[go: up one dir, main page]

WO2022269819A1 - 制御装置 - Google Patents

制御装置 Download PDF

Info

Publication number
WO2022269819A1
WO2022269819A1 PCT/JP2021/023835 JP2021023835W WO2022269819A1 WO 2022269819 A1 WO2022269819 A1 WO 2022269819A1 JP 2021023835 W JP2021023835 W JP 2021023835W WO 2022269819 A1 WO2022269819 A1 WO 2022269819A1
Authority
WO
WIPO (PCT)
Prior art keywords
thrust
temperature
actuator
control device
speed
Prior art date
Application number
PCT/JP2021/023835
Other languages
English (en)
French (fr)
Other versions
WO2022269819A9 (ja
Inventor
太郎 小木曽
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2021/023835 priority Critical patent/WO2022269819A1/ja
Priority to CN202180099508.XA priority patent/CN117501204A/zh
Priority to JP2023529332A priority patent/JP7640691B2/ja
Priority to DE112021007487.3T priority patent/DE112021007487T5/de
Priority to US18/567,770 priority patent/US20240280958A1/en
Publication of WO2022269819A1 publication Critical patent/WO2022269819A1/ja
Publication of WO2022269819A9 publication Critical patent/WO2022269819A9/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/404Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • G01L5/0028Force sensors associated with force applying means
    • G01L5/0038Force sensors associated with force applying means applying a pushing force
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/19Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by positioning or contouring control systems, e.g. to control position from one programmed point to another or to control movement along a programmed continuous path
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/416Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37431Temperature

