。一方、4,200質量部を超える場合、シートが硬く脆くなり、最大応力は上昇し、高圧縮が困難となる。
 (d)白金系硬化触媒
 (d)成分の白金系硬化触媒は(a)成分由来のアルケニル基と、(b)成分由来のSi-H基の付加反応を促進するための触媒であり、ヒドロシリル化反応に用いられる触媒として周知の白金系触媒が挙げられる。その具体例としては、例えば、白金(白金黒を含む)、ロジウム、パラジウム等の白金族金属単体、HPtCl・nHO、HPtCl・nHO、NaHPtCl・nHO、KHPtCl・nHO、NaPtCl・nHO、KPtCl・nHO、PtCl・nHO、PtCl、NaHPtCl・nHO(但し、式中、nは0~6の整数であり、好ましくは0又は6である)等の塩化白金、塩化白金酸及び塩化白金酸塩、アルコール変性塩化白金酸(米国特許第3,220,972号明細書参照)、塩化白金酸とオレフィンとのコンプレックス(米国特許第3,159,601号明細書、同第3,159,662号明細書、同第3,775,452号明細書参照)、白金黒、パラジウム等の白金族金属をアルミナ、シリカ、カーボン等の担体に担持させたもの、ロジウム-オレフィンコンプレックス、クロロトリス(トリフェニルフォスフィン)ロジウム(ウィルキンソン触媒)、塩化白金、塩化白金酸又は塩化白金酸塩とビニル基含有シロキサン、特にビニル基含有環状シロキサンとのコンプレックスなどが挙げられる。(d)成分の使用量は、成分(a)に対する白金族金属元素の体積換算で0.1~1,000ppmであり、1~500ppmが好ましい。
 (e)片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン
 (e)成分の片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサンは表面処理剤として用いられている。具体的には、下記一般式(3)で表すことができる。
Figure JPOXMLDOC01-appb-C000003
 上記一般式中、R2は独立に炭素原子数1~6のアルキル基であり、好ましくはメチル基またはエチル基である。qは5~100の整数であり、好ましくは10~60の整数である。前記(e)成分の添加量は、(a)成分100質量部に対して15~200質量部であり、好ましくは、30~150質量部の範囲である。(e)成分が、15質量部未満の場合、(c)成分である熱伝導性充填材とポリマーの濡れ性が乏しく、シートの成型性や、圧縮時の最大応力に難がある。一方、200質量部を超える場合、オイル分離を誘発し易く、材料の保存安定性が乏しくなったり、圧縮時の残留応力が低下したりする。
 [その他の任意成分]
 この他に、硬化速度を調整するための反応制御剤、着色のための顔料・染料、難燃性付与剤、金型やセパレーターフィルムからの型離れを良くするための内添離型剤、組成物の粘度や成形物の硬度を調整する可塑剤など機能を向上させるための様々な添加剤を有効量添加することが可能である。
 以下に、反応制御剤と可塑剤の例を挙げるが、本発明はこれに限定されるものではない。
 [(f)可塑剤]
 本発明の組成物は更に、(f)可塑剤として下記一般式(4)
Figure JPOXMLDOC01-appb-C000004
(Rは、互いに独立に、炭素原子数1~8の、脂肪族不飽和結合を含まない一価炭化水素基であり、dは5~2,000の整数である)
で表される、キャノン-フェンスケ粘度計で測定した25℃における動粘度10~100,000mm/sを有するオルガノポリシロキサンを含むことができる。
該成分は、熱伝導性組成物の粘度調整剤等の特性を付与するために適宜用いられればよく、特に限定されるものではない。1種単独で用いても、2種以上を併用してもよい。
 上記Rは互いに独立に炭素原子数1~8の、脂肪族不飽和結合を含まない一価炭化水素基であり、具体的には炭素数1~8のアルキル基、炭素数6~8のアリール基、炭素数7~8のアラルキル基から選ばれる基である。例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、ヘプチル基、及びオクチル基などのアルキル基、シクロペンチル基、シクロヘキシル基、及びシクロヘプチル基等のシクロアルキル基、フェニル基、トリル基、及びキシリル基等のアリール基、ベンジル基、フェニルエチル基、フェニルプロピル基、及びメチルベンジル基等のアラルキル基等が挙げられる。好ましくは、メチル基、エチル基、プロピル基、フェニル基であり、特に好ましくは、メチル基またはフェニル基である。
 上記オルガノポリシロキサンのキャノン-フェンスケ粘度計で測定した25℃における動粘度は、好ましくは10~100,000mm/sであり、特に好ましくは100~10,000mm/sであればよい。該動粘度が10mm/s以上であれば、得られる組成物の硬化物はオイルブリードを発生しない。該動粘度が100,000mm/s以下であれば、得られる熱伝導性組成物は柔軟性は良い。
 上記一般式(4)においてdは、オルガノポリシロキサンの動粘度が上述する範囲となる値であればよい。好ましくは5~2,000の整数であり、より好ましくは10~1,000の整数である。
