WO2022224996A1 - ポリカーボネートジオール組成物 - Google Patents
ポリカーボネートジオール組成物 Download PDFInfo
- Publication number
- WO2022224996A1 WO2022224996A1 PCT/JP2022/018339 JP2022018339W WO2022224996A1 WO 2022224996 A1 WO2022224996 A1 WO 2022224996A1 JP 2022018339 W JP2022018339 W JP 2022018339W WO 2022224996 A1 WO2022224996 A1 WO 2022224996A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polycarbonate diol
- general formula
- group
- repeating structural
- structural unit
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6603—Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/6607—Compounds of groups C08G18/42, C08G18/48, or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/08—Processes
- C08G18/10—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
- C08G18/12—Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step using two or more compounds having active hydrogen in the first polymerisation step
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/4009—Two or more macromolecular compounds not provided for in one single group of groups C08G18/42 - C08G18/64
- C08G18/4018—Mixtures of compounds of group C08G18/42 with compounds of group C08G18/48
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4202—Two or more polyesters of different physical or chemical nature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/4266—Polycondensates having carboxylic or carbonic ester groups in the main chain prepared from hydroxycarboxylic acids and/or lactones
- C08G18/4269—Lactones
- C08G18/4277—Caprolactone and/or substituted caprolactone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/42—Polycondensates having carboxylic or carbonic ester groups in the main chain
- C08G18/44—Polycarbonates
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/48—Polyethers
- C08G18/4854—Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/65—Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
- C08G18/66—Compounds of groups C08G18/42, C08G18/48, or C08G18/52
- C08G18/6633—Compounds of group C08G18/42
- C08G18/6637—Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38
- C08G18/664—Compounds of group C08G18/42 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/3203
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/70—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
- C08G18/72—Polyisocyanates or polyisothiocyanates
- C08G18/74—Polyisocyanates or polyisothiocyanates cyclic
- C08G18/76—Polyisocyanates or polyisothiocyanates cyclic aromatic
- C08G18/7657—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings
- C08G18/7664—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups
- C08G18/7671—Polyisocyanates or polyisothiocyanates cyclic aromatic containing two or more aromatic rings containing alkylene polyphenyl groups containing only one alkylene bisphenyl group
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/64—Polyesters containing both carboxylic ester groups and carbonate groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/18—Block or graft polymers
- C08G64/183—Block or graft polymers containing polyether sequences
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/20—General preparatory processes
- C08G64/30—General preparatory processes using carbonates
- C08G64/305—General preparatory processes using carbonates and alcohols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D175/00—Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
- C09D175/04—Polyurethanes
- C09D175/06—Polyurethanes from polyesters
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N3/00—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
- D06N3/12—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
- D06N3/14—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes
- D06N3/146—Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with polyurethanes characterised by the macromolecular diols used
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G64/00—Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
- C08G64/02—Aliphatic polycarbonates
- C08G64/0208—Aliphatic polycarbonates saturated
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2203/00—Macromolecular materials of the coating layers
- D06N2203/06—Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D06N2203/068—Polyurethanes
-
- D—TEXTILES; PAPER
- D06—TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
- D06N—WALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
- D06N2211/00—Specially adapted uses
- D06N2211/12—Decorative or sun protection articles
- D06N2211/28—Artificial leather
Definitions
- the present invention relates to a polycarbonate diol composition.
- Polyurethane resins have traditionally been used in a wide range of areas, including synthetic leather, artificial leather, adhesives, furniture paints, and automotive paints.
- Polyethers, polyesters, and polycarbonates are used as polyol components to be reacted with isocyanate among raw materials of polyurethane resins.
- durability of polyurethane resins such as heat resistance, weather resistance, hydrolysis resistance, solvent resistance, sunscreen resistance, and scratch resistance.
- polyether polyol as a polyol component generally has a low viscosity. Therefore, polyurethanes using polyether polyols are said to be excellent in flexibility and hydrolysis resistance, but inferior in heat resistance and weather resistance. Polyurethanes using polyester polyols have improved heat resistance and weather resistance, but are inferior in hydrolysis resistance. On the other hand, polyurethane using polycarbonate polyol is considered to be the best durability grade in terms of durability such as heat resistance, chemical resistance and hydrolysis resistance, but there is room for improvement in handling due to its high viscosity.