Definitions

  • the present invention relates to a control device.
  • Abutment is a method of positioning a member by placing a reference member, moving the member to be positioned, and stopping the member when it comes into contact with the reference member.
  • Patent Literature 1 discloses a machine tool having a variable-speed motor for driving a movable part and a control mechanism for controlling the rotation of the variable-speed motor.
  • Detecting means for detecting an excessive current flowing through the variable speed motor and emitting a position signal when the moving part abuts against the stopper, and a predetermined position is stored based on the signal from the detecting means, and the movable part has reached the predetermined position.
  • a position register for issuing a stop signal to a control mechanism based on said memory to stop the variable speed motor.
  • the load pressure of the cylinder changes depending on the temperature of the working fluid.
  • the load pressure is high because the viscosity is high.
  • the load pressure is low because the viscosity is low. Therefore, when the stopper contact is determined based on the increase in the load pressure, when the temperature of the working fluid is low, there is a possibility that the increase in the load pressure before the stopper contact is erroneously determined as the stopper contact.
  • the temperature of the working fluid is high, it is not preferable to set the load pressure for judging the contact with the stopper unnecessarily high.
  • a control device is a control device for a machine, and includes an actuator that generates a thrust force, a thrust detection unit that detects the thrust force of the actuator, a temperature acquisition unit that acquires a temperature, and a temperature monotonic a threshold calculation unit that calculates a decreasing threshold; and a collision detection unit that compares the thrust of the actuator with the threshold and detects collision of a member driven by the thrust of the actuator when the thrust exceeds the threshold.
  • a control device is a control device for a machine, and includes an actuator that generates thrust, a temperature acquisition unit that acquires temperature, and a thrust limit value that calculates a thrust limit value that monotonically decreases with respect to temperature.
  • a calculator a thrust limiter that limits the thrust of the actuator with the thrust limit value as the upper limit, a speed detector that detects the speed of the member driven by the thrust of the actuator, and a collision that is detected when the member stops. and a bump detection unit.
  • abutment can be detected in response to changes in environmental temperature.
  • FIG. 1 is a block diagram of a control device of the first disclosure
  • FIG. It is a graph which shows the relationship between a threshold value and detected temperature. It is a graph which shows the relationship between a threshold value and detected temperature.
  • 4 is a flowchart for explaining the operation of the control device of the first disclosure
  • Fig. 2 is a block diagram of a control device of the second disclosure
  • 4 is a graph showing the relationship between thrust limit value and detected temperature.
  • 4 is a graph showing the relationship between thrust limit value and detected temperature.
  • 8 is a flow chart illustrating the operation of the control device of the second disclosure; It is a figure explaining the example which applied the collision detection of this indication to the injection molding machine. It is a figure explaining the example which applied the collision detection of this indication to the grinding machine. It is a figure explaining the hardware constitutions of a control apparatus.
  • the control device 100 of the first disclosure will be described with reference to the drawings.
  • the control device 100 is connected to or integrated with the machine, and includes a servo motor, which is a kind of actuator for controlling the machine.
  • Machines to be controlled include, but are not limited to, lathes, drilling machines, boring machines, milling machines, grinding machines, machining centers, electrical discharge machines, injection molding machines, and the like.
  • the control device 100 of the present disclosure controls actuators.
  • a control object of the control device is a machine with an actuator.
  • Actuators include, but are not limited to, servo motors, stepping motors, and linear motors powered by electricity, hydraulic cylinders and motors powered by hydraulic pressure, and pneumatic cylinders and motors operated by high-pressure air.
  • FIG. 1 is a block diagram of the control device 100 that detects the abutment of the table 20.
  • the control device 100 includes a speed command generation unit 10, a speed detection unit 11, a speed control unit 12, a thrust control unit 13, an actuator 14, a thrust (current) detection unit 15, a collision detection unit 16, a temperature acquisition unit 17, and a temperature monitor.
  • a unit 18 and a threshold calculation unit 19 are provided.
  • the speed command generator 10 outputs a speed command signal for the table 20.
  • a speed detector 11 detects the speed of the table 20 .
  • the speed control unit 12 outputs a thrust command to the thrust control unit 13 so that the speed of the table 20 follows the speed command.
  • the thrust controller 13 causes the thrust of the actuator to follow the thrust command. For example, if the actuator 14 is a servomotor, the thrust controller 13 supplies current to the actuator 14 .
  • Actuator 14 drives the screw feed mechanism. The thrust of the screw feed mechanism moves the table 20 at a predetermined speed.
  • the control device 100 moves the table 20 in the direction of the stopper 21 .
  • the table 20 stops.
  • the thrust (current) of the actuator 14 increases.
  • a thrust (current) detection unit 15 detects an increase in thrust.
  • the collision detection unit 16 compares the increased thrust with a threshold, and outputs a signal to the speed command generation unit 10 to stop the table 20 when the thrust of the actuator 14 exceeds the threshold. This completes the butting.
  • the temperature acquisition unit 17 acquires the detected temperature T from the machine itself or a temperature sensor external to the machine.
  • the detected temperature T is acquired using a temperature sensor provided in advance in the machine, so there is no need to provide a new temperature sensor.
  • a new temperature sensor may be provided for collision detection.
  • Existing temperature sensors include the following. (1) Factory thermometer. Thermometers are installed in factories that handle precision machinery and food. In some cases, thermometers are installed to maintain the safety and health of workers.
  • the temperature acquisition unit 17 acquires the detected temperature T from an existing thermometer provided outside the machine.
  • (3) Hydraulic system oil temperature gauge Temperature sensors are commonly provided to monitor overheating of the hydraulic fluid.
  • Control panel temperature sensor There are many devices in the control panel. In order to prevent malfunction and deterioration of equipment due to high temperatures, a temperature sensor may be attached to the control panel. Although the detected temperature T increases as the machine operates, it can be expected to be the same as the environmental temperature when the machine starts. (5) servo motor temperature sensor; A servomotor is generally provided with a temperature sensor to monitor the temperature so as not to exceed the allowable maximum temperature determined by the insulation class. Although the detected temperature T increases as the machine operates, it can be expected to be the same as the environmental temperature when the machine starts. Even an electric motor other than a servomotor may have a temperature sensor.
  • the temperature acquisition unit 17 may acquire calendar information from the control device itself or from the outside of the control device, and acquire the temperature associated with the calendar information in advance as the detected temperature T.
  • calendar information refers to date or time.
  • the detected temperature T is a temperature associated with a relatively high temperature due to summer, and the detected temperature T is a temperature associated with a relatively low temperature due to winter.
