WO2023277188A1 - 液化石油ガス合成用触媒および液化石油ガスの製造方法 - Google Patents
液化石油ガス合成用触媒および液化石油ガスの製造方法 Download PDFInfo
- Publication number
- WO2023277188A1 WO2023277188A1 PCT/JP2022/026510 JP2022026510W WO2023277188A1 WO 2023277188 A1 WO2023277188 A1 WO 2023277188A1 JP 2022026510 W JP2022026510 W JP 2022026510W WO 2023277188 A1 WO2023277188 A1 WO 2023277188A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- liquefied petroleum
- petroleum gas
- catalyst material
- mass
- zeolite catalyst
- Prior art date
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 271
- 239000003915 liquefied petroleum gas Substances 0.000 title claims abstract description 131
- 230000015572 biosynthetic process Effects 0.000 title claims abstract description 61
- 238000003786 synthesis reaction Methods 0.000 title claims abstract description 60
- 238000004519 manufacturing process Methods 0.000 title claims description 18
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims abstract description 154
- 229910021536 Zeolite Inorganic materials 0.000 claims abstract description 153
- 239000010457 zeolite Substances 0.000 claims abstract description 153
- 229910017518 Cu Zn Inorganic materials 0.000 claims abstract description 40
- 229910017752 Cu-Zn Inorganic materials 0.000 claims abstract description 40
- 229910017943 Cu—Zn Inorganic materials 0.000 claims abstract description 40
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 claims abstract description 40
- 229910000510 noble metal Inorganic materials 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims description 189
- 229910002091 carbon monoxide Inorganic materials 0.000 claims description 55
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 54
- 230000002194 synthesizing effect Effects 0.000 claims description 49
- 239000001257 hydrogen Substances 0.000 claims description 41
- 229910052739 hydrogen Inorganic materials 0.000 claims description 41
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 39
- 229910052763 palladium Inorganic materials 0.000 claims description 32
- 229910052697 platinum Inorganic materials 0.000 claims description 28
- 239000007789 gas Substances 0.000 claims description 24
- 239000008187 granular material Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 abstract description 9
- ATUOYWHBWRKTHZ-UHFFFAOYSA-N Propane Chemical compound CCC ATUOYWHBWRKTHZ-UHFFFAOYSA-N 0.000 description 136
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 94
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 76
- 239000001294 propane Substances 0.000 description 68
- 239000001273 butane Substances 0.000 description 42
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 42
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 42
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 36
- 238000000034 method Methods 0.000 description 28
- 239000000243 solution Substances 0.000 description 23
- 235000011007 phosphoric acid Nutrition 0.000 description 18
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 17
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 229910004298 SiO 2 Inorganic materials 0.000 description 13
- 239000011701 zinc Substances 0.000 description 13
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 239000002253 acid Substances 0.000 description 12
- 239000007864 aqueous solution Substances 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 11
- 238000007654 immersion Methods 0.000 description 11
- 239000010970 precious metal Substances 0.000 description 11
- 238000005470 impregnation Methods 0.000 description 10
- 239000007788 liquid Substances 0.000 description 10
- 239000002243 precursor Substances 0.000 description 10
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 9
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 239000005751 Copper oxide Substances 0.000 description 8
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 8
- 229910000431 copper oxide Inorganic materials 0.000 description 8
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 8
- 239000011787 zinc oxide Substances 0.000 description 8
- 238000001354 calcination Methods 0.000 description 7
- 230000003197 catalytic effect Effects 0.000 description 7
- 150000004687 hexahydrates Chemical class 0.000 description 7
- 229910052698 phosphorus Inorganic materials 0.000 description 7
- 230000006866 deterioration Effects 0.000 description 6
- NNPPMTNAJDCUHE-UHFFFAOYSA-N isobutane Chemical group CC(C)C NNPPMTNAJDCUHE-UHFFFAOYSA-N 0.000 description 6
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- PIBWKRNGBLPSSY-UHFFFAOYSA-L palladium(II) chloride Chemical compound Cl[Pd]Cl PIBWKRNGBLPSSY-UHFFFAOYSA-L 0.000 description 6
- 239000008188 pellet Substances 0.000 description 6
- 239000011973 solid acid Substances 0.000 description 6
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 5
- 238000004458 analytical method Methods 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 5
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000011574 phosphorus Substances 0.000 description 5
- 229910001928 zirconium oxide Inorganic materials 0.000 description 5
- 239000000654 additive Substances 0.000 description 4
- 239000012153 distilled water Substances 0.000 description 4
- 239000000377 silicon dioxide Substances 0.000 description 4
- 239000007858 starting material Substances 0.000 description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 3
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000004993 emission spectroscopy Methods 0.000 description 3
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 239000001282 iso-butane Substances 0.000 description 3
- 235000013847 iso-butane Nutrition 0.000 description 3
- 230000007774 longterm Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical group [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052593 corundum Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- AJNVQOSZGJRYEI-UHFFFAOYSA-N digallium;oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Ga+3].[Ga+3] AJNVQOSZGJRYEI-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 229910001195 gallium oxide Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 229910003437 indium oxide Inorganic materials 0.000 description 2
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 238000013112 stability test Methods 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- -1 synthesis gas Chemical class 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 229910001845 yogo sapphire Inorganic materials 0.000 description 2
- XIOUDVJTOYVRTB-UHFFFAOYSA-N 1-(1-adamantyl)-3-aminothiourea Chemical compound C1C(C2)CC3CC2CC1(NC(=S)NN)C3 XIOUDVJTOYVRTB-UHFFFAOYSA-N 0.000 description 1
- XNDZQQSKSQTQQD-UHFFFAOYSA-N 3-methylcyclohex-2-en-1-ol Chemical compound CC1=CC(O)CCC1 XNDZQQSKSQTQQD-UHFFFAOYSA-N 0.000 description 1
- 239000005995 Aluminium silicate Substances 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- FTVZOQPUAHMAIA-UHFFFAOYSA-N O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O Chemical compound O.O.[Zr+4].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O FTVZOQPUAHMAIA-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 235000012211 aluminium silicate Nutrition 0.000 description 1
- 229910000323 aluminium silicate Inorganic materials 0.000 description 1
- HPTYUNKZVDYXLP-UHFFFAOYSA-N aluminum;trihydroxy(trihydroxysilyloxy)silane;hydrate Chemical compound O.[Al].[Al].O[Si](O)(O)O[Si](O)(O)O HPTYUNKZVDYXLP-UHFFFAOYSA-N 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- IXSUHTFXKKBBJP-UHFFFAOYSA-L azanide;platinum(2+);dinitrite Chemical compound [NH2-].[NH2-].[Pt+2].[O-]N=O.[O-]N=O IXSUHTFXKKBBJP-UHFFFAOYSA-L 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 229910001919 chlorite Inorganic materials 0.000 description 1
- 229910052619 chlorite group Inorganic materials 0.000 description 1
- QBWCMBCROVPCKQ-UHFFFAOYSA-N chlorous acid Chemical compound OCl=O QBWCMBCROVPCKQ-UHFFFAOYSA-N 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- SXTLQDJHRPXDSB-UHFFFAOYSA-N copper;dinitrate;trihydrate Chemical compound O.O.O.[Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O SXTLQDJHRPXDSB-UHFFFAOYSA-N 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000001739 density measurement Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910052621 halloysite Inorganic materials 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- RBTARNINKXHZNM-UHFFFAOYSA-K iron trichloride Chemical compound Cl[Fe](Cl)Cl RBTARNINKXHZNM-UHFFFAOYSA-K 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 1
- 229910052753 mercury Inorganic materials 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- HBEQXAKJSGXAIQ-UHFFFAOYSA-N oxopalladium Chemical compound [Pd]=O HBEQXAKJSGXAIQ-UHFFFAOYSA-N 0.000 description 1
- MUMZUERVLWJKNR-UHFFFAOYSA-N oxoplatinum Chemical compound [Pt]=O MUMZUERVLWJKNR-UHFFFAOYSA-N 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910003445 palladium oxide Inorganic materials 0.000 description 1
- GPNDARIEYHPYAY-UHFFFAOYSA-N palladium(ii) nitrate Chemical compound [Pd+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O GPNDARIEYHPYAY-UHFFFAOYSA-N 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- CLSUSRZJUQMOHH-UHFFFAOYSA-L platinum dichloride Chemical compound Cl[Pt]Cl CLSUSRZJUQMOHH-UHFFFAOYSA-L 0.000 description 1
- 229910003446 platinum oxide Inorganic materials 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 229910052903 pyrophyllite Inorganic materials 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229910001415 sodium ion Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/44—Noble metals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
- B01J29/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
- B01J29/46—Iron group metals or copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/002—Mixed oxides other than spinels, e.g. perovskite
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
- B01J23/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
- B01J23/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/31—Density
- B01J35/32—Bulk density
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/0009—Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