- Patent Document 1 describes a production method for synthesizing a copolymerized polycarbonate diol by transesterifying a polycarbonate diol
- Patent Document 2 describes a polyester polyol having a specific structure
- Patent Document 3 discloses a coating composition using a specific polycarbonate diol composition.
- the present invention has been made in view of the above circumstances, and provides a polycarbonate diol composition that is excellent in quality stability, less in coloration, and excellent in compatibility with other polyols, solvents, and the like. With the goal.
- the gist of the present invention is as follows. [1] Including a repeating structural unit represented by the following general formula (I), a repeating structural unit represented by the following general formula (II), a repeating structural unit represented by the following general formula (III), and a repeating structural unit represented by the following general formula A polycarbonate diol composition containing at least one repeating structural unit selected from the group consisting of repeating structural units represented by (IV) and satisfying the following formula (Formula 1). ...
- R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 15 carbon atoms, and a hetero atom When there is more than one, R 11 may be the same or different.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 21 in the case may be the same or different, and n21 is an arbitrary integer.) ...
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 31 in the case may be the same or different.) ...
- R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 15 carbon atoms, and a hetero atom When there is more than one, R 11 may be the same or different.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 21 in the case may be the same or different, and n21 is an arbitrary integer.) ...
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 31 in the case may be the same or different.) ...
- R 41 and R 42 are each independently a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic is a hydrocarbon group.When there are a plurality of R 41 and R 42 , they may be the same or different.) [3] The content of the repeating structural unit represented by the general formula (I) is 5% by mass or more and 95% by mass or less with respect to the total mass of the repeating structural units represented by the general formulas (I) to (IV). The polycarbonate diol composition according to [1].
- the content of the repeating structural unit represented by the general formula (I) is 40% by mass or more and 90% by mass or less with respect to the total mass of the repeating structural units represented by the general formulas (I) to (IV).
- the polycarbonate diol composition according to any one of [1] to [5] which has a peroxide content of 10 meq/kg or less.
- a synthetic leather comprising the polyurethane according to [11] or [12].
- the polycarbonate diol composition of the present invention has excellent quality stability, little coloration, and excellent compatibility with solvents and other polyols.
- this embodiment the form for carrying out the present invention (hereinafter referred to as "this embodiment") will be described in detail. It should be noted that the present invention is not limited to the following description, and various modifications can be made within the scope of the gist of the present invention.
- the first polycarbonate diol composition of the present embodiment contains a repeating structural unit represented by the following general formula (I) (hereinafter also simply referred to as “structural unit (I)”), and further comprises a repeating structural unit represented by the following general formula (II): ) (hereinafter simply referred to as “structural unit (II)”), a repeating structural unit represented by the following general formula (III) (hereinafter simply referred to as “structural unit (III)” ), and at least one repeating structural unit selected from the group consisting of a repeating structural unit represented by the following general formula (IV) (hereinafter also simply referred to as “structural unit (IV)”), (Formula 1) is satisfied. ...
- R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 15 carbon atoms, and a hetero atom When there is more than one, R 11 may be the same or different.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 21 in the case may be the same or different, and n21 is an arbitrary integer.) ...
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 31 in the case may be the same or different.) ...
- the polycarbonate diol composition of the present embodiment has excellent quality stability and excellent compatibility with solvents and other polyols.
- the second polycarbonate diol composition of the present embodiment contains a repeating structural unit represented by the following general formula (I) (hereinafter also simply referred to as “structural unit (I)”), and further comprises the following general formula: A repeating structural unit represented by (II) (hereinafter also simply referred to as “structural unit (II)”), a repeating structural unit represented by the following general formula (III) (hereinafter simply referred to as “structural unit (III)”) ), and at least one repeating structural unit selected from the group consisting of a repeating structural unit represented by the following general formula (IV) (hereinafter also simply referred to as “structural unit (IV)”),
- the content of the repeating structural unit represented by the general formula (I) is 40% by mass or more with respect to the total mass of the repeating structural units represented by the general formulas (I) to (IV), and the cloud point
- the titration amount in the titration method is 4.0 mL or more and 9.5 mL or less
- R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 15 carbon atoms, and a hetero atom When there is more than one, R 11 may be the same or different.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 21 in the case may be the same or different, and n21 is an arbitrary integer.) ...