  • the detected temperature T is a temperature associated with a relatively high temperature because it is daytime, and the detected temperature T is a temperature associated with a relatively low temperature because it is nighttime.
  • the binary value of summer or winter may be determined from the date, and the temperature associated with each may be acquired as the detected temperature T.
  • a plurality of classes may be provided for the date change leading to , and the temperature associated with each class may be obtained as the detected temperature T.
  • two values of daytime or nighttime may be determined from the time, and the temperature associated with each may be obtained as the detected temperature T.
  • the temperature associated with each may be obtained as the detected temperature T.
  • the detected temperature T is a value for calculating the thrust threshold or limit value. Therefore, in associating the calendar information with the temperature, the temperature is merely an intermediate variable. Therefore, the present disclosure also includes a mode of estimating the temperature from the calendar information and calculating a thrust threshold value or a thrust limit value to be described later.
  • the temperature monitoring unit 18 monitors the temperature acquired by the temperature acquisition unit 17 .
  • the threshold calculator 19 calculates a threshold for collision detection based on the detected temperature T acquired by the temperature acquirer 17 .
  • the graphs of FIGS. 2 and 3 show the relationship between threshold and temperature.
  • the equation for calculating the threshold is not limited to the examples of FIGS. 2 and 3, as long as the threshold monotonically decreases with temperature.
  • the detected temperature T in this graph is an absolute temperature.
  • the reason why the detected temperature T is an absolute temperature is that there is no need to consider a change in sign.
  • the detected temperature T does not necessarily have to be an absolute temperature.
  • FIG. 2 is an example of a linear expression with a negative slope.
  • the formula of the graph indicated by the dotted line is a(T 0 ⁇ T)+I TH (here, T 0 : reference temperature [K] (about 293K), a: parameter for adjusting sensitivity to temperature change, I TH : reference threshold at temperature).
  • FIG. 3 is an example of an inverse proportional formula.
  • the formula of the graph indicated by the dotted line is [(T 0 ⁇ a)/(T ⁇ a)] ⁇ I TH (here, T 0 : reference temperature [K] (about 293K), a: sensitivity to temperature change parameter to be adjusted, I TH : threshold at reference temperature).
  • the threshold is provided with an upper limit value IHL and a lower limit value ILL .
  • Graphs shown by solid lines in FIGS. 2 and 3 are outputs when the calculated values are limited by the upper limit value IHL and the lower limit value ILL .
  • the upper limit value IHL is a threshold value when a cold day is assumed
  • the lower limit value ILL is a threshold value when a hot day is assumed.
  • the temperature acquisition unit 17 acquires the detected temperature T at the time of startup (step S2).
  • the threshold calculator 19 calculates a thrust threshold for detecting a collision based on the detected temperature T (step S3).
  • the thrust threshold monotonically decreases with respect to the detected temperature T.
  • step S4 When the operator instructs the start of collision detection (step S4), the table 20 moves toward the stopper 21 (step S5). When the table 20 reaches the stopper 21 (step S6), the table 20 stops (step S7) and the thrust of the actuator 14 increases (step S8).
  • the abutment detection unit 16 compares the threshold calculated by the threshold calculation unit 19 with the thrust detected by the thrust (current) detection unit 15, and when the thrust exceeds the threshold (step S9), the table 20 moves toward the stopper 21. It detects that it has reached (strike) (step S10).
  • the threshold is increased at low temperatures. At low temperatures, the viscosity of the lubricant increases and a relatively high thrust is required to move the table 20 . According to the first disclosure, by increasing the threshold value at low temperatures, it is possible to prevent erroneous detection of the thrust necessary for moving the table at low temperatures as "strike".
  • the control device 100 of the first disclosure lowers the threshold when the temperature is high. When the threshold is high, the thrust acts on the stopper 21 until the thrust reaches the threshold. In the first disclosure, by lowering the threshold at high temperatures, excessive contact force is not applied to the stopper 21 .
  • the control device 100 of the present disclosure performs speed control as well as threshold adjustment. Without controlling or limiting the speed, “bumping" may result in excessive speed at which table 20 contacts stopper 21 .
  • the control device of the present disclosure controls the speed of the table 20 to prevent collision between the table 20 and the stopper 21 .
  • the detected temperature T is obtained when the machine is started, but the order of processing is not limited to this. If the detected temperature T that matches the ambient temperature can be obtained even after the machine is in operation, the detected temperature may be obtained or the threshold may be calculated after the start of collision detection is instructed.
  • FIG. 5 is a block diagram of the control device 100 of the second disclosure.
  • the control device 100 of the second disclosure includes a speed command generator 10, a speed detector 11, a speed controller 12, a thrust controller 13, an actuator 14, a thrust (current) detector 15, a temperature acquirer 17, and a temperature monitor. 18 , a collision detection unit 22 , a thrust limit value calculation unit 23 , and a thrust limit unit 24 .
  • the speed command generator 10 outputs a speed command signal for the table 20.
  • a speed detector 11 detects the speed of the table 20 .
  • the speed control unit 12 outputs a thrust command to the thrust control unit 13 so that the speed of the table 20 follows the speed command.
  • the thrust controller 13 causes the thrust of the actuator to follow the thrust command. For example, if the actuator 14 is a servomotor, the thrust controller 13 supplies current to the actuator 14 .
  • the actuator 14 drives the screw feed mechanism. The thrust of the actuator 14 moves the table 20 at a predetermined speed.
  • the temperature acquisition unit 17 acquires the detected temperature T from a temperature sensor provided inside or outside the machine.
  • the temperature monitoring unit 18 monitors the temperature acquired by the temperature acquiring unit 17 and performs temperature control so that the machine does not overheat.
  • the method of temperature control differs depending on the type of machine.
  • Speed command generation unit 10, speed detection unit 11, speed control unit 12, thrust control unit 13, actuator 14, thrust (current) detection unit 15, temperature acquisition unit 17, temperature monitoring unit 18 of control device 100 of the second disclosure are the same as those of the first disclosure, and are given the same reference numerals.
  • the thrust (current) detection unit 15 calculates the thrust limit value.
  • the thrust limit value is the limit value of the thrust that moves the member of the machine.
  • the thrust limiter 24 controls the thrust of the table 20 to be less than or equal to the thrust limit value.
  • the graphs of FIGS. 6 and 7 show the relationship between thrust limit value and temperature.
  • the formula for calculating the thrust limit value is not limited to the examples of FIGS. 6 and 7 as long as the thrust limit value monotonically decreases with temperature.
  • FIG. 6 is an example of a linear expression with a negative slope.
  • the formula of the graph indicated by the dotted line is a(T 0 ⁇ T)+J TH (here, T 0 : reference temperature [K] (about 293K), a: parameter for adjusting sensitivity to temperature change, J TH : reference thrust limit value at temperature).
  • FIG. 7 is an example of an inverse proportional formula.
  • the formula of the graph indicated by the dotted line is [(T 0 ⁇ a)/(T ⁇ a)] ⁇ J TH (here, T 0 : reference temperature [K] (about 293K), a: sensitivity to temperature change parameter to be adjusted, J TH : thrust limit value at the reference temperature).