- B01J37/0063—Granulating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0205—Impregnation in several steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0201—Impregnation
- B01J37/0213—Preparation of the impregnating solution
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0236—Drying, e.g. preparing a suspension, adding a soluble salt and drying
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/08—Heat treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/16—Reducing
- B01J37/18—Reducing with gases containing free hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/28—Phosphorising
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/04—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon monoxide with hydrogen
- C07C1/0425—Catalysts; their physical properties
- C07C1/043—Catalysts; their physical properties characterised by the composition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/12—Liquefied petroleum gas
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2229/00—Aspects of molecular sieve catalysts not covered by B01J29/00
- B01J2229/10—After treatment, characterised by the effect to be obtained
- B01J2229/18—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
- B01J2229/186—After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself not in framework positions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/10—Constitutive chemical elements of heterogeneous catalysts of Group I (IA or IB) of the Periodic Table
- B01J2523/17—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/20—Constitutive chemical elements of heterogeneous catalysts of Group II (IIA or IIB) of the Periodic Table
- B01J2523/27—Zinc
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/30—Constitutive chemical elements of heterogeneous catalysts of Group III (IIIA or IIIB) of the Periodic Table
- B01J2523/31—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2523/00—Constitutive chemical elements of heterogeneous catalysts
- B01J2523/40—Constitutive chemical elements of heterogeneous catalysts of Group IV (IVA or IVB) of the Periodic Table
- B01J2523/48—Zirconium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2521/00—Catalysts comprising the elements, oxides or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium or hafnium
- C07C2521/02—Boron or aluminium; Oxides or hydroxides thereof
- C07C2521/04—Alumina
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/72—Copper
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2523/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00
- C07C2523/70—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper
- C07C2523/76—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36
- C07C2523/80—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group C07C2521/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups C07C2523/02 - C07C2523/36 with zinc, cadmium or mercury
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C07C2529/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
- C07C2529/44—Noble metals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2529/00—Catalysts comprising molecular sieves
- C07C2529/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
- C07C2529/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- C07C2529/40—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11
- C07C2529/42—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11 containing iron group metals, noble metals or copper
- C07C2529/46—Iron group metals or copper
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/52—Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
Definitions
- the present disclosure relates to a catalyst for synthesizing liquefied petroleum gas and a method for producing liquefied petroleum gas.
- LPG Liquefied petroleum gas
- propane and butane exists inside oil and natural gas fields mixed with impurity gases such as methane and ethane. After such gas is transferred to an aboveground facility, propane and butane are separated and recovered from the gas, and impurities such as sulfur and mercury are removed to obtain liquefied petroleum gas.
- liquefied petroleum gas is also contained in crude oil. Therefore, propane and butane can also be separated and extracted to obtain liquefied petroleum gas in the refinery refining process.
- Patent Documents 1 to 4 describe methods for producing liquefied petroleum gas whose main component is butane.
- Non-Patent Documents 1 and 2 disclose a method for producing hydrocarbons whose main component is isobutane from synthesis gas of carbon monoxide and hydrogen.
- liquefied petroleum gas and gasoline are mainly produced using a mixed catalyst of a methanol synthesis catalyst and a palladium-supporting zeolite.
- the liquefied petroleum gas produced in the above patent document tends to contain a higher proportion of butane than propane.
- Butane is less volatile than propane, so it is not easy to use butane as a fuel in cold climates. Therefore, it is desirable that the content of propane relative to the total of propane and butane is high.
- An object of the present disclosure is to provide a catalyst for synthesizing liquefied petroleum gas and a method for producing liquefied petroleum gas that can improve the ratio of propane to the total of propane and butane in the produced liquefied petroleum gas.
- a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material supporting a noble metal are included, wherein the MFI-type zeolite catalyst material contains P, and the mass of P in the MFI-type zeolite catalyst material (M P 2 ) is more than 0% by mass and less than 4.5% by mass relative to the mass (M2) of the MFI-type zeolite catalyst material, a catalyst for synthesizing liquefied petroleum gas.
- M P 2 mass of P in the MFI-type zeolite catalyst material
- M2 The catalyst for synthesizing liquefied petroleum gas according to [1] above, wherein the noble metal is Pt only.
- [4] The catalyst for synthesizing liquefied petroleum gas according to [1] above, wherein the noble metal includes Pt and Pd.
- [5] The ratio of the mass of Pd (M Pd ) to the total mass (M Pt +M Pd ) of the mass of Pt (M Pt ) and the mass of Pd (M Pd ) supported on the MFI-type zeolite catalyst material (M Pd).
- M Pd The catalyst for synthesizing liquefied petroleum gas according to [4] above, wherein /(M Pt +M Pd )) is 0.70 or less.
- the mass (M N ) of the noble metal in the MFI-type zeolite catalyst material is 0.1% by mass or more and 1.0% by mass or less with respect to the mass (M2) of the MFI-type zeolite catalyst material.
- the Cu—Zn-based catalyst material and the MFI zeolite catalyst material exist independently of each other, and both the Cu—Zn-based catalyst material and the MFI zeolite catalyst material are granules or compacts.
- a method for producing liquefied petroleum gas. [9] The method for producing liquefied petroleum gas according to [8] above, wherein in the supply step, a gas hourly space velocity (GHSV) for supplying carbon monoxide and hydrogen is 500/h or more and 20000/h or less.
- GHSV gas hourly space velocity
- a catalyst for synthesizing liquefied petroleum gas and a method for producing liquefied petroleum gas which can improve the ratio of propane to the total of propane and butane in the produced liquefied petroleum gas.
- FIG. 2 shows the results of long-term stability test of Example 2.
- the present inventors have found that a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material that supports a noble metal are included, the MFI-type zeolite catalyst material contains P, and the MFI-type zeolite catalyst material Liquefied petroleum produced by using a catalyst for synthesizing liquefied petroleum gas in which the mass of P (M P ) is more than 0% by mass and less than 4.5% by mass with respect to the mass (M2) of the MFI-type zeolite catalyst material
- M P mass of P
- M2 mass of the MFI-type zeolite catalyst material
- the catalyst for synthesizing liquefied petroleum gas of the present embodiment includes a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material supporting a noble metal (hereinafter also simply referred to as a zeolite catalyst material), and the MFI-type zeolite catalyst material is It contains P, and the mass of P (M P ) in the MFI-type zeolite catalyst material is more than 0% by mass and less than 4.5% by mass with respect to the mass (M2) of the MFI-type zeolite catalyst material.
- the catalyst for synthesizing liquefied petroleum gas of the embodiment includes a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material.
- the liquefied petroleum gas synthesis catalyst can synthesize liquefied petroleum gas from carbon monoxide and hydrogen.
- the liquefied petroleum gas synthesized by the catalyst for synthesizing liquefied petroleum gas of the present embodiment contains propane and butane as main components, and contains more propane than butane.
- the total ratio of propane and butane to the liquefied petroleum gas is, for example, 20 Cmol% or more.
- the Cu-Zn-based catalyst material that constitutes the liquefied petroleum gas synthesis catalyst functions as a liquefied petroleum gas precursor synthesis catalyst that synthesizes liquefied petroleum gas precursors such as methanol and dimethyl ether from carbon monoxide and hydrogen.
- the Cu—Zn-based catalyst material constituting the catalyst for synthesizing liquefied petroleum gas is a catalyst containing copper oxide and zinc oxide, and among the catalysts for synthesizing liquefied petroleum gas precursors, it has the ability to synthesize liquefied petroleum gas precursors.
- the Cu—Zn-based catalyst material may further contain aluminum oxide, gallium oxide, zirconium oxide, indium oxide, and the like. By containing aluminum oxide, gallium oxide, zirconium oxide, indium oxide, etc., the dispersibility of copper oxide and zinc oxide can be improved. From the viewpoint of efficiently forming the number of interfaces between copper and zinc, which are presumed to be active sites, the Cu—Zn-based catalyst material is a ternary oxide of copper oxide, zinc oxide, and aluminum oxide. preferable.