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 31 in the case may be the same or different.
- R 41 and R 42 are each independently a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic is a hydrocarbon group.When there are a plurality of R 41 and R 42 , they may be the same or different.
- the polycarbonate diol composition of the present embodiment has excellent compatibility with solvents and other polyols.
- the polycarbonate diol composition of the present embodiment is not particularly limited in production method, and is a copolymer of structural unit (I) and at least one type of structural unit among structural units (II) to (IV). or each may exist independently.
- R 11 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 15 carbon atoms, and a heteroatom is may have. When there is a plurality of R 11 , they may be the same or different.
- the divalent linear aliphatic hydrocarbon group for R 11 has 2 to 15 carbon atoms, preferably 3 to 12 carbon atoms, more preferably 3 to 10 carbon atoms.
- divalent linear aliphatic hydrocarbon group for R 11 are not particularly limited, but include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptylene group and octylene group. etc. From the viewpoint of versatility, trimethylene group, butylene group, pentylene group, hexylene group and decamethylene group are preferred.
- the divalent branched aliphatic hydrocarbon group for R 11 has 3 to 15 carbon atoms, preferably 3 to 12 carbon atoms, and more preferably 3 to 10 carbon atoms.
- divalent branched aliphatic hydrocarbon group for R 11 are not particularly limited, but examples include isopropylene group, isobutylene group, tert-butylene group, isopentylene group, and 2,2-dimethyltrimethylene group. , an isohexylene group, an isoheptylene group, an isooctylene group, and the like. Among them, an isobutylene group, an isopentylene group, or an isohexylene group is preferable from the viewpoint of versatility.
- the divalent cycloaliphatic hydrocarbon group for R 11 has from 3 to 15 carbon atoms, preferably from 6 to 15 carbon atoms, and more preferably from 6 to 10 carbon atoms.
- divalent cyclic aliphatic hydrocarbon group for R 11 are not particularly limited, but include, for example, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and the like. Among them, a cyclohexylene group is preferable from the viewpoint of versatility.
- the divalent aromatic hydrocarbon group for R 11 has from 6 to 15 carbon atoms, preferably from 6 to 12 carbon atoms, and more preferably from 6 to 10 carbon atoms.
- divalent aromatic hydrocarbon group for R 11 are not particularly limited, but include, for example, a phenylene group and a naphthylene group.
- heteroatom for R 11 are not particularly limited, but examples include boron, oxygen, nitrogen, phosphorus, sulfur, and five-membered heterocyclic structures such as oxolane, thiolane, and azolidine, oxane, and pyridine. It may have a six-membered heterocyclic structure such as
- R 11 is preferably a divalent straight-chain aliphatic hydrocarbon group having 3 to 10 carbon atoms or a divalent branched aliphatic hydrocarbon group having 3 to 10 carbon atoms.
- a divalent linear aliphatic hydrocarbon group having a number of 4 or more and 6 or less is more preferable, and a divalent linear aliphatic hydrocarbon group such as a butylene group, a pentylene group and a hexylene group is even more preferable.
- the polycarbonate diol composition of the present embodiment at least part of the polycarbonate diol is a divalent linear or branched aliphatic having 2 to 15 carbon atoms in R 11 in the general formula (I). At least two or more selected from the group consisting of hydrocarbon groups are preferred. In this case, a polycarbonate diol composition that is liquid at room temperature tends to be obtained.
- both ends of the molecule are preferably hydroxyl groups.