  • the thrust limit value is provided with an upper limit value JHL and a lower limit value JLL .
  • Graphs indicated by solid lines in FIGS. 6 and 7 are outputs when the calculated values are limited by the upper limit value J HL and the lower limit value J LL .
  • the upper limit value JHL is a thrust limit value assuming a cold day
  • the lower limit JLL is a thrust limit value when assuming a hot day.
  • the collision detection section 22 acquires the speed of the table 20 from the speed detection section 11 .
  • the collision detection unit 22 monitors the speed and detects the collision of the table 20 when the table 20 stops.
  • the collision detection unit 22 determines that the table 20 has stopped when the speed acquired from the speed detection unit 11 is zero for a certain period of time, for example.
  • the temperature acquisition unit 17 acquires the detected temperature T at the time of startup (step S12).
  • the thrust limit value calculator 23 calculates a thrust limit value for moving the table 20 based on the detected temperature T (step S13). The thrust limit value monotonously decreases with respect to the detected temperature T.
  • step S14 When the operator instructs the start of collision detection (step S14), the table 20 moves toward the stopper 21 (step S15). At this time, the higher the detected temperature T, the lower the thrust limit value, and the lower the detected temperature T, the higher the thrust limit value. That is, the lower the detected temperature T, the higher the thrust that can be output.
  • step S16 When the table 20 reaches the stopper 21 (step S16), the table 20 stops (step S17). When the speed of the table 20 becomes zero (step S18), the collision detection unit 22 detects the collision (step S19).
  • the control device 100 of the second disclosure changes the thrust limit value according to the temperature.
  • the thrust limit value is increased so that a high thrust can be output. If a sufficiently high thrust can be output, the table 20 will not stop even if the viscosity of the lubricant is high at low temperatures.
  • the stopper 21 is reached, the table 20 stops.
  • the thrust of the table 20 is sufficiently increased to avoid stopping the table 20 due to insufficient thrust, and collision is detected based on the speed of the table 20 .
  • the control device 100 of the second disclosure lowers the thrust limit value at high temperatures to limit the thrust at high temperatures. By limiting the thrust of the table 20, collision between the table 20 and the stopper 21 is avoided at high temperatures.
  • the detected temperature T is obtained when the machine is started, but the order of processing is not limited to this. If the detected temperature T that matches the ambient temperature can be obtained even after the machine is in operation, the detected temperature may be obtained after the instruction to start the collision detection is received. A thrust limit value may be calculated.
  • FIG. 9 shows the mold clamping mechanism 30 of the injection molding machine.
  • the mold clamping mechanism 30 has a movable platen 34 and a stationary platen 35 .
  • a movable mold 31 and a fixed mold 32 are attached to the movable platen 34 and the fixed platen 35, respectively.
  • the mold clamping mechanism 30 includes a mold thickness adjusting motor 33 as an actuator. The operation of the mold thickness adjusting motor 33 to move the movable mold 31 forward and abut the movable mold 31 against the fixed mold 32 is the mold touch.
  • the threshold calculator 19 calculates the threshold of the abutment detector 16 based on the detected temperature T.
  • FIG. The movable mold 31 moves toward the fixed mold 32, and when the movable mold 31 and the fixed mold 32 come into contact with each other, the forward movement of the movable mold 31 stops.
  • the thrust (current) of the mold thickness adjusting motor 33 increases.
  • the abutment detection unit 16 compares the increased thrust value with a threshold, and detects abutment when the thrust of the mold thickness adjusting motor 33 exceeds a predetermined threshold.
  • the thrust limit value calculator 23 calculates the thrust limit value based on the detected temperature T.
  • FIG. The control device 100 moves the movable mold 31 toward the fixed mold 32 while limiting the thrust to the thrust limit value or less.
  • the movable mold 31 stops and the speed of the movable mold 31 becomes zero.
  • the abutment detection unit 22 detects abutment from the stop of the movable mold 31 .
  • FIG. 10 is a grinder.
  • the grinder grinds a workpiece 45 with a whetstone 44 .
  • a dresser 46 is attached to a table 47 on which the workpiece 45 is placed.
  • the table 47 moves left and right in the drawing. When dressing, the table 47 is moved rightward in the drawing to move the dresser 46 under the grindstone 44 .
  • a whetstone 44 is rotated and a dresser 46 polishes the whetstone. Abutment is used for positioning the dresser 46 .
  • the table 47 is moved toward the stopper 48 to move the table 47 to the position of the stopper 48 .
  • the threshold calculator 19 calculates the threshold of the abutment detector 16 based on the detected temperature T.
  • the table 47 moves toward the stopper 48, and when the table 47 and the stopper 48 come into contact with each other, the table 47 stops.
  • the thrust (current) of the actuator 14 increases.
  • the bump detection unit 16 compares the increased thrust value with a threshold, and stops the table 47 when the thrust of the actuator 14 exceeds the threshold.
  • the thrust limit value calculator 23 calculates the thrust limit value based on the detected temperature T.
  • FIG. The control device 100 moves the table 47 toward the stopper 48 while limiting thrust.
  • the table 47 contacts the stopper 48 and the table 47 stops, the table 47 stops and the speed of the table 47 becomes zero.
  • the collision detection unit 22 detects the collision from the stop of the table 47 .
  • a CPU 111 included in the control device 100 is a processor that controls the control device 100 as a whole.
  • the CPU 111 reads out the system program processed in the ROM 112 via the bus and controls the entire control device 100 according to the system program.
  • the RAM 113 temporarily stores calculation data, display data, various data input by the user via the input unit 71, and the like.
  • the display unit 70 is a monitor or the like attached to the control device 100 .
  • the display unit 70 displays an operation screen, a setting screen, and the like of the control device 100 .
  • the input unit 71 is integrated with the display unit 70 or is a keyboard, touch panel, or the like that is separate from the display unit 70 .
  • the user operates the input unit 71 to perform input to the screen displayed on the display unit 70 .
  • the display unit 70 and the input unit 71 may be mobile terminals.
  • the non-volatile memory 114 is, for example, a memory that is backed up by a battery (not shown) and retains its storage state even when the control device 100 is powered off.
  • the nonvolatile memory 114 stores programs read from an external device via an interface (not shown), programs input via the input unit 71, various data obtained from each unit of the control device 100, a machine tool, and the like (for example, setting parameters obtained from the machine) are stored. Programs and various data stored in the non-volatile memory 114 may be developed in the RAM 113 at the time of execution/use. Various system programs are pre-written in the ROM 112 .
  • a driver 41 drives the actuators of the machine.
  • the actuators drive members of the machine under control of the control device 100 .
  • the control device 100 is connected to an external device such as a temperature sensor via the PLC 42 and acquires the detected temperature T.
  • control device 10 speed command generation unit 11 speed detection unit 12 speed control unit 13 thrust control unit 14 actuator 15 thrust (current) detection unit 16 bump detection unit 17 temperature acquisition unit 18 temperature monitoring unit 19 threshold calculation unit 20 table 21 stopper 22 Collision detector 23 Thrust limit value calculator 24 Thrust limiter 111 CPU 112 ROMs 113 RAM 114 non-volatile memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)
  • Numerical Control (AREA)