- the zeolite catalyst material that constitutes the catalyst for synthesizing liquefied petroleum gas synthesizes liquefied petroleum gas from the liquefied petroleum gas precursor generated by the Cu-Zn-based catalyst material.
- the type of zeolite is MFI type. Since the MFI-type zeolite catalyst material has a smaller pore size than beta-type zeolite, propane can be synthesized more efficiently than butane, etc., among the components constituting liquefied petroleum gas, and the yield of propane is increased. presumed to be possible.
- the MFI-type zeolite catalyst material supports precious metals. It is presumed that the MFI-type zeolite catalyst material supporting noble metals can efficiently react the liquefied petroleum gas precursors, and thus the yield of propane can be increased.
- Platinum group elements such as Pt (platinum), Pd (palladium), rhodium (Rh), and ruthenium (Ru) are listed as the noble metals supported by the MFI-type zeolite catalyst material. 1 type or 2 types or more may be sufficient as a noble metal. When two or more kinds of noble metals are used, the state of the noble metals supported on the zeolite catalyst material is not particularly limited. alloy may be mixed.
- the lower limit of the mass (M N ) of the noble metal in the MFI-type zeolite catalyst material is preferably 0.1% by mass or more, more preferably 0.2% by mass, with respect to the mass (M2) of the MFI-type zeolite catalyst material. Above, more preferably 0.3% by mass or more, the upper limit is preferably 1.0% by mass or less, more preferably 0.8% by mass or less, and even more preferably 0.7% by mass or less.
- the noble metal supported by the MFI-type zeolite catalyst material may be Pt (platinum) alone, Pd (palladium) alone, or may contain Pt and Pd.
- the noble metal supported by the zeolite catalyst material is preferably Pt and Pd, and more preferably only Pt.
- the state of Pt and Pd supported on the zeolite catalyst material may be a mixture of pure metal Pt and pure metal Pd, or Pt and Pd may be alloyed. , at least one of Pt and Pd and an alloy of Pt and Pd may be mixed.
- the mass of Pd (M Pd ) ratio (M Pd /(M Pt +M Pd )) (hereinafter also referred to as mass ratio (M Pd /(M Pt +M Pd ))
- the upper limit is preferably 0.70 or less, more preferably 0 0.60 or less, more preferably 0.50 or less.
- the lower limit of the mass ratio (M Pd /(M Pt +M Pd )) is, for example, 0.01 or more, preferably 0.15 or more, more preferably 0.20 or more, and still more preferably 0.25. That's it.
- the mass ratio (M Pd /(M Pt +M Pd )) is 0.70 or less, the yield of butane can be increased.
- the total mass (M Pt +M Pd ) of the mass of Pt (M Pt ) and the mass of Pd (M Pd ) in the zeolite catalyst material has a lower limit with respect to the mass (M2) of the zeolite catalyst material, preferably It is 0.1% by mass or more, more preferably 0.2% by mass or more, and still more preferably 0.3% by mass or more, and the upper limit is preferably 1.0% by mass or less, more preferably 0.8% by mass. 0.7% by mass or less, and more preferably 0.7% by mass or less.
- the content of Pd in the total content is 0 (zero), that is, the total content is the content of Pt.
- the total mass (M Pt +M Pd ) of the mass of Pt (M Pt ) and the mass of Pd (M Pd ) is 0.1% by mass or more with respect to the mass (M2) of the zeolite catalyst material, liquefaction Efficient synthesis of petroleum gas. Further, the total mass (M Pt +M Pd ) of the mass of Pt (M Pt ) and the mass of Pd (M Pd ) is 1.0% by mass or less with respect to the mass (M2) of the zeolite catalyst material. , while maintaining the efficient synthesis of liquefied petroleum gas, the increase in material costs of Pt and Pd can be suppressed.
- the total mass (M Pt +M Pd ) of mass (M Pd ) can be measured by ICP-OES (Inductively Coupled Plasma Optical Emission Spectroscopy).
- the MFI-type zeolite catalyst material contains P (phosphorus), and the mass of P in the MFI-type zeolite catalyst material (M P ) is equal to the mass (M2) of the MFI-type zeolite catalyst material. is more than 0% by mass and less than 4.5% by mass.
- the ratio of the mass of P (M P ) in the MFI-type zeolite catalyst material to the mass (M2) of the MFI-type zeolite catalyst material ((M P /M2) ⁇ 100)) (hereinafter “content ratio of P” ) is more than 0% by mass and less than 4.5% by mass, the ratio of propane to the total of propane and butane is improved.
- the ratio of propane to the total of propane and butane in the produced liquefied petroleum gas ((moles of propane/(moles of propane+moles of butane)) ⁇ 100) is, for example, 0.70. It is the above, and it can be 0.75 or more, or even 0.80 or more.
- the acid sites (solid acid sites) of the zeolite catalyst material increase and at the same time change to weak acid sites, so that the ratio of propane to the total of propane and butane can be improved.
- P binds to O (oxygen) that binds to Si and O that binds to Al, which are present on the surface of the zeolite catalyst material, as shown in the following formula (1). It is assumed that However, the ratio of the mass of P (M P ) in the MFI-type zeolite catalyst material to the mass (M2) of the MFI-type zeolite catalyst material ((M P /M2) ⁇ 100)) is 4.5% by mass or more. As a result, the ratio of propane to the total of propane and butane decreases, and the yield of propane and butane decreases.
- the ratio of the mass of P (M P ) in the MFI-type zeolite catalyst material to the mass (M2) of the MFI-type zeolite catalyst material ((M P /M2) ⁇ 100)) has a lower limit of more than 0% by mass, It is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and still more preferably 1.5% by mass, and the upper limit is less than 4.5% by mass, preferably 4.0% by mass. Below, more preferably 3.0% by mass or less, still more preferably 2.5% by mass.
- the presence or absence of P content in the zeolite catalyst material and the content ratio of P can be measured by ICP-OES (Inductively Coupled Plasma Emission Spectroscopy).
- propane can be produced at a high yield even if the synthesis temperature of liquefied petroleum gas is low (for example, 330°C or lower).
- liquefied petroleum gas such as propane.
- a Cu—Zn-based catalyst which has excellent performance in synthesizing a liquefied petroleum gas precursor, is used, it aggregates at high temperatures, so the Cu—Zn-based catalyst significantly deteriorates over time, and liquefied petroleum gas can be produced over a long period of time. Stable and difficult to synthesize.
- the synthesis temperature is lowered (for example, 330 ° C. or lower) in order to suppress the deterioration of the Cu-Zn-based catalyst due to such high temperature, the deterioration of the Cu-Zn-based catalyst can be suppressed, but liquefied petroleum gas such as propane yield is low.
- the liquefied petroleum gas synthesis catalyst of the present embodiment can produce propane at a high yield even when the liquefied petroleum gas synthesis temperature is low (for example, 330°C or lower). Therefore, by using the catalyst for synthesizing liquefied petroleum gas of the present embodiment and synthesizing at a low temperature (for example, 330° C. or lower), propane can be produced at a high yield and deterioration of the catalyst due to high temperatures can be suppressed.
- the synthesis temperature is the temperature of the liquefied petroleum gas synthesis catalyst.
- the propane yield of the liquefied petroleum gas produced in the present embodiment is, for example, 10 Cmol% or more, even if the synthesis temperature is low (for example, 330 ° C. or less), and may be 15 Cmol% or more, or even 20 Cmol% or more. can.
- the butane yield of the liquefied petroleum gas produced in this embodiment is, for example, 5 Cmol % or more.
- the yield of propane and butane (the sum of the yield of propane and the yield of butane) produced in the present embodiment is, for example, 20 Cmol % or more, preferably 25 Cmol % or more.
- the ratio of the number of moles of SiO 2 to the number of moles of Al 2 O 3 contained in the zeolite catalyst material (the number of moles of SiO 2 /the number of moles of Al 2 O 3 ) (hereinafter simply referred to as the molar ratio (SiO 2 /Al 2 O 3 )) is preferably 20 or more and 60 or less.