 本発明の組成物における(f)成分の量は特に制限されず、可塑剤として所望の効果が得られる量であればよい。通常、(a)成分100質量部に対して、好ましくは1~20質量部であり、より好ましくは2~10質量部である。(f)成分量が上記範囲にあると、硬化前の熱伝導性組成物が良好な流動性、作業性を維持しやすく、また(c)成分の熱伝導性充填材を該組成物に充填するのが容易になる。
 [(g)反応制御剤]
 (g)反応制御剤は通常の付加反応硬化型シリコーン組成物に用いられる公知の付加反応制御剤を全て用いることができる。例えば、1-エチニル-1-ヘキサノール、3-ブチン-1-オールなどのアセチレン化合物や各種窒素化合物、有機リン化合物、オキシム化合物、有機クロロ化合物等が挙げられる。使用量としては、0.01~1質量部程度が望ましい。
 [組成物の粘度]
 本発明の熱伝導シリコーン組成物の25℃における粘度は、好ましくは500Pa・s以下、より好ましくは350Pa・s以下である。このような範囲であれば、熱伝導性シリコーン組成物をポンプで吐出することができるため、歩留まり良く熱伝導性シートの成形を行うことができる。特に粘度が300Pa・s以下である場合、成形性がより良好となるため好ましい。粘度の下限は特に限定されないが、通常、10Pa・s程度である。
なお、粘度は、モジュラー型レオメーターHAAKE社製のMARS40で測定される。
 [熱伝導性シートの製造方法]
 上記本発明の熱伝導性シリコーン組成物を樹脂フィルムなどの基材上に塗工し、硬化することで、熱伝導性シートを得ることができる。樹脂フィルムとしては、貼り合わせ後の熱処理に耐えうる、熱変形温度が100℃以上のもの、例えば、PET、PBT、ポリカーボネート製のフィルムから適時選択して用いることができる。樹脂フィルムにオルガノハイドロジェンポリシロキサンオイルを均一な厚さに塗布するコーティグ装置としては、後計量方式のブレードコータ、グラビアコータ、キスロールコータ、スプレイコータ等が使用される。
 硬化条件としては、公知の付加反応硬化型シリコーンゴム組成物と同様でよく、室温でも硬化してもよいが必要に応じて加熱してもよく、好ましくは100℃~150℃で1分間~40分間であり、より好ましくは110~130℃で、10~20分間程度で硬化させるのがよい。
 [熱伝導性シートの硬さ]
 本発明における熱伝導性シートの硬さはアスカーC硬度計で測定した25℃における測定値が7以下、より好ましくは5以下であることが好ましい。硬さが7を超える場合、所望の良好な最大応力を得る事が難しい。なお、硬さの下限値に関しては、特に規定しないが、1以上とすることができる。
 [熱伝導性シートの熱伝導率]
 本発明における成形体の熱伝導率は、ホットディスク法により測定した25℃における測定値が2.0W/m-K以上、より好ましくは2.5W/m-K以上であることが望ましい。熱伝導率が2.0W/mK以上であれば、発熱量の大きい発熱体への適用が可能となる。なお、熱伝導率の上限値に関しては、高ければ高いほど良いが、5.0W/m-Kとすることができる。
 [熱伝導性シートの圧縮応力]
 本発明における熱伝導性シートの圧縮応力は、島津製作所製のオートグラフを使用して測定した。
 この装置は、試料ステージと圧縮ロードセルを備え、所定のサイズのアルミプレートの間に熱伝導性シートを挟み、これをステージの上に置き、ロードセルにより規定の厚みまで圧縮される。初期厚み1.5mmに対して、50%圧縮時における最大応力および一分間の圧縮保持により応力緩和後の残留応力の値を測定した。
以下に詳細な測定条件を記載する。
 [測定条件]
 試料:円形(直径:32mm、厚さ:1.5mm)
アルミプレートサイズ:円形(直径:32mm、厚さ:2.0mm)
圧縮量:50%
圧縮速度:3mm/min
圧縮方式:トリガー方式 (荷重2N感知後、圧縮量をカウント)
 本発明は、初期厚さ1.5mmの前記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であるが、その下限値は0.1MPaとすることができる。上記圧縮条件での残留応力は0.1MPa以上であるが、その上限値は0.7MPaとすることができる。かつ、本発明の熱伝導性シートは、前記最大応力と前記残留応力との比率が7/1以下であるが、その下限値は1とすることができる。
 このようなものであれば、最大応力と残留応力の差が小さく、圧縮性、復元性のバランスが良好な熱伝導性シートとなる。従って、車載向け等の各種電子部品に使用することができる。
 以下に実施例および比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
 [組成物の調製]
 下記実施例および比較例に用いられている(a)~(f)成分を下記に示す。
(a)成分:アルケニル基含有オルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000005
 (b)成分:オルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000006
 (c)成分:
 平均粒径が下記の通りである熱伝導性充填材。
(c-1)平均粒径:1μm:水酸化アルミニウム
(c-2)平均粒径:8μm:水酸化アルミニウム
(c-3)平均粒径:50μm:水酸化アルミニウム
(c-4)平均粒径:1μm:アルミナ
(c-5)平均粒径:10μm:アルミナ