Abstract

機械を制御する制御装置であって、推力を発生するアクチュエータを備え、アクチュエータの推力を検出し、温度を取得し、温度に対して単調減少する閾値を算出し、アクチュエータの推力と閾値とを比較し、推力が閾値を超えた時に突き当てを検出する。機械の制御装置であって、推力を発生するアクチュエータを備え、温度を取得し、温度に対し単調減少する推力制限値を算出し、推力制限値を上限として前記アクチュエータの推力を制限し、アクチュエータの推力により駆動される部材の速度を検出し、部材が停止したときに突き当てを検出する。

Description

制御装置
 本発明は、制御装置に関する。
 機械の位置決めをする際、突き当てという方法が用いられている。突き当てとは、基準となる部材を配置し、位置決めしたい部材を移動して、基準となる部材に接触したときに停止させることで、部材の位置決めをする方法である。
 特許文献1は、『可動部を駆動する可変速モータと、可変速モータの回転を制御する制御機構と、を備えた工作機械において、可動部が所定位置まで達したとき当接するストッパーと、可動部がストッパーに当接したとき可変速モータに流れる過大電流を検出して位置信号を発する検出手段と、この検出手段からの信号に基づいて所定位置を記憶し、可動部が所定位置まで達したとき前記記憶に基づいて制御機構に停止信号を発して可変速モータを停止させる位置レジスタと、を設ける』と記載されている。
特開昭58-124907号公報
 特許文献1の位置決め装置では、可変速モータの過電流をもとにストッパーへの到達を検出する。しかしながら、モータのトルクは、環境によって変化する。例えば、特許文献1のように、ねじ送り機構でテーブルを移動する場合、温度が低くなると潤滑剤の粘度が上昇することでねじ送り機構の摩擦係数は上昇する。この結果、ストッパ当接前の負荷トルクから過大電流が誤検出されるおそれがある。一方、温度が高くなると潤滑剤の粘度は低下するためねじ送り機構の摩擦係数は低下する。このため、過大電流であることを判定する閾値をいたずらに高く設定することは好ましくない。
 また、液圧システムも作動流体の温度よってシリンダの負荷圧力が変化する。作動流体の温度が低いときは粘度が高いため、負荷圧力は高くなる。作動流体の温度が高いときは粘度が低いため、負荷圧力は低くなる。このため、負荷圧力の上昇でもってストッパ当接を判定する場合、作動流体の温度が低いときはストッパ当接前の負荷圧力の上昇をストッパ当接と誤判定するおそれがある。一方、作動流体の温度が高いときのことを考えると、ストッパ当接を判定する負荷圧力をいたずらに高く設定することは好ましくない。
 制御装置の分野においては、環境温度の変化に適応した突き当て検出が望まれている。
 本開示の一態様である制御装置は、機械の制御装置であって、推力を発生するアクチュエータと、アクチュエータの推力を検出する推力検出部と、温度を取得する温度取得部と、温度に対し単調減少する閾値を算出する閾値算出部と、アクチュエータの推力と閾値とを比較し、推力が閾値を超えたときにアクチュエータの推力により駆動される部材の突き当てを検出する突き当て検出部と、を備える。
 本開示の一態様である制御装置は、機械の制御装置であって、推力を発生するアクチュエータと、温度を取得する温度取得部と、温度に対し単調減少する推力制限値を算出する推力制限値算出部と、推力制限値を上限としてアクチュエータの推力を制限する推力制限部と、アクチュエータの推力により駆動される部材の速度を検出する速度検出部と、部材が停止したときに突き当てを検出する突き当て検出部と、を備える。
 本発明の一態様により、環境温度の変化に対応して突き当てを検出できる。
第1の開示の制御装置のブロック図である。 閾値と検出温度の関係を示すグラフである。 閾値と検出温度の関係を示すグラフである。 第1の開示の制御装置の動作を説明するフローチャートである。 第2の開示の制御装置のブロック図である。 推力制限値と検出温度との関係を示すグラフである。 推力制限値と検出温度との関係を示すグラフである。 第2の開示の制御装置の動作を説明するフローチャートである。 本開示の突き当て検出を射出成形機に適用した例を説明する図である。 本開示の突き当て検出を研削盤に適用した例を説明する図である。 制御装置のハードウェア構成を説明する図である。
[第1の開示]
 図を参照して第1の開示の制御装置100について説明する。
 制御装置100は機械と接続又は機械と一体化しており、機械を制御するアクチュエータの一種であるサーボモータを備えている。制御対象となる機械には、例えば、旋盤、ボール盤、中ぐり盤、フライス盤、研削盤、マシニングセンタ、放電加工機、射出成形機などがあるがこれに限定されない。
 本開示の制御装置100は、アクチュエータを制御する。制御装置の制御対象は、アクチュエータを備えた機械である。アクチュエータには、電気を動力源とするサーボモータ、ステッピングモータ、リニアモータ、油圧を動力源とする油圧シリンダ、油圧モータ、高圧空気によって動作する空気圧シリンダ、空気圧モータなどがあるがこれに限定されない。
 図1は、テーブル20の突き当てを検出する制御装置100のブロック図である。制御装置100は、速度指令発生部10、速度検出部11、速度制御部12、推力制御部13、アクチュエータ14、推力(電流)検出部15、突き当て検出部16、温度取得部17、温度監視部18、閾値算出部19を備える。
 速度指令発生部10は、テーブル20の速度指令信号を出力する。速度検出部11は、テーブル20の速度を検出する。速度制御部12は、テーブル20の速度が速度指令に追従するように推力制御部13に推力指令を出力する。推力制御部13は、アクチュエータの推力を推力指令に追従させる。例えば、アクチュエータ14がサーボモータであれば、推力制御部13はアクチュエータ14へ電流を供給する。アクチュエータ14は、ねじ送り機構を駆動する。ねじ送り機構の推力によりテーブル20が所定の速度で移動する。
 突き当て検出において、制御装置100は、テーブル20をストッパ21の方向に移動させる。テーブル20がストッパ21に当たると、テーブル20が停止する。テーブル20が停止するとアクチュエータ14の推力(電流)が上昇する。推力(電流)検出部15は、推力の上昇を検出する。突き当て検出部16は、上昇した推力と閾値とを比較し、アクチュエータ14の推力が閾値を超えると、速度指令発生部10に信号を出力し、テーブル20を停止させる。これにより突き当てが終了する。
 温度取得部17は、機械自体や機械の外部の温度センサから検出温度Tを取得する。本開示では、予め機械に備えられた温度センサを用いて検出温度Tを取得するため、新たな温度センサを設ける必要はない。突き当て検出のために新たな温度センサを設けてもよい。
 既存の温度センサには、以下のようなものがある。
 (1)工場の温度計。精密機械や食品を扱う工場では、温度計が取り付けられている。また、作業員の安全や健康を維持するため、温度計が取り付けられている場合もある。温度取得部17は、機械の外部に設けられた既存の温度計から検出温度Tを取得する。
 (2)射出成形機の加熱筒。射出成形機の加熱筒には温度センサが設けられている。射出成形機の加熱筒は、プラスチック素材に熱を加えて溶かすため、加工中は高温であるが、射出成形機の起動時には、加熱されていないので、検出温度Tが環境温度と同等であることを期待できる。これは、射出成形機以外のプラスチック加工機械においても同様である。
 (3)油圧システムの油温計。作動油の過熱を監視するため、温度センサを備えることが一般的である。
 (4)制御盤の温度センサ。制御盤の中には多くの機器が入っている。高温による誤作動や機器の劣化などを防止するため、制御盤には温度センサが取り付けられていることがある。検出温度Tは機械の稼働にともなって高温になるが、機械の起動時には環境温度と同等であることが期待できる。