- Zeolite catalytic materials are aluminosilicates. By replacing some of the silicon atoms in the silicate constituting the zeolite skeleton of the zeolite catalyst material with aluminum atoms, the aluminum atoms become acid sites, so that the zeolite catalyst material exhibits a function as a solid acid.
- the acid sites of the zeolite catalyst material increase, so that the amount of liquefied petroleum gas produced can be increased, and propane can be efficiently synthesized to liquefy
- the amount of propane contained in oil gas can be increased.
- the molar ratio (SiO 2 /Al 2 O 3 ) is 20 or more, a zeolite catalyst material supporting a noble metal and containing P while maintaining a high ability to generate liquefied petroleum gas and a high ability to synthesize propane. can be easily manufactured.
- the molar ratio (SiO 2 /Al 2 O 3 ) is preferably 20 or more, more preferably 25 or more, and even more preferably 30 or more. From the viewpoint of high catalytic performance, the molar ratio (SiO 2 /Al 2 O 3 ) is preferably 60 or less, more preferably 50 or less, still more preferably 40 or less.
- the molar ratio (SiO 2 /Al 2 O 3 ) can be measured by ICP-OES (inductively coupled plasma optical emission spectroscopy).
- the solid acid content of the zeolite catalyst material is, for example, 0.6 mmol/g or more, preferably 0.8 mmol/g or more.
- the amount of solid acid is 0.6 mmol/g or more, a zeolite catalyst material supporting a noble metal can be easily produced while maintaining high liquefied petroleum gas generating ability and high propane synthesizing ability.
- the amount of solid acid can be measured by NH 3 -TPD (ammonia temperature programmed desorption method).
- the ratio (M1/(M1+M2 )) (hereinafter simply referred to as the mass ratio of the Cu—Zn-based catalyst material), the lower limit is preferably 0.30 or more, more preferably 0.35 or more, and still more preferably 0.40 or more, and the upper limit The value is preferably 0.95 or less, more preferably 0.70 or less, even more preferably 0.65 or less, and particularly preferably 0.60 or less.
- the mass ratio of the Cu—Zn-based catalyst material is 0.30 or more and 0.95 or less, liquefied petroleum gas can be efficiently synthesized from carbon monoxide and hydrogen.
- the Cu—Zn based catalyst material and the MFI type zeolite catalyst material exist independently of each other, and both the Cu—Zn based catalyst material and the MFI type zeolite catalyst material are preferably granules or compacts. In the catalyst for synthesizing liquefied petroleum gas, it is preferable that the Cu—Zn-based catalyst material and the MFI-type zeolite catalyst material are not integrated (mixedly integrated).
- the state of the Cu--Zn-based catalyst material and the zeolite catalyst material may be a granular material (powder, for example, a particle size of 10 ⁇ 9 to 10 ⁇ 4 m), or a granule having a larger particle size than the granular material.
- the yield of propane and butane can be further increased if the Cu--Zn-based catalyst material is a molded body containing a Cu--Zn-based catalyst material and the zeolite catalyst material is a molded body containing a zeolite catalyst material.
- the catalyst for synthesizing liquefied petroleum gas is preferably a mixture of a molded body containing a Cu--Zn catalyst material and a molded body containing a zeolite catalyst material.
- the content of the Cu--Zn-based catalyst material contained in the molded body is preferably 80% by mass or more, more preferably 90% by mass or more, and still more preferably 95% by mass or more. is.
- a liquefied petroleum gas precursor can be efficiently synthesized from carbon monoxide and hydrogen.
- the content of the Cu—Zn-based catalyst material contained in the compact may be 100% by mass.
- the above content is preferably 98% by mass or less, more preferably 96% by mass or less, and even more preferably 94% by mass or less. When the content is 98% by mass or less, it is possible to improve the moldability and mechanical strength of the molded product while maintaining efficient synthesis of the liquefied petroleum gas precursor.
- a molded body containing a Cu--Zn-based catalyst material may contain, in addition to the Cu--Zn-based catalyst material, various additives that improve moldability and mechanical strength.
- various additives include molding binders such as graphite and carbon black.
- the content of the zeolite catalyst material in the molded body containing the zeolite catalyst material is preferably 70% by mass or more, more preferably 80% by mass or more, and still more preferably 90% by mass or more.
- the content is 70% by mass or more, liquefied petroleum gas can be efficiently synthesized from the liquefied petroleum gas precursor.
- the content of the molded body containing the zeolite catalyst material contained in the molded body may be 100% by mass.
- the above content is preferably 98% by mass or less, more preferably 96% by mass or less, and even more preferably 94% by mass or less. When the content is 98% by mass or less, it is possible to improve the moldability and mechanical strength of the compact while maintaining efficient synthesis of liquefied petroleum gas.
- the molded body containing the zeolite catalyst material may contain various additives that improve moldability and mechanical strength in addition to the zeolite catalyst material.
- various additives include molding binders such as various clay binders, alumina-based binders, and silica-based binders.
- various clay binders include kaolin-based, bentonite-based, talc-based, pyrophyllite-based, molysite-based, verculolite-based, montmorillonite-based, chlorite-based, and halloysite-based binders.
- the molding binder is preferably a silica-based binder.
- the shape of the Cu--Zn-based catalyst material and zeolite catalyst material is not particularly limited.
- a desired shape such as columnar, clover-shaped, ring-shaped, spherical, or multi-hole-shaped can be selected.
- a columnar or clover-shaped molded article it is preferably an extruded article.
- the lower limit is preferably 200 ⁇ m or more, more preferably 300 ⁇ m or more, and the upper limit is preferably 10 mm or less. , more preferably 5 mm or less, and still more preferably 3 mm or less.
- the upper limit is preferably 10 mm or less. , more preferably 5 mm or less, and still more preferably 3 mm or less.
- Particle size can be determined by the dry sieving test method.
- the lower limit is preferably 0.5 g/cm 3 or more, and the upper limit is preferably 1.5 g. /cm 3 or less, more preferably 1.0 g/cm 3 or less.
- the bulk density can be determined by a sock-filled bulk density measurement method using a graduated cylinder.
- the method for producing liquefied petroleum gas of the embodiment has a reduction treatment process, a supply process, and a synthesis process.
- the catalyst for synthesizing liquefied petroleum gas is reduced.
- the liquefied petroleum gas synthesis catalyst is reduced with hydrogen.
- carbon monoxide and hydrogen are supplied to the liquefied petroleum gas synthesis catalyst reduced in the reduction treatment step.
- Carbon monoxide and hydrogen are gases.
- carbon monoxide and hydrogen may be supplied separately, or a mixed gas containing carbon monoxide and hydrogen, such as synthesis gas, may be supplied.
- the carbon monoxide and hydrogen supplied in the supply process are reacted with the reduced liquefied petroleum gas synthesis catalyst to synthesize liquefied petroleum gas.
- the ratio of propane to the total of propane and butane in the produced liquefied petroleum gas can be improved.
- the catalyst for synthesizing liquefied petroleum gas of the present embodiment is resistant to deterioration, has excellent long-term stability, and can exhibit good catalytic performance for a long period of time (for example, 70 hours or more).
- the lower limit of the gas hourly space velocity (GHSV) for supplying carbon monoxide and hydrogen is preferably 500/h or more, more preferably 1000/h or more, and still more preferably 1500/h or more.
- the upper limit is preferably 20000/h or less, more preferably 10000/h or less, and even more preferably 5000/h or less.
- gas hourly space velocity 500/h or more
- liquefied petroleum gas can be efficiently produced from carbon monoxide and hydrogen.
- gas hourly space velocity 20000/h or less, it is possible to suppress an increase in the content of unreacted substances such as carbon monoxide and hydrogen in the gas containing liquefied petroleum gas obtained after synthesis.
- the catalyst temperature (synthesis temperature) in the synthesis step has a lower limit of preferably 260° C. or higher, more preferably 270° C. or higher, still more preferably 280° C. or higher, and an upper limit of preferably 330° C. or lower. It is preferably 325° C. or lower, more preferably 320° C. or lower.
- liquefied petroleum gas can be efficiently produced from carbon monoxide and hydrogen. Further, in the synthesis step, if carbon monoxide and hydrogen are reacted at a temperature of 330° C. or lower, the deterioration of catalytic performance of the catalyst for synthesizing liquefied petroleum gas due to temperature can be suppressed. In addition, in the synthesis process, if carbon monoxide and hydrogen are reacted at a temperature of 330 ° C. or less, the resulting liquefied petroleum gas will be excessively cracked (decomposition from propane to ethane, decomposition from ethane to methane). Decrease can be suppressed.