- the molecules having a polycarbonate structure contained in the polycarbonate diol composition of the present embodiment preferably have hydroxyl groups at both ends. That is, the molecule having a polycarbonate structure contained in the polycarbonate diol composition of the present embodiment is preferably polycarbonate diol. Due to impurities in various raw materials used in the production of the polycarbonate diol composition, terminal structures produced by-products in the production of the polycarbonate diol composition, or the like, or the urethanization reaction rate and state in the application of the polycarbonate diol composition For control purposes, some of the terminal hydroxyl groups may be converted to alkyl or aryl groups that do not react with isocyanate groups.
- the present embodiment also includes the case where 100 mol % of both ends of the terminal groups of the polycarbonate diol are not strictly hydroxyl groups.
- the ratio of hydroxyl groups to the total molar amount of terminal groups is preferably 90 mol% or more, more preferably 95 mol% or more, and even more preferably 98 mol% or more.
- the structure of both ends of the polycarbonate diol contained in the polycarbonate diol composition is confirmed according to, for example, the method for measuring the ratio of primary terminal OH described in Japanese Patent No. 3874664 (reference document 1). be able to.
- the solvent for collecting the fraction other than ethanol, solvents such as tetrahydrofuran, acetone, and methanol can be used.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 20 carbon atoms. When there is more than one R 21 , they may be the same or different.
- the divalent linear aliphatic hydrocarbon group for R 21 has 2 to 20 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
- divalent linear aliphatic hydrocarbon group for R 21 are not particularly limited, but include ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptylene group and octylene group. etc.
- the divalent branched aliphatic hydrocarbon group for R 21 has 3 or more and 20 or less carbon atoms, preferably 3 or more and 12 or less, and more preferably 3 or more and 6 or less.
- divalent branched aliphatic hydrocarbon group for R 21 are not particularly limited, but examples include an isopropylene group, an isobutylene group, a tert-butylene group, an isopentylene group, and a 2,2-dimethyltrimethylene group. , an isohexylene group, an isoheptylene group, an isooctylene group, and the like.
- the divalent cycloaliphatic hydrocarbon group for R 21 has from 6 to 20 carbon atoms, preferably from 6 to 12 carbon atoms, and more preferably from 6 to 8 carbon atoms.
- divalent cyclic aliphatic hydrocarbon group for R 21 are not particularly limited, but include, for example, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group and the like.
- the divalent aromatic hydrocarbon group for R 21 has from 6 to 15 carbon atoms, preferably from 6 to 12 carbon atoms, and more preferably from 6 to 10 carbon atoms.
- divalent aromatic hydrocarbon group for R 21 examples include, but are not particularly limited to, a phenylene group, a naphthylene group, and the like.
- R 21 is preferably a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms (that is, an alkylene group), and a divalent group having 2 to 6 carbon atoms. and/or a divalent branched aliphatic hydrocarbon group having 3 or more and 6 or less carbon atoms.
- n21 represents the number of repetitions of the structure ( -R21 -O-).
- n21 is an arbitrary integer, and the average value of n21 in the entire polycarbonate diol composition of the present embodiment is preferably 12 or more, more preferably 12 or more and 70 or less. , more preferably 12 or more and 60 or less, even more preferably 15 or more, and particularly preferably 15 or more and 50 or less.
- n21 in the entire polycarbonate diol composition of the present embodiment When the average value of n21 in the entire polycarbonate diol composition of the present embodiment is equal to or higher than the above lower limit, there is a tendency to obtain a polyurethane with even better flexibility and low-temperature flexibility. Further, when the average value of n21 in the entire polycarbonate diol composition of the present embodiment is equal to or less than the above upper limit value, the viscosity of the polycarbonate diol composition tends to be lower.
- n21 can be obtained by subjecting the polycarbonate diol composition to alkali decomposition to extract the raw material diol component, and then performing GC-MS measurement, LC-MS measurement and gel permeation chromatography (GPC) measurement on the component. Specifically, it can be determined by the method described in Examples below.
- the structural unit (II) is preferably a polyoxyalkylene structure.