 (5)サーボモータの温度センサ。サーボモータは、絶縁階級で定められた許容最高温度を超えないよう温度を監視するため、温度センサを備えることが一般的である。検出温度Tは機械の稼働にともなって高温になるが、機械の起動時には環境温度と同等であることが期待できる。なお、サーボモータ以外の電動モータであっても、温度センサを備えることがある。
 温度取得部17は、制御装置自体や制御装置の外部からカレンダー情報を得て、カレンダー情報と予め対応付けられた温度を検出温度Tとして取得してもよい。ここでカレンダー情報とは日付あるいは時刻を指す。例えば、夏季であることをもって、相対的に高く対応付けられた温度を検出温度Tとし、冬季であることをもって、相対的に低く対応付けられた温度を検出温度Tとする。例えば、昼間であることもって、相対的に高く対応付けられた温度を検出温度Tとし、夜間であることをもって、相対的に低く対応付けられた温度を検出温度Tとする。
 前記カレンダー情報と温度との対応付けにあっては、日付から夏季あるいは冬季の2値を判定して、それぞれに対応付けておいた温度を検出温度Tとして取得してもよいし、夏季から冬季にいたる日付変化に複数の階級を設け、階級ごとに対応付けておいた温度を検出温度Tとして取得してもよい。同様に時刻から昼間あるいは夜間の2値を判定して、それぞれに対応付けておいた温度を検出温度Tとして取得してもよいし、昼間から夜間にいたる時刻変化に複数の階級を設け、階級ごとに対応付けておいた温度を検出温度Tとして取得してもよい。
 本開示において検出温度Tは推力の閾値または制限値を算出するための値である。したがって前記カレンダー情報と温度との対応付けにあっては、温度は単なる媒介変数にすぎない。したがって前記カレンダー情報から温度を推定し、推力の閾値あるいは後述する推力制限値を算出する態様も本開示に含まれる。
 温度監視部18は、温度取得部17が取得した温度を監視する。
 閾値算出部19は、温度取得部17が取得した検出温度Tを基に、突き当て検出の閾値を算出する。図2及び図3のグラフは閾値と温度との関係を示す。閾値を算出する式は、温度に対して閾値が単調減少すればよく、図2及び図3の例に限定されるわけではない。
 このグラフでの検出温度Tは絶対温度である。検出温度Tを絶対温度としたのは符号の変化を考慮する必要がないためである。検出温度Tは、必ずしも絶対温度でなくてもよい。
 図2は、傾きが負の一次式の一例である。点線で示したグラフの式は、a(T-T)+ITH(ここで、T:基準温度[K](293K程度)、a:温度変化に対する感度を調整するパラメータ、ITH:基準温度における閾値)である。
 図3は、反比例の式の一例である。点線で示したグラフの式は、[(T-a)/(T-a)]×ITH(ここで、T:基準温度[K](293K程度)、a:温度変化に対する感度を調整するパラメータ、ITH:基準温度における閾値)である。
 なお、図2及び図3の例では、閾値に、上限値IHLと下限値ILLが設けられている。図2及び図3に実線で示したグラフは、算出された値を上限値IHLと下限値ILLで制限した場合の出力である。上限値IHLは寒い日を想定した場合の閾値であり、下限値ILLは暑い日を想定した場合の閾値である。
 以下、図4を参照して第1の開示の制御装置100の動作を説明する。
 オペレータが機械を起動すると(ステップS1)、温度取得部17は起動時の検出温度Tを取得する(ステップS2)。閾値算出部19は、検出温度Tを基に、突き当てを検出するための推力の閾値を算出する(ステップS3)。推力の閾値は、検出温度Tに対して単調減少である。
 オペレータが突き当て検出の開始を指示すると(ステップS4)、テーブル20がストッパ21の方向に移動する(ステップS5)。テーブル20がストッパ21に到達すると(ステップS6)、テーブル20が停止し(ステップS7)、アクチュエータ14の推力が上昇する(ステップS8)。
 突き当て検出部16は、閾値算出部19が算出した閾値と、推力(電流)検出部15が検出した推力とを比較し、推力が閾値を超えたとき(ステップS9)、テーブル20がストッパ21に到達したこと(突き当て)を検出する(ステップS10)。
 第1の開示の制御装置100では、低温時には、閾値を高くする。低温時には、潤滑剤の粘度が高くなり、テーブル20を移動するために比較的高い推力が必要となる。第1の開示では、低温時の閾値を高くすることにより、低温時のテーブル移動に必要な推力を「突き当て」と誤検出することを防止する。
 第1の開示の制御装置100は、高温時には、閾値を低くする。閾値が高いと、推力が閾値に達するまでストッパ21に推力が働く。第1の開示では、高温時の閾値を低くすることで、ストッパ21に必要以上の接触力をかけない。
 本開示の制御装置100では、閾値の調節だけではなく速度制御も行う。速度に制御あるいは制限をかけることなしに「突き当て」をすると、テーブル20がストッパ21に接触する際の速度が過大になるおそれがある。本開示の制御装置では、テーブル20の速度を制御し、テーブル20とストッパ21との衝突を防止する。
 なお、上記フローチャートでは、機械を起動したときに検出温度Tを取得したが、処理の順序はこの限りではない。機械の稼働後も環境温度に一致する検出温度Tが取得できる場合には、突き当ての検出開始の指示の後に、検出温度を取得してもよいし、閾値を算出してもよい。
[第2の開示]
 次いで、第2の開示の制御装置100について説明する。
 図5は、第2の開示の制御装置100のブロック図である。第2の開示の制御装置100は、速度指令発生部10、速度検出部11、速度制御部12、推力制御部13、アクチュエータ14、推力(電流)検出部15、温度取得部17、温度監視部18、突き当て検出部22、推力制限値算出部23、推力制限部24を備える。
 速度指令発生部10は、テーブル20の速度指令信号を出力する。速度検出部11は、テーブル20の速度を検出する。速度制御部12は、テーブル20の速度が速度指令に追従するように推力制御部13に推力指令を出力する。推力制御部13は、アクチュエータの推力を推力指令に追従させる。例えばアクチュエータ14がサーボモータであれば、推力制御部13はアクチュエータ14へ電流を供給する。アクチュエータ14はねじ送り機構を駆動させる。アクチュエータ14の推力によりテーブル20が所定の速度で移動する。
 温度取得部17は、機械の内部や外部に設けられる温度センサから検出温度Tを取得する。温度監視部18は、温度取得部17が取得した温度を監視し、機械が過熱しないように温度制御を行う。温度制御の方法は機械の種類によって異なる。
 第2の開示の制御装置100の速度指令発生部10、速度検出部11、速度制御部12、推力制御部13、アクチュエータ14、推力(電流)検出部15、温度取得部17、温度監視部18の機能は、第1の開示と同じであるため、同じ符号を付す。
 推力(電流)検出部15は、推力制限値を算出する。推力制限値は、機械の部材を移動させる推力の制限値である。推力制限部24は、テーブル20の推力を推力制限値以下に抑えるよう制御する。
 図6及び図7のグラフは推力制限値と温度との関係を示す。推力制限値を算出する式は、温度に対して推力制限値が単調減少すればよく、図6及び図7の例に限定されるわけではない。
 図6は、傾きが負の一次式の一例である。点線で示したグラフの式は、a(T-T)+JTH(ここで、T:基準温度[K](293K程度)、a:温度変化に対する感度を調整するパラメータ、JTH:基準温度における推力制限値)である。
 図7は、反比例の式の一例である。点線で示したグラフの式は、[(T-a)/(T-a)]×JTH(ここで、T:基準温度[K](293K程度)、a:温度変化に対する感度を調整するパラメータ、JTH:基準温度における推力制限値)である。
 なお、図6及び図7の例では、推力制限値に、上限値JHLと下限値JLLが設けられている。図6及び図7に実線で示したグラフは、算出された値を上限値JHLと下限値JLLとで制限した場合の出力である。上限値JHLは寒い日を想定した場合の推力制限値であり、下限値JLLは暑い日を想定した場合の推力制限値である。