- the lower limit is preferably 2.0 MPa or more, more preferably 3.0 MPa or more, still more preferably 3.5 MPa or more, and the upper limit is preferably 6.0 MPa or less, more preferably Carbon monoxide and hydrogen are reacted at 5.5 MPa or less, more preferably 5.0 MPa or less.
- a catalyst for synthesizing liquefied petroleum gas can be produced, for example, by mixing a Cu--Zn-based catalyst material and a zeolite catalyst material.
- the composition, ratio, state, etc. of the Cu—Zn-based catalyst material and the zeolite catalyst material are appropriately set according to the desired liquefied petroleum gas.
- the molar ratio (SiO 2 /Al 2 O 3 ) of the zeolite catalyst material can be controlled, for example, by adjusting the amount of aluminum source added during synthesis of the zeolite catalyst material.
- the amount of solid acid in the zeolite catalyst material can be controlled, for example, by the synthesis conditions (such as pH) during synthesis of the zeolite catalyst material.
- the method of supporting precious metals such as platinum and palladium on the zeolite catalyst material is not particularly limited, but examples include an impregnation method, an immersion method, and an ion exchange method.
- an impregnation liquid or an immersion liquid containing the multiple types of precious metals to be supported can be used to support the multiple types of precious metals. are preferably carried at the same time.
- platinum and palladium are simultaneously deposited using an impregnation or immersion solution containing platinum and palladium. Carrying is preferred.
- Starting materials for the noble metals supported on the zeolite catalyst material include compounds containing noble metals.
- starting materials for platinum chloroplatinic acid hexahydrate, dinitrodiammineplatinum, dichlorotetraammineplatinum, platinum oxide, platinum chloride, and the like can be used.
- starting materials for palladium palladium chloride, palladium nitrate, dinitrodiammine palladium, palladium sulfate, palladium oxide and the like can be used.
- a zeolite catalyst material After impregnating a zeolite catalyst material with a solution of a compound containing a noble metal such as a chloroplatinic acid solution or a palladium chloride solution, or after immersing the zeolite catalyst material in a solution of a compound containing a precious metal, the zeolite after this impregnation or immersion By calcining the catalyst material, the noble metal can be efficiently highly dispersed in the zeolite catalyst material, and the amount of the noble metal supported on the zeolite catalyst material can be easily controlled.
- a noble metal such as a chloroplatinic acid solution or a palladium chloride solution
- the concentration of the compound containing the precious metal in the solution of the compound containing the precious metal may be set according to the amount of the precious metal to be supported.
- the concentration of the chloroplatinic acid hexahydrate solution is preferably 0.15% by mass or more and 3.50% by mass or less.
- the concentration of the palladium chloride solution is preferably 0.1% by mass or more and 2.5% by mass or less.
- the amount of noble metal supported can be controlled by the concentration of the solution.
- the impregnation time and immersion time of the solution are preferably 10 minutes or more and 5 hours or less in order to allow the noble metal to sufficiently penetrate the zeolite catalyst material.
- the calcination temperature of the zeolite catalyst material is preferably 300° C. or more and 600° C. or less, and the calcination time of the zeolite catalyst material is preferably 30 minutes or more and 300 minutes or less.
- the method of supporting phosphorus on the zeolite catalyst material is not particularly limited, but examples include an impregnation method and an immersion method.
- Orthophosphoric acid, phosphate esters, and the like can be used as starting materials for phosphorus when supporting phosphorus on the zeolite catalyst material.
- an aqueous solution of orthophosphoric acid or phosphate ester can be used as the impregnating liquid or immersion liquid.
- the concentration of the phosphoric acid solution is preferably 2% by mass or more and 20% by mass or less.
- the impregnation time and immersion time of the phosphoric acid solution are preferably 10 minutes or more and 5 hours or less in order to sufficiently permeate the zeolite catalyst material with the phosphoric acid solution.
- the calcination temperature of the zeolite catalyst material is preferably 300°C or higher and 600°C or lower.
- the calcination time of the zeolite catalyst material is preferably 30 minutes or more and 300 minutes or less.
- the content of P can be controlled by the concentration of the phosphoric acid solution and the impregnation or immersion time with the phosphoric acid solution.
- a noble metal such as platinum or palladium
- the impregnated or immersed zeolite catalyst material is calcined, and the calcined zeolite catalyst material contains a noble metal such as platinum or palladium.
- the zeolite catalyst material After being impregnated or immersed in the solution, it is preferable to calcine the zeolite catalyst material impregnated or immersed in the solution containing precious metals such as platinum and palladium.
- the liquefied petroleum gas obtained using the catalyst for synthesizing liquefied petroleum gas contains a large amount of propane as a component, so it is suitable as a fuel that can be used stably even in cold regions.
- Example 1 (Cu—Zn-based catalyst material) A ternary oxide of copper oxide, zinc oxide, and aluminum oxide (product name: 45776 Copper based methanol synthesis catalyst, manufactured by Alpha Acer) was used as the Cu—Zn-based catalyst material.
- the Cu—Zn-based catalyst material was pelletized with a tableting machine at a pressure of 5 MPa to form pellets having a diameter of 20 mm and a thickness of about 1 mm, and the pellets were pulverized in a mortar. was sieved using an overlap of As a result, a molded body made of the Cu--Zn catalyst material having a grain size of 300 to 500 ⁇ m and a bulk density of 0.9 g/cm 3 was obtained.
- this sample was made into pellets with a diameter of 20 mm and a thickness of about 1 mm using a tableting machine, and the pellets were pulverized in a mortar.
- a shaped body composed of MFI-type zeolite catalyst material containing P and supporting Pt and Pd, having a particle size of 300 to 500 ⁇ m, a bulk density of 0.8 g/cm 3 .
- M2 is the sum of the mass of the supported noble metals (Pt, Pd), the mass of the MFI-type zeolite catalyst material supporting the noble metals, and the mass of P contained.
- the catalyst for liquefied petroleum gas synthesis was reduced with hydrogen. Subsequently, carbon monoxide and hydrogen were supplied to the liquefied petroleum gas synthesis catalyst at a gas hourly space velocity (GHSV) of 2000/h. Synthesize liquefied petroleum gas from carbon monoxide and hydrogen by controlling the temperature (synthesis temperature) to 320° C. and the pressure to 5.0 MPa while supplying carbon monoxide and hydrogen to the catalyst for synthesizing liquefied petroleum gas. did.
- GHSV gas hourly space velocity
- a reactor made of stainless steel (inner diameter 6.2 mm, total length 60 cm) was used. The center of the reactor was packed with the catalyst sandwiched between glass wool. The reactor was installed in an electric furnace, and the temperature of the electric furnace was measured by a thermocouple inserted in the center of the furnace and controlled by PID. The catalyst temperature was measured with a thermocouple inserted in the center of the catalyst layer in the reactor. Note that the temperature of the catalyst is the synthesis temperature.
- the reduction treatment of the liquefied petroleum gas synthesis catalyst was performed by supplying H 2 to the catalyst in the reactor at a flow rate of 40 ml/min at 380° C. for 2 hours before the reaction.
- CO conversion CO conversion rate (%) [(CO flow rate at inlet ( ⁇ mol/min) - CO flow rate at outlet ( ⁇ mol/min))/CO flow rate at inlet ( ⁇ mol/min)] ⁇ 100
- the CO conversion rate indicates the rate at which carbon monoxide (CO) in the raw material gas is converted to hydrocarbons and the like.
- Example 2 The same operation as in Example 1 was performed except that an aqueous solution of 0.7747 g of orthophosphoric acid dissolved in 7.2000 g of pure water was used instead of an aqueous solution of 0.3834 g of orthophosphoric acid dissolved in 7.2000 g of pure water. went.
- Example 3 The same operation as in Example 1 was performed except that an aqueous solution of 1.1740 g of orthophosphoric acid dissolved in 7.2000 g of pure water was used instead of an aqueous solution of 0.3834 g of orthophosphoric acid dissolved in 7.2000 g of pure water. went.