(c-6)平均粒径:45μm:アルミナ
(c-7)平均粒径:75μm:アルミナ
上記の平均粒径は、マイクロトラックMT3300EX(日機装)を用いて測定した。
 (d)成分:
 5%塩化白金酸2-エチルヘキサノール溶液
 (e)成分:
Figure JPOXMLDOC01-appb-C000007
 (f)成分:
 可塑剤としてジメチルポリシロキサン。
Figure JPOXMLDOC01-appb-C000008
 (g)成分:
 付加反応制御剤として、3-ブチン-2-オール
 [実施例1~6・比較例1~6]
 (a)、(c)、(e)、(f)成分を表1及び表2に示す所定の量を加え、プラネタリーミキサーで60分間混練した。
 そこに(d)成分、(g)成分を表1及び表2に示す所定の量加え、さらにセパレータとの離型を促す内添離型剤を有効量加え、さらに30分間混練した。
 そこにさらに(b)成分を表1及び表2に示す所定の量を加え、30分間混練し、組成物を得た。
 [熱伝導性シートの成形方法]
 得られた組成物を60mmx60mmx6mmの金型もしくは、170mmx130mmx1.5mmの金型に流し込みプレス成形機を用いて110℃、10分間で成形した。
 [評価方法]
 硬度:上記実施例1~6及び比較例1~6で得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚重ねてアスカーC硬度計で測定した。結果を表1及び表2に記載した。
 熱伝導率:上記実施例1~6及び比較例1~6で得られた組成物を6mm厚のシート状に硬化させ、そのシートを2枚用いて、熱伝導率計(TPA-501、京都電子工業株式会社製の商品名)を用いて、該シートの熱伝導率を測定した。結果を表1及び表2に記載した。
 圧縮応力:上記実施例1~6及び比較例1~6で得られた組成物を1.5mm厚のシート状に硬化させ、上述した島津製作所製のオートグラフを使用した条件で、50%圧縮時の最大応力と残留応力を測定した。結果を表1及び表2に記載した。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 実施例1~6では、本発明に記載の範囲で熱伝導性シートを成型しており、良好な熱伝導率を示し、50%圧縮時の最大応力と残留応力の比率が7/1以下である事から、車載電子部品などに好適な放熱部材を提供できる。
 比較例1では、(a)成分由来のビニル基のモル数に対する(b)成分由来のヒドロシリル基のモル数の比(H/Vi)が1.3を超えるため、シートの最大応力が上昇してしまい、高圧縮が困難であった。比較例2では、H/Viが0.75を下回るため、シートの残留応力が0.1MPaを下回り、シートの復元性に難があった。
 比較例3では、熱伝導性充填材が4200質量部を超えるため、シートの最大応力が0.7MPaを超えており、圧縮性に難があった。比較例4では、熱伝導性充填材が1000質量部を下回るため、シートの熱伝導率が乏しく、高発熱体への適用が難しかった。
 比較例5では、表面処理剤が15質量部を下回るため、シートの最大応力が高くなり、高圧縮が困難であった。比較例6では、表面処理剤が、200質量部を超えるため、シートの残留応力が低下し、復元性に課題があった。
 本明細書は、以下の態様を包含する。
 [1]:(a)分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン:100質量部
(b)両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が(a)成分由来のアルケニル基のモル数の0.75~1.3の範囲となる量
(c)熱伝導性充填材:1,000~4,200質量部
(d)白金系硬化触媒:(a)成分に対して白金族元素重量換算で0.1~1,000ppm
(e)片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン:15~200質量部
を含むシリコーン組成物の硬化物からなる熱伝導性シートであって、上記熱伝導性シートのアスカーC硬度計で測定した硬さが7以下であり、
初期厚さ1.5mmの上記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であり、残留応力が0.1MPa以上であり、かつ、上記最大応力と上記残留応力との比率が7/1以下のものであることを特徴とする熱伝導性シート。
 [2]:上記(c)熱伝導性充填材が、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、及び窒化アルミニウムから選ばれる1種以上であることを特徴とする[1]に記載の熱伝導性シート。
 [3]:上記(c)熱伝導性充填材の形状が、破砕状、丸み状、または球状であることを特徴とする[1]又は[2]に記載の熱伝導性シート。
 [4]:上記(c)熱伝導性充填材の平均粒径が0.5~100μmであることを特徴とする[1]から[3]のいずれかに記載の熱伝導性シート。
 [5]:熱伝導率が2.0W/m-K以上であることを特徴とする[1]から[4]のいずれかに記載の熱伝導性シート。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (5)