 突き当て検出部22は、速度検出部11からテーブル20の速度を取得する。突き当て検出部22は、速度を監視し、テーブル20が停止したことをもって、テーブル20の突き当てを検出する。突き当て検出部22は、例えば、速度検出部11から取得した速度が一定時間ゼロであった場合に、テーブル20が停止したものとみなす。
 以下、図8を参照して第2の開示の制御装置100の動作を説明する。
 オペレータが機械を起動すると(ステップS11)、温度取得部17は起動時の検出温度Tを取得する(ステップS12)。推力制限値算出部23は、検出温度Tを基に、テーブル20を移動するための推力制限値を算出する(ステップS13)。推力制限値は、検出温度Tに対して単調減少である。
 オペレータが突き当て検出の開始を指示すると(ステップS14)、テーブル20がストッパ21の方向に移動する(ステップS15)。このとき、検出温度Tが高いほど推力制限値が低く、検出温度Tが低いほど推力制限値が高い。すなわち、検出温度Tが低いほど高い推力を出力することができる。
 テーブル20がストッパ21に到達すると(ステップS16)、テーブル20が停止する(ステップS17)。突き当て検出部22は、テーブル20の速度がゼロになると(ステップS18)、突き当てを検出する(ステップS19)。
 第2の開示の制御装置100は、温度に合わせて推力制限値を変更する。低温時には、推力制限値を高くし、高い推力を出力できるようにする。十分に高い推力が出力できれば、低温時に潤滑剤の粘度が高くとも、テーブル20が停止しない。ストッパ21に到達したときに、テーブル20が停止する。第2の開示の制御装置100では、テーブル20の推力を十分に高くし、推力不足によるテーブル20の停止を回避し、テーブル20の速度を基に突き当てを検出する。
 第2の開示の制御装置100は、高温時に推力制限値を低くし、高温時の推力を制限する。テーブル20の推力を制限することにより、高温時におけるテーブル20とストッパ21との衝突を回避する。
 なお、上記フローチャートでは、機械を起動したときに検出温度Tを取得したが、処理の順序はこの限りではない。機械の稼働後も環境温度に一致する検出温度Tが取得できる場合には、突き当て検出開始の指示の後に、検出温度を取得してもよいし、検出温度を取得しているのであれば、推力制限値を算出してもよい。
[突き当ての例]
 図9及び図10を参照して第1の開示及び第2の開示とは異なる機械に本開示を適用した例を示す。
 図9は、射出成形機の型締め機構30である。型締め機構30は、可動プラテン34と固定プラテン35を備える。可動プラテン34と固定プラテン35には、それぞれ可動金型31と固定金型32が取り付けられている。型締め機構30は、アクチュエータとしての型厚調整用モータ33を備える。型厚調整用モータ33が、可動金型31を前進させ、可動金型31を固定金型32に突き当てる動作が金型タッチである。
 第1の開示を射出成形機の金型タッチに適用した場合、閾値算出部19は、検出温度Tを基に、突き当て検出部16の閾値を算出する。可動金型31は固定金型32の方向に移動し、可動金型31と固定金型32が接触すると、可動金型31の前進が停止する。可動金型31が停止すると、型厚調整用モータ33の推力(電流)が上昇する。突き当て検出部16は、上昇した推力の値と閾値とを比較し、型厚調整用モータ33の推力が所定の閾値を超えると、突き当てを検出する。
 第2の開示を射出成形機の金型タッチに適用した場合、推力制限値算出部23は、検出温度Tを基に、推力制限値を算出する。制御装置100は、推力制限値以下に推力を制限しながら、可動金型31を固定金型32の方向に移動させる。可動金型31が固定金型32に接触すると、可動金型31が停止し、可動金型31の速度がゼロになる。突き当て検出部22は、可動金型31の停止から突き当てを検出する。
 図10は、研削盤である。研削盤は砥石44でワーク45を研削する。ワーク45を載置するテーブル47には、ドレッサ46が取り付けられている。テーブル47は、図面左右に移動する。ドレッシングをする際、テーブル47を図面右方向に移動して、砥石44の下にドレッサ46を移動させる。砥石44を回転しドレッサ46で砥石を研磨する。ドレッサ46の位置決めには、突き当てを用いる。テーブル47をストッパ48の方向に移動し、テーブル47をストッパ48の位置まで移動させる。
 第1の開示を研削盤の突き当てに適用した場合、閾値算出部19は、検出温度Tを基に、突き当て検出部16の閾値を算出する。テーブル47は、ストッパ48の方向に移動し、テーブル47とストッパ48が接触すると、テーブル47が停止する。テーブル47が停止すると、アクチュエータ14の推力(電流)が上昇する。突き当て検出部16は、上昇した推力の値と閾値とを比較し、アクチュエータ14の推力が閾値を超えるとテーブル47を停止させる。
 第2の開示を研削盤の突き当てに適用した場合、推力制限値算出部23は、検出温度Tを基に、推力制限値を算出する。制御装置100は、推力を制限しながら、テーブル47をストッパ48の方向に移動させる。テーブル47がストッパ48に接触し、テーブル47が停止すると、テーブル47が停止し、テーブル47の速度がゼロになる。突き当て検出部22は、テーブル47の停止から突き当てを検出する。
 図11を参照して、機械を制御する制御装置100のハードウェア構成の一例を説明する。制御装置100が備えるCPU111は、制御装置100を全体的に制御するプロセッサである。CPU111は、バスを介してROM112に加工されたシステム・プログラムを読み出し、該システム・プログラムに従って制御装置100の全体を制御する。RAM113には、一時的な計算データや表示データ、入力部71を介してユーザが入力した各種データ等が一時的に格納される。
 表示部70は、制御装置100に付属のモニタなどである。表示部70は、制御装置100の操作画面や設定画面などを表示する。
 入力部71は、表示部70と一体、又は、表示部70とは別のキーボード、タッチパネルなどである。ユーザは入力部71を操作して、表示部70に表示された画面への入力などを行う。なお、表示部70及び入力部71は、携帯端末でもよい。
 不揮発性メモリ114は、例えば、図示しないバッテリでバックアップされるなどして、制御装置100の電源がオフされても記憶状態が保持されるメモリである。不揮発性メモリ114には、図示しないインタフェースを介して外部機器から読み込まれたプログラムや入力部71を介して入力されたプログラム、制御装置100の各部や工作機械等から取得された各種データ(例えば、機械から取得した設定パラメータ等)が記憶される。不揮発性メモリ114に記憶されたプログラムや各種データは、実行時/利用時にはRAM113に展開されてもよい。また、ROM112には、各種のシステム・プログラムがあらかじめ書き込まれている。
 機械を制御するコントローラ40は、CPU111からの指令をドライバ41に出力する。ドライバ41は機械のアクチュエータを駆動する。アクチュエータは、制御装置100の制御に従い機械の部材を駆動する。
 制御装置100は、PLC42を介して温度センサなどの外部機器に接続されおり、検出温度Tを取得する。
  100 制御装置
  10  速度指令発生部
  11  速度検出部
  12  速度制御部
  13  推力制御部
  14  アクチュエータ
  15  推力(電流)検出部
  16  突き当て検出部
  17  温度取得部
  18  温度監視部
  19  閾値算出部
  20  テーブル
  21  ストッパ
  22  突き当て検出部
  23  推力制限値算出部
  24  推力制限部
  111 CPU
  112 ROM
  113 RAM
  114 不揮発性メモリ