- Example 4 As a Cu—Zn-based catalyst material, instead of a ternary oxide of copper oxide, zinc oxide, and aluminum oxide (product name: 45776 Copper based methanol synthesis catalyst, manufactured by Alpha Acer), copper oxide and zinc oxide are used. A quaternary oxide CuO-ZnO-ZrO 2 -Al 2 O 3 of zirconium oxide and aluminum oxide was used, and chloroplatinic acid hexahydrate was added to 7.5758 g of 10% hydrochloric acid as the MFI type zeolite catalyst material.
- a ternary oxide of copper oxide, zinc oxide, and aluminum oxide product name: 45776 Copper based methanol synthesis catalyst, manufactured by Alpha Acer
- Example 1 except that an aqueous solution of 0.1334 g of chloroplatinic acid hexahydrate dissolved in 7.5758 g of 10% hydrochloric acid was used instead of an aqueous solution of 0.0419 g of chloroplatinic acid hexahydrate and 0.0574 g of palladium chloride. performed the same operation.
- CuO--ZnO--ZrO 2 --Al 2 O 3 was prepared according to the following procedure.
- the precipitated slurry was transferred to a suction filtration device and filtered to obtain a precipitated cake.
- the resulting precipitated cake was washed 20 times with 250 ml of distilled water to remove Na ions from the precipitated cake.
- the precipitated cake was transferred to an evaporating dish and dried in a drying oven at 120° C. for 12 hours.
- the temperature was raised to 350° C. at a rate of 10° C./min in a firing furnace and fired at 350° C. for 2 hours.
- This powder was made into pellets with a diameter of 20 mm and a thickness of about 1 mm using a tableting machine at a pressure of 5 MPa, and the pellets were pulverized in a mortar. It was sieved using As a result, a molded body made of the Cu—Zn-based catalyst material having a grain size of 300 to 500 ⁇ m, a bulk density of 0.9 g/cm 3 , was obtained.
- This Cu—Zn-based catalyst material consists of copper oxide (CuO), zinc oxide (ZnO), zirconium oxide (ZrO 2 ) and aluminum oxide (Al 2 O 3 ), and has a chemical composition of 62.7% by mass of copper oxide. , 27.3% by mass of zinc oxide, 5.0% by mass of zirconium oxide, and 5.3% by mass of aluminum oxide.
- Example 1 The same operation as in Example 1 was performed except that an aqueous solution of 1.9979 g of orthophosphoric acid dissolved in 7.2000 g of pure water was used instead of an aqueous solution of 0.3834 g of orthophosphoric acid dissolved in 7.2000 g of pure water. went.
- a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material supporting a noble metal are included, and the mass of P (M P ) in the MFI-type zeolite catalyst material is the mass of the MFI-type zeolite catalyst material ( Examples 1 to 4, which are more than 0% by mass and less than 4.5% by mass with respect to M2), are Comparative Example 2 in which the MFI-type zeolite catalyst material does not contain P, and the mass of P in the MFI-type zeolite catalyst material (M The ratio of propane to the total of propane and butane was significantly higher than in Comparative Example 1 in which P 2 ) was 4.5% by mass or more relative to the mass (M2) of the MFI-type zeolite catalyst material.
- a Cu—Zn-based catalyst material and an MFI-type zeolite catalyst material supporting a noble metal are included, and the mass of P (M P ) in the MFI-type zeolite catalyst material is the mass (M2) of the MFI-type zeolite catalyst material.
- M P the mass of P in the MFI-type zeolite catalyst material
- M2 the mass of the MFI-type zeolite catalyst material.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- General Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Catalysts (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Description
[2] 前記貴金属は、Ptのみである、上記[1]に記載の液化石油ガス合成用触媒。
[3] 前記貴金属は、Pdのみである、上記[1]に記載の液化石油ガス合成用触媒。
[4] 前記貴金属は、PtおよびPdを含む、上記[1]に記載の液化石油ガス合成用触媒。
[5] 前記MFI型ゼオライト触媒物質に担持されるPtの質量(MPt)およびPdの質量(MPd)の合計質量(MPt+MPd)に対するPdの質量(MPd)の比(MPd/(MPt+MPd))は、0.70以下である、上記[4]に記載の液化石油ガス合成用触媒。
[6] 前記MFI型ゼオライト触媒物質における前記貴金属の質量(MN)は、前記MFI型ゼオライト触媒物質の質量(M2)に対して0.1質量%以上1.0質量%以下である、上記[1]~[5]のいずれか1つに記載の液化石油ガス合成用触媒。
[7] 前記Cu-Zn系触媒物質と前記MFI型ゼオライト触媒物質とは、互いに独立して存在し、前記Cu-Zn系触媒物質および前記MFI型ゼオライト触媒物質は、ともに粉粒体または成形体である、上記[1]~[6]のいずれか1つに記載の液化石油ガス合成用触媒。
[8] 上記[1]~[7]のいずれか1つに記載の液化石油ガス合成用触媒を還元処理する還元処理工程と、前記還元処理工程で還元処理した液化石油ガス合成用触媒に、一酸化炭素と水素とを供給する供給工程と、前記還元処理した液化石油ガス合成用触媒によって、前記供給工程で供給された一酸化炭素および水素を反応させ、液化石油ガスを合成する合成工程とを有する、液化石油ガスの製造方法。
[9] 前記供給工程において、一酸化炭素と水素とを供給するガス空間速度(GHSV)は、500/h以上20000/h以下である、上記[8]に記載の液化石油ガスの製造方法。
[10] 前記合成工程において、260℃以上330℃以下の温度で、一酸化炭素および水素を反応させる、上記[8]または[9]に記載の液化石油ガスの製造方法。
[11] 前記合成工程において、2.0MPa以上6.0MPa以下の圧力で、一酸化炭素および水素を反応させる、上記[8]~[10]のいずれか1つに記載の液化石油ガスの製造方法。
また、本実施形態において製造される、プロパンおよびブタンの収率(プロパンの収率とブタンの収率の合計)は、例えば20Cmol%以上であり、好ましくは25Cmol%以上である。
(Cu-Zn系触媒物質)
Cu-Zn系触媒物質として、酸化銅と酸化亜鉛と酸化アルミニウムとの三元系酸化物(製品名:45776 Copper based methanol synthesis catalyst、アルファ・エイサー社製)を用いた。当該Cu-Zn系触媒物質を、錠剤成形器で圧力5MPaの条件で直径20mm、厚さ約1mmのペレットとし、そのペレットを乳鉢で粉砕した後、砕いた試料を300μmのメッシュと500μmのメッシュとを重ねて用いてふるい分けた。これにより、粒径が300~500μm、粒状で、嵩密度が0.9g/cm3のCu-Zn系触媒物質からなる成形体を得た。