- preferred oxyalkylene groups contained in the structural unit (II) are not particularly limited, but include, for example, an oxyethylene group, an oxy-1-methylethylene group, an oxytetramethylene group, and an oxy-2,2-dimethyltrimethylene group. etc. Among them, a structure containing an oxy-1-methylethylene group is preferred, and an oxy-1-methylethylene group and an oxyethylene group are particularly preferred.
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 20 carbon atoms. When there is a plurality of R 31 , they may be the same or different.
- R 31 in general formula (III) is not particularly limited, but examples thereof include a linear or branched alkylene group having 2 to 20 carbon atoms. Specifically, but not limited to, for example, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, propylene group, isobutylene group, 2-methyl Tetramethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, isononamethylene group, 2-methylnonamethylene group and the like can be mentioned.
- R 31 in general formula (III) is not particularly limited, but examples thereof include a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms. Specifically, but not limited to, for example, a cyclopentylene group, a cyclohexylene group, a 1,2-dimethylenecyclopentane group, a 1,3-dimethylenecyclopentane group, a 1,2-dimethylenecyclohexane group, 1,3-dimethylenecyclohexane group, 1,4-dimethylenecyclohexane group, 4,4'-methylenedicyclohexylene group, 2,2-dicyclohexylenepropane group and the like.
- R 31 in general formula (III) is not particularly limited, but examples thereof include a substituted or unsubstituted arylene group having 6 to 20 carbon atoms. Specifically, but not limited to, for example, phenylene group, 1,2-dimethylenebenzene group, 1,3-dimethylenebenzene group, 1,4-dimethylenebenzene group, naphthylene group, 4,4′- A methylenediphenylene group, a 2,2-diphenylenepropane group, and the like can be mentioned.
- R 31 is preferably a pentamethylene group from the viewpoint of improving stain resistance and solvent resistance when made into polyurethane, and easiness in obtaining the raw material cyclic ester compound.
- each R 41 is independently a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 20 carbon atoms. be. When there is a plurality of R 41 , they may be the same or different.
- R 41 in general formula (IV) is not particularly limited, but examples thereof include a linear or branched alkylene group having 2 to 20 carbon atoms. Specifically, but not limited to, for example, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, propylene group, isobutylene group, 2-methyl Tetramethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, isononamethylene group, 2-methylnonamethylene group and the like can be mentioned.
- R 41 in general formula (IV) is not particularly limited, but examples thereof include a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms. Specifically, but not limited to, for example, a cyclopentylene group, a cyclohexylene group, a 1,2-dimethylenecyclopentane group, a 1,3-dimethylenecyclopentane group, a 1,2-dimethylenecyclohexane group, 1,3-dimethylenecyclohexane group, 1,4-dimethylenecyclohexane group, 4,4'-methylenedicyclohexylene group, 2,2-dicyclohexylenepropane group and the like.
- R 41 in general formula (IV) is not particularly limited, but examples thereof include a substituted or unsubstituted arylene group having 6 to 20 carbon atoms. Specifically, but not limited to, for example, phenylene group, 1,2-dimethylenebenzene group, 1,3-dimethylenebenzene group, 1,4-dimethylenebenzene group, naphthylene group, 4,4′- A methylenediphenylene group, a 2,2-diphenylenepropane group, and the like can be mentioned.
- R 42 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 20 carbon atoms. R 42 when there is more than one may be the same or different.
- R 42 in general formula (IV) is not particularly limited, but examples thereof include a linear or branched alkylene group having 2 to 20 carbon atoms. Specifically, but not limited to, for example, ethylene group, trimethylene group, tetramethylene group, pentamethylene group, hexamethylene group, heptamethylene group, octamethylene group, nonamethylene group, propylene group, isobutylene group, 2-methyl Tetramethylene group, 2-methylpentamethylene group, 3-methylpentamethylene group, isononamethylene group, 2-methylnonamethylene group and the like.