Claims (5)

  1.  機械の制御装置であって、
     推力を発生するアクチュエータと、
     前記アクチュエータの推力を検出する推力検出部と、
     温度を取得する温度取得部と、
     前記温度に対し単調減少する閾値を算出する閾値算出部と、
     前記アクチュエータの推力と前記閾値とを比較し、前記推力が前記閾値を超えたときに前記アクチュエータの推力により駆動される部材の突き当てを検出する突き当て検出部と、を備える制御装置。
  2.  前記アクチュエータ又は前記部材の速度指令を発生する速度指令発生部と、
     前記アクチュエータ又は前記部材の実際の速度を検出する速度検出部と、
     前記速度指令に前記実際の速度が追従するよう推力指令を出力する速度制御部と、
     前記速度制御部が出力した推力指令に追従させる推力制御部と、を備え、
     前記アクチュエータ又は前記部材の速度制御を行う、請求項1記載の制御装置。
  3.  前記温度取得部は、前記機械又は制御装置に設けられた温度センサから温度を取得する、請求項2記載の制御装置。
  4.  機械の制御装置であって、
     推力を発生するアクチュエータと、
     温度を取得する温度取得部と、
     前記温度に対し単調減少する推力制限値を算出する推力制限値算出部と、
     前記推力制限値を上限として前記アクチュエータの推力を制限する推力制限部と、
     前記アクチュエータの推力により駆動される部材の速度を検出する速度検出部と、
     前記部材が停止したときに突き当てを検出する突き当て検出部と、を備える制御装置。
  5.  前記温度取得部は、前記機械又は制御装置に設けられた温度センサから温度を取得する、請求項4記載の制御装置。
PCT/JP2021/023835 2021-06-23 2021-06-23 制御装置 WO2022269819A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
PCT/JP2021/023835 WO2022269819A1 (ja) 2021-06-23 2021-06-23 制御装置
CN202180099508.XA CN117501204A (zh) 2021-06-23 2021-06-23 控制装置
JP2023529332A JP7640691B2 (ja) 2021-06-23 2021-06-23 制御装置
DE112021007487.3T DE112021007487T5 (de) 2021-06-23 2021-06-23 Steuervorrichtung
US18/567,770 US20240280958A1 (en) 2021-06-23 2021-06-23 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/023835 WO2022269819A1 (ja) 2021-06-23 2021-06-23 制御装置

Publications (2)

Publication Number Publication Date
WO2022269819A1 true WO2022269819A1 (ja) 2022-12-29
WO2022269819A9 WO2022269819A9 (ja) 2023-11-02

Family

ID=84545374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023835 WO2022269819A1 (ja) 2021-06-23 2021-06-23 制御装置

Country Status (5)

Country Link
US (1) US20240280958A1 (ja)
JP (1) JP7640691B2 (ja)
CN (1) CN117501204A (ja)
DE (1) DE112021007487T5 (ja)
WO (1) WO2022269819A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124907A (ja) * 1982-01-20 1983-07-25 Nissan Motor Co Ltd 工作機械の位置決め装置
JPS62175810A (ja) * 1986-01-29 1987-08-01 Omron Tateisi Electronics Co 産業用ロボツト制御装置
JP2020014266A (ja) * 2018-07-13 2020-01-23 日立グローバルライフソリューションズ株式会社 電動機の制御装置
WO2020105131A1 (ja) * 2018-11-21 2020-05-28 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008059016A (ja) * 2006-08-29 2008-03-13 Yaskawa Electric Corp 位置決め制御装置および位置決め制御方法
JP4363428B2 (ja) * 2006-08-31 2009-11-11 株式会社日立製作所 電動ブレーキ装置および自動車
JP5268096B2 (ja) * 2008-08-07 2013-08-21 Ckd株式会社 電動アクチュエータ
JP2010066213A (ja) * 2008-09-12 2010-03-25 Sharp Corp 位置決め装置および位置決め方法
JP2016099736A (ja) * 2014-11-19 2016-05-30 キヤノン株式会社 ステージ装置、リソグラフィ装置、物品の製造方法、および制御方法
US10520054B2 (en) * 2017-09-29 2019-12-31 Rockwell Automation Technologies, Inc. Motor brake system
JP7352403B2 (ja) * 2019-07-25 2023-09-28 日立Astemo株式会社 電動ブレーキ装置およびブレーキ制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58124907A (ja) * 1982-01-20 1983-07-25 Nissan Motor Co Ltd 工作機械の位置決め装置
JPS62175810A (ja) * 1986-01-29 1987-08-01 Omron Tateisi Electronics Co 産業用ロボツト制御装置
JP2020014266A (ja) * 2018-07-13 2020-01-23 日立グローバルライフソリューションズ株式会社 電動機の制御装置
WO2020105131A1 (ja) * 2018-11-21 2020-05-28 三菱電機株式会社 駆動装置、圧縮機、及び空気調和機

Also Published As

Publication number Publication date
JP7640691B2 (ja) 2025-03-05
JPWO2022269819A1 (ja) 2022-12-29
WO2022269819A9 (ja) 2023-11-02
CN117501204A (zh) 2024-02-02
US20240280958A1 (en) 2024-08-22
DE112021007487T5 (de) 2024-02-01

Similar Documents

Publication Publication Date Title
US9527176B2 (en) Control device for machine tool including rotary indexing device
EP0217963B1 (en) Metering and kneading system for injection molding machines
JP2537089B2 (ja) 射出成形機の自動給脂方法
US20160243780A1 (en) Servo press, control method, and program
JP4249653B2 (ja) 射出成形機の制御装置
JP2015030240A (ja) 電動機械および電動機械の電力監視方法
KR910005152B1 (ko) 사출 성형기의 보압 제어방식
US10081151B2 (en) Servo press and control method
EP0288573A1 (en) Injection molding machine capable of remote start and stop
JP4296072B2 (ja) 電動プレス
JP7640691B2 (ja) 制御装置
US8786240B2 (en) Method for controlling an electric cylinder and a control system for the electric cylinder
JP2006231749A (ja) 射出成形機の圧力異常検出装置
KR960700126A (ko) Cnc 작동식 공작 기계용 제어 장치(controller for cnc-operated ma-chine tools)
EP2946876B1 (en) Moving-type tail stock
JPS62119019A (ja) 射出成形機
JP4867562B2 (ja) モータ制御装置
JP4114139B2 (ja) 射出成形機の計量方法
JP4692046B2 (ja) 心押台の制御方法及びその装置
JP3648083B2 (ja) 射出成形機の制御方法
KR102274442B1 (ko) 공작기계용 수치 제어장치
JP2014240162A (ja) 射出成形機のバルブゲート制御装置
JP3283067B2 (ja) 送りねじを支持する軸受の保護手段を備えた数値制御装置
JPH085102B2 (ja) スクリュー保護方法
JP7707095B2 (ja) 加工装置及びその制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21947104

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023529332

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18567770

Country of ref document: US

Ref document number: 112021007487

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 202180099508.X

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 21947104

Country of ref document: EP

Kind code of ref document: A1