  1.  (a)分子鎖側鎖のみに2~10個のアルケニル基を有するオルガノポリシロキサン:100質量部
    (b)両末端にヒドロシリル基を有するオルガノハイドロジェンポリシロキサン:ヒドロシリル基のモル数が(a)成分由来のアルケニル基のモル数の0.75~1.3の範囲となる量
    (c)熱伝導性充填材:1,000~4,200質量部
    (d)白金系硬化触媒:(a)成分に対して白金族元素重量換算で0.1~1,000ppm
    (e)片末端がトリアルコキシシリル基で封鎖されたジメチルポリシロキサン:15~200質量部
    を含むシリコーン組成物の硬化物からなる熱伝導性シートであって、前記熱伝導性シートのアスカーC硬度計で測定した硬さが7以下であり、
    初期厚さ1.5mmの前記熱伝導性シートを圧縮速度3mm/minで50%圧縮した際の最大応力が0.7MPa以下であり、残留応力が0.1MPa以上であり、かつ、前記最大応力と前記残留応力との比率が7/1以下のものであることを特徴とする熱伝導性シート。
  2.  前記(c)熱伝導性充填材が、酸化アルミニウム、水酸化アルミニウム、酸化マグネシウム、及び窒化アルミニウムから選ばれる1種以上であることを特徴とする請求項1に記載の熱伝導性シート。
  3.  前記(c)熱伝導性充填材の形状が、破砕状、丸み状、または球状であることを特徴とする請求項1に記載の熱伝導性シート。
  4.  前記(c)熱伝導性充填材の平均粒径が0.5~100μmであることを特徴とする請求項1に記載の熱伝導性シート。
  5.  熱伝導率が2.0W/m-K以上であることを特徴とする請求項1に記載の熱伝導性シート。
     