MFI型ゼオライト(ZSM-5、SiO2のモル数/Al2O3のモル数=40)12gをメノウ乳鉢に投入し、そこへ純水7.2000gにオルトリン酸0.3834gを溶かした水溶液をピペットで滴加しながら乳棒で均一になるように混ぜて約1時間かけて含浸した。その後、100℃で10時間乾燥し、空気雰囲気下で常温から500℃まで50分で昇温し同温度で120分間焼成した。
液化石油ガス合成用触媒として、上記で得られたCu-Zn系触媒物質からなる成形体と、上記で得られたMFI型ゼオライト触媒物質からなる成形体と、の混合物を用いた。混合したCu-Zn系触媒物質の質量(M1)とMFI型ゼオライト触媒物質の質量(M2)との合計質量に対するCu-Zn系触媒物質の質量(M1)の比(M1/(M1+M2))を、表1に記載する。なお、M2は、担持された貴金属の質量(Pt、Pd)と、貴金属を担持するMFI型ゼオライト触媒物質の質量と、含有されるPの質量との合計である。そして、液化石油ガス合成用触媒を用いて、以下の条件で液化石油ガスを製造した。
反応開始後の所定の時点で、オンラインに接続したガスクロマトグラフを用いてガスの分析を行った。使用したガスクロマトグラフは、GC-2014(島津製作所製)を用いた。以下に分析対象と分析条件を記す。
カラム:RT-Q-BOND
昇温プログラム:(i)45℃(30minホールド)
(ii)2℃/minで175℃まで昇温
(iii)175℃(40minホールド)
分析時間 135min
実施例および比較例で用いた液化石油ガス合成用触媒、ならびに上記実施例および比較例で得られた液化石油ガスについて、下記の測定および評価を行った。結果を表1および図1~3に示す。図面について、プロパンおよびブタンの合計に対するプロパンの割合を図1に示し、プロパンの収率およびブタンの収率を図2に示し、プロパンおよびブタンの合計収率を図3に示す。液化石油ガスについては、一酸化炭素と水素との反応開始から6時間後に測定した結果である。
SiO2/Al2O3比(SiO2のモル数/Al2O3のモル数)は、ICP-OES(誘導結合プラズマ発光分光分析)で測定した。
MFI型ゼオライト触媒物質に対するPdおよびPtの担持の有無、上記割合((MPt+MPd)/M2)×100、ならびに比(MPd/(MPt+MPd))は、ICP-OES(誘導結合プラズマ発光分光分析)で測定した。
MFI型ゼオライト触媒物質に対するPの含有の有無、およびMFI型ゼオライト触媒物質に対するPの含有割合は、ICP-OES(誘導結合プラズマ発光分光分析)で測定した。
CO転化率(%)=[(入口のCO流量(μmol/min)-出口のCO流量(μmol/min))/入口のCO流量(μmol/min)]×100
CO転化率は、反応原料ガス中の一酸化炭素(CO)が炭化水素等に転化された割合を示す。
プロパンの収率(Cmol%)=[(C3生成速度×3)/(入口COの流量)×106/22400]×100
C3生成速度の単位はCμmol/min、入り口COの流量の単位はml(Normal)/minである。C3はプロパンである。
ブタンの収率(Cmol%)=[(C4生成速度×4)/(入口COの流量)×106/22400]×100
C4生成速度の単位はCμmol/min、入り口COの流量の単位はml(Normal)/minである。C4はブタンである。
プロパンおよびブタンの合計収率(Cmol%)=プロパンの収率(Cmol%)+ブタンの収率(Cmol%)
プロパンおよびブタンの合計に対するプロパンの割合=[プロパンのモル数/(プロパンのモル数+ブタンのモル数)]×100
純水7.2000gにオルトリン酸0.3834gを溶かした水溶液の代わりに、純水7.2000gにオルトリン酸0.7747gを溶かした水溶液を用いたことの他は、実施例1と同様の操作を行った。
純水7.2000gにオルトリン酸0.3834gを溶かした水溶液の代わりに、純水7.2000gにオルトリン酸1.1740gを溶かした水溶液を用いたことの他は、実施例1と同様の操作を行った。
Cu-Zn系触媒物質として、酸化銅と酸化亜鉛と酸化アルミニウムとの三元系酸化物(製品名:45776 Copper based methanol synthesis catalyst、アルファ・エイサー社製)の代わりに、酸化銅と酸化亜鉛と酸化ジルコニウムと酸化アルミニウムとの四元系酸化物CuO-ZnO-ZrO2-Al2O3を用いたこと、および、MFI型ゼオライト触媒物質として、10%塩酸7.5758gに塩化白金酸六水和物0.0419gおよび塩化パラジウム0.0574gを溶かした水溶液の代わりに、10%塩酸7.5758gに塩化白金酸六水和物0.1334gを溶かした水溶液を用いたことの他は、実施例1と同様の操作を行った。CuO-ZnO-ZrO2-Al2O3は以下の手順にしたがって調製した。
硝酸銅三水和物95.13g、硝酸亜鉛六水和物49.73g、硝酸アルミニウム九水和物19.33g、および硝酸ジルコニウム二水和物5.31gを、蒸留水584gに溶解することで、A液を調製した。また、無水炭酸ナトリウム148gを蒸留水2000gに溶解することで、B液を調製した。
純水7.2000gにオルトリン酸0.3834gを溶かした水溶液の代わりに、純水7.2000gにオルトリン酸1.9979gを溶かした水溶液を用いたことの他は、実施例1と同様の操作を行った。
純水7.2000gにオルトリン酸0.3834gを溶かした水溶液を含浸、乾燥、焼成する操作は行わずに、MFI型ゼオライト(ZSM-5、SiO2のモル数/Al2O3のモル数=40)10gをメノウ乳鉢に投入し、そこへ10%塩酸7.5758gに塩化白金酸六水和物0.0419gおよび塩化パラジウム0.0574gを溶かした水溶液をピペットで滴加したことの他は、実施例1と同様の操作を行った。
実施例2と同様の操作を行い反応温度のみ300℃に変えて、一酸化炭素と水素との反応開始から200時間後まで測定した結果を、図4に示す。
Claims (11)
- Cu-Zn系触媒物質と、
貴金属を担持するMFI型ゼオライト触媒物質と、
を含み、
前記MFI型ゼオライト触媒物質は、Pを含有し、
前記MFI型ゼオライト触媒物質におけるPの質量(MP)は、前記MFI型ゼオライト触媒物質の質量(M2)に対して0質量%超4.5質量%未満である、液化石油ガス合成用触媒。 - 前記貴金属は、Ptのみである、請求項1に記載の液化石油ガス合成用触媒。
- 前記貴金属は、Pdのみである、請求項1に記載の液化石油ガス合成用触媒。
- 前記貴金属は、PtおよびPdを含む、請求項1に記載の液化石油ガス合成用触媒。
- 前記MFI型ゼオライト触媒物質に担持されるPtの質量(MPt)およびPdの質量(MPd)の合計質量(MPt+MPd)に対するPdの質量(MPd)の比(MPd/(MPt+MPd))は、0.70以下である、請求項4に記載の液化石油ガス合成用触媒。
- 前記MFI型ゼオライト触媒物質における前記貴金属の質量(MN)は、前記MFI型ゼオライト触媒物質の質量(M2)に対して0.1質量%以上1.0質量%以下である、請求項1~5のいずれか1項に記載の液化石油ガス合成用触媒。
- 前記Cu-Zn系触媒物質と前記MFI型ゼオライト触媒物質とは、互いに独立して存在し、
前記Cu-Zn系触媒物質および前記MFI型ゼオライト触媒物質は、ともに粉粒体または成形体である、請求項1~6のいずれか1項に記載の液化石油ガス合成用触媒。 - 請求項1~7のいずれか1項に記載の液化石油ガス合成用触媒を還元処理する還元処理工程と、
前記還元処理工程で還元処理した液化石油ガス合成用触媒に、一酸化炭素と水素とを供給する供給工程と、
前記還元処理した液化石油ガス合成用触媒によって、前記供給工程で供給された一酸化炭素および水素を反応させ、液化石油ガスを合成する合成工程と
を有する、液化石油ガスの製造方法。 - 前記供給工程において、一酸化炭素と水素とを供給するガス空間速度(GHSV)は、500/h以上20000/h以下である、請求項8に記載の液化石油ガスの製造方法。
- 前記合成工程において、260℃以上330℃以下の温度で、一酸化炭素および水素を反応させる、請求項8または9に記載の液化石油ガスの製造方法。
- 前記合成工程において、2.0MPa以上6.0MPa以下の圧力で、一酸化炭素および水素を反応させる、請求項8~10のいずれか1項に記載の液化石油ガスの製造方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22833333.2A EP4364845A4 (en) | 2021-07-02 | 2022-07-01 | CATALYST FOR LIQUEFIED GAS SYNTHESIS AND PROCESS FOR THE PRODUCTION OF LIQUEFIED GAS |
US18/575,882 US20240307860A1 (en) | 2021-07-02 | 2022-07-01 | Catalyst for synthesizing liquefied petroleum gas and method for producing liquefied petroleum gas |
JP2023532094A JPWO2023277188A1 (ja) | 2021-07-02 | 2022-07-01 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-111070 | 2021-07-02 | ||
JP2021111070 | 2021-07-02 | ||
JP2022067957 | 2022-04-15 | ||
JP2022-067957 | 2022-04-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023277188A1 true WO2023277188A1 (ja) | 2023-01-05 |
Family
ID=84692798
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/026510 WO2023277188A1 (ja) | 2021-07-02 | 2022-07-01 | 液化石油ガス合成用触媒および液化石油ガスの製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240307860A1 (ja) |
EP (1) | EP4364845A4 (ja) |
JP (1) | JPWO2023277188A1 (ja) |
TW (1) | TW202320912A (ja) |
WO (1) | WO2023277188A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6211548A (ja) * | 1985-07-01 | 1987-01-20 | ナシヨナル デイステイラ−ズ アンド ケミカル コ−ポレ−シヨン | 結晶性アルミノシリケ−ト組成物、その製法及び低分子量炭化水素への合成ガス転化反応でのその利用 |