- R 42 in general formula (IV) is not particularly limited, but examples thereof include a substituted or unsubstituted cycloalkylene group having 3 to 20 carbon atoms. Specifically, but not limited to, for example, a cyclopentylene group, a cyclohexylene group, a 1,2-dimethylenecyclopentane group, a 1,3-dimethylenecyclopentane group, a 1,2-dimethylenecyclohexane group, 1,3-dimethylenecyclohexane group, 1,4-dimethylenecyclohexane group, 4,4'-methylenedicyclohexylene group, 2,2-dicyclohexylenepropane group and the like.
- R 42 in general formula (IV) is not particularly limited, but examples thereof include a substituted or unsubstituted arylene group having 6 to 20 carbon atoms. Specifically, but not limited to, for example, phenylene group, 1,2-dimethylenebenzene group, 1,3-dimethylenebenzene group, 1,4-dimethylenebenzene group, naphthylene group, 4,4′- A methylenediphenylene group, a 2,2-diphenylenepropane group, and the like can be mentioned.
- the polycarbonate diol composition of the present embodiment has a repeating structural unit represented by the following general formula (II), a repeating structural unit represented by the following general formula (III), and a repeating structural unit represented by the following general formula (IV). It contains at least one repeating structural unit selected from the group consisting of repeating structural units.
- R 21 is a divalent linear, branched or cyclic aliphatic hydrocarbon group or aromatic hydrocarbon group having 2 to 20 carbon atoms. R 21 in the case may be the same or different, and n21 is an arbitrary integer.) ...
- R 31 is a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic hydrocarbon group. R 31 in the case may be the same or different.
- R 41 and R 42 are each independently a divalent linear, branched or cyclic aliphatic hydrocarbon group having 2 to 20 carbon atoms, or an aromatic is a hydrocarbon group.When there are a plurality of R 41 and R 42 , they may be the same or different.
- the terminal structures of the structural units (II) to (IV) are terminal structures in which one terminal is bonded to a carbonate group and the other terminal is bonded to a hydroxyl group.
- it may have a terminal structure in which both terminals are bound to carbonate groups, or a terminal structure in which both terminals are bound to hydroxyl groups.
- the terminal structure of the structural units (II) to (IV) is a terminal structure in which one end is bonded to a carbonate group and the other end is bonded to a hydroxyl group.
- a mixture of a terminal structure in which both terminals are bonded to carbonate groups and a terminal structure in which both terminals are bonded to hydroxyl groups may be used.
- the polycarbonate diol composition of the present embodiment preferably contains the structural unit (II) or (IV) among the structural units (II) to (IV) from the viewpoint of flexibility, low-temperature properties, and heat and humidity resistance. , more preferably contains the structural unit (II).
- the second polycarbonate diol composition of the present embodiment has a titration amount of 4.0 mL or more and 9.5 mL or less, preferably 4.0 mL or more and 8.5 mL or less, by the turbidity point titration method.
- the titration amount in the turbidity point titration method is obtained by dissolving the polycarbonate diol composition in butyl acetate, which is a good solvent, and titrating the resulting solution with hexane, which is a poor solvent. is the titration amount at the time of If it is insoluble in butyl acetate, it may be dissolved in acetone. Specifically, it can be determined by the method described in Examples below.
- This turbidity point titration evaluates solubility in solvents, and differences appear depending on the type, molecular weight, and structure of the polyol. In general, the smaller the molecular weight, the higher the solubility in a solvent, and the solubility varies depending on the functional groups contained. Therefore, with respect to polyols, there is a difference in solubility between a blend of two or more types of polyols and a case where the structure is changed by reaction.
- the second polycarbonate diol composition of the present embodiment has a titration amount of 4.0 mL or more and 9.5 mL or less by the turbidity point titration method, preferably 4.0 mL or more and 8.5 mL or less, and 4.0 mL or more. It is more preferably 7.6 mL or less, and even more preferably 4.1 mL or more and 7.4 mL or less.
- the titration amount by the turbidity point titration method is at least the above lower limit, the compatibility of the polycarbonate diol composition with the solvent and raw materials for synthesizing polyurethane is improved, and the titration amount by the turbidity point titration method is above the above. It is preferable that it is not more than the upper limit because a polyurethane having excellent balance of low-temperature flexibility