PCT/JP2024/017187 2023-05-15 2024-05-09 熱伝導性シート WO2024237152A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023080036A JP2024164508A (ja) 2023-05-15 2023-05-15 熱伝導性シート
JP2023-080036 2023-05-15

Publications (1)

Publication Number Publication Date
WO2024237152A1 true WO2024237152A1 (ja) 2024-11-21

Family

ID=93519607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2024/017187 WO2024237152A1 (ja) 2023-05-15 2024-05-09 熱伝導性シート

Country Status (3)

Country Link
JP (1) JP2024164508A (ja)
TW (1) TW202502920A (ja)
WO (1) WO2024237152A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016923A (ja) * 2009-07-09 2011-01-27 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物およびそれを用いた熱伝導性シリコーン成形物
JP2016011322A (ja) * 2014-06-27 2016-01-21 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
JP2016030774A (ja) * 2014-07-28 2016-03-07 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
JP2022038407A (ja) * 2020-08-26 2022-03-10 デクセリアルズ株式会社 熱伝導性組成物及びこれを用いた熱伝導性シート

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011016923A (ja) * 2009-07-09 2011-01-27 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物およびそれを用いた熱伝導性シリコーン成形物
JP2016011322A (ja) * 2014-06-27 2016-01-21 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
JP2016030774A (ja) * 2014-07-28 2016-03-07 信越化学工業株式会社 熱伝導性シリコーン組成物及び熱伝導性シリコーン成型物
JP2022038407A (ja) * 2020-08-26 2022-03-10 デクセリアルズ株式会社 熱伝導性組成物及びこれを用いた熱伝導性シート

Also Published As

Publication number Publication date
TW202502920A (zh) 2025-01-16
JP2024164508A (ja) 2024-11-27

Similar Documents

Publication Publication Date Title
KR102487731B1 (ko) 열전도성 실리콘 조성물 및 열전도성 실리콘 성형물
KR101859617B1 (ko) 가열 경화형 열전도성 실리콘 그리스 조성물
JP5131648B2 (ja) 熱伝導性シリコーン組成物およびそれを用いた熱伝導性シリコーン成形物
TWI788587B (zh) 熱傳導性矽氧組成物及其硬化物
JP2020002236A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーンシート及びその製造方法
JP6240593B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
KR20180077050A (ko) 실리콘 조성물 및 그 경화물
TW202200711A (zh) 導熱性矽氧組成物及其硬化物
CN114901756B (zh) 导热性硅酮树脂组合物、硬化物及导热性硅酮散热片材
JP7264850B2 (ja) 熱伝導性シリコーン組成物、その硬化物、及び放熱シート
JP7485634B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
WO2024237152A1 (ja) 熱伝導性シート
JP7478704B2 (ja) 熱伝導性複合シート及び発熱性電子部品の実装方法
TW202328342A (zh) 矽酮組合物
JP7496800B2 (ja) 熱伝導性シリコーン組成物及びその硬化物
TWI860145B (zh) 聚矽氧烷組合物及其用途
JP2024051534A (ja) 熱伝導性シリコーン組成物、熱伝導性シリコーン硬化物及び電気部品
WO2024239243A1 (en) A polysiloxane composition
JP2023153695A (ja) 熱伝導性シリコーン組成物及びその硬化物
TW202434685A (zh) 經處理的填料、處理導熱性填料的方法及其應用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 24807104

Country of ref document: EP

Kind code of ref document: A1