WO2004076063A1 (ja) * | 2003-02-26 | 2004-09-10 | Japan Gas Synthesize, Ltd. | 液化石油ガス製造用触媒、その製造方法、および、この触媒を用いた液化石油ガスの製造方法 |
JP2006052304A (ja) * | 2004-08-11 | 2006-02-23 | Nippon Gas Gosei Kk | 液化石油ガスの製造方法 |
JP2008195773A (ja) * | 2007-02-09 | 2008-08-28 | Nippon Gas Gosei Kk | 合成ガスからの液化石油ガス及び/又はガソリンの製造方法 |
JP4965258B2 (ja) | 2004-08-10 | 2012-07-04 | 日本ガス合成株式会社 | 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 |
JP5405103B2 (ja) | 2006-02-17 | 2014-02-05 | 日本ガス合成株式会社 | 液化石油ガス製造用触媒 |
JP2014508632A (ja) * | 2010-11-02 | 2014-04-10 | サウディ ベーシック インダストリーズ コーポレイション | Zsm−5系触媒を使用した軽質オレフィンの製造方法 |
JP2019037939A (ja) | 2017-08-25 | 2019-03-14 | 国立大学法人富山大学 | Lpg合成用触媒 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016007607A1 (en) * | 2014-07-11 | 2016-01-14 | Dow Global Technologies Llc | Conversion of carbon monoxide, carbon dioxide, or a combination thereof over hybrid catalyst |
-
2022
- 2022-07-01 WO PCT/JP2022/026510 patent/WO2023277188A1/ja active Application Filing
- 2022-07-01 JP JP2023532094A patent/JPWO2023277188A1/ja active Pending
- 2022-07-01 EP EP22833333.2A patent/EP4364845A4/en active Pending
- 2022-07-01 US US18/575,882 patent/US20240307860A1/en active Pending
- 2022-07-04 TW TW111124959A patent/TW202320912A/zh unknown
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6211548A (ja) * | 1985-07-01 | 1987-01-20 | ナシヨナル デイステイラ−ズ アンド ケミカル コ−ポレ−シヨン | 結晶性アルミノシリケ−ト組成物、その製法及び低分子量炭化水素への合成ガス転化反応でのその利用 |
WO2004076063A1 (ja) * | 2003-02-26 | 2004-09-10 | Japan Gas Synthesize, Ltd. | 液化石油ガス製造用触媒、その製造方法、および、この触媒を用いた液化石油ガスの製造方法 |
JP4965258B2 (ja) | 2004-08-10 | 2012-07-04 | 日本ガス合成株式会社 | 液化石油ガス製造用触媒、および、この触媒を用いた液化石油ガスの製造方法 |
JP2006052304A (ja) * | 2004-08-11 | 2006-02-23 | Nippon Gas Gosei Kk | 液化石油ガスの製造方法 |
JP5405103B2 (ja) | 2006-02-17 | 2014-02-05 | 日本ガス合成株式会社 | 液化石油ガス製造用触媒 |
JP2008195773A (ja) * | 2007-02-09 | 2008-08-28 | Nippon Gas Gosei Kk | 合成ガスからの液化石油ガス及び/又はガソリンの製造方法 |
JP4558751B2 (ja) | 2007-02-09 | 2010-10-06 | 日本ガス合成株式会社 | 合成ガスからの液化石油ガス及び/又はガソリンの製造方法 |
JP2014508632A (ja) * | 2010-11-02 | 2014-04-10 | サウディ ベーシック インダストリーズ コーポレイション | Zsm−5系触媒を使用した軽質オレフィンの製造方法 |
JP2019037939A (ja) | 2017-08-25 | 2019-03-14 | 国立大学法人富山大学 | Lpg合成用触媒 |
Non-Patent Citations (3)
Title |
---|
CONGMING LIHONGYAN BANWEIJIE CAIYU ZHANGZHONG LIKAORU FUJIMOTO: "Direct synthesis of iso-butane from synthesis gas or CO over CuZnZrAl/Pd-β hybrid catalyst", JOURNAL OF SAUDI CHEMICAL SOCIETY, vol. 21, 2017, pages 974 - 982 |
CONGMING LIKAORU FUJIMOTO: "Synthesis gas conversion to iso-butane-rich hydrocarbons over a hybrid catalyst containing Beta zeolite - role of doped palladium and influence of the Si0 /Al O ratio", CATALYSIS SCIENCE TECHNOLOGY, vol. 5, 2015, pages 4501 - 4510 |
See also references of EP4364845A4 |
Also Published As
Publication number | Publication date |
---|---|
US20240307860A1 (en) | 2024-09-19 |
TW202320912A (zh) | 2023-06-01 |
EP4364845A4 (en) | 2024-10-23 |
EP4364845A1 (en) | 2024-05-08 |
JPWO2023277188A1 (ja) | 2023-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105188915B (zh) | 碱土金属/金属氧化物负载型催化剂 | |
KR101994152B1 (ko) | 탄소 침적의 감소를 위해, 금속이온이 치환된 페로브스카이트 금속산화물 촉매 및 이의 제조 방법, 그리고 이를 이용한 메탄 개질 반응 방법 | |
JP3882044B2 (ja) | Fischer−Tropsch合成用触媒の調製方法 | |
JP4132295B2 (ja) | 炭酸ガスを含む低級炭化水素ガスから液体炭化水素油を製造する方法 | |
KR102207675B1 (ko) | 합성 가스 제조 촉매용 담체 및 그의 제조 방법, 합성 가스 제조 촉매 및 그의 제조 방법, 그리고 합성 가스의 제조 방법 | |
WO2023277187A1 (ja) | 液化石油ガス合成用触媒および液化石油ガスの製造方法 | |
KR101480801B1 (ko) | 이산화탄소 개질반응용 모노리스 촉매, 이의 제조방법 및 이를 이용한 합성가스의 제조방법 | |
WO2023277188A1 (ja) | 液化石油ガス合成用触媒および液化石油ガスの製造方法 | |
JPWO2005037962A1 (ja) | プロパンまたはブタンを主成分とする液化石油ガスの製造方法 | |
JP6631245B2 (ja) | 炭化水素の改質用触媒の製造方法及び軽質炭化水素の改質方法 | |
WO2017213093A1 (ja) | マグネシア系触媒担体及びその製造方法 | |
WO2023277189A1 (ja) | 液化石油ガス合成用触媒および液化石油ガスの製造方法 | |
KR100336968B1 (ko) | 수식된 지르코니아 담지 니켈계 개질촉매 및 이를 이용한천연가스로부터 합성가스의 제조방법 | |
KR20250002356A (ko) | 액화석유가스 합성용 촉매 및 액화석유가스의 제조 방법 | |
WO2012102256A1 (ja) | フィッシャー・トロプシュ合成用触媒、及びその製造方法、並びにフィッシャー・トロプシュ合成用触媒を用いた炭化水素類の製造方法 | |
WO2024143458A1 (ja) | 液化石油ガス製造用反応器および液化石油ガス製造用反応装置 | |
CN117642227A (zh) | 液化石油气合成用催化剂及液化石油气的制造方法 | |
JP4776403B2 (ja) | 炭化水素の改質用触媒 | |
JP2004196874A (ja) | フィッシャー・トロプシュ法による炭化水素類の製造方法 | |
JP2024095452A (ja) | 混合触媒およびジメチルエーテルの製造方法 | |
CN116889870A (zh) | 二氧化碳还原催化剂 | |
CN114870852A (zh) | 乙酸自热重整制氢用负载型Ni/W-ZrO2催化剂 | |
JP2003154268A (ja) | ジメチルエーテル改質触媒および該触媒を用いる水素含有ガス製造方法 | |
JPH05208133A (ja) | 水蒸気改質触媒 | |
JPH0440063B2 (ja) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22833333 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023532094 Country of ref document: JP |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112023027741 Country of ref document: BR |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022833333 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022833333 Country of ref document: EP Effective date: 20240202 |
|
ENP | Entry into the national phase |
Ref document number: 112023027741 Country of ref document: BR Kind code of ref document: A2 Effective date: 20231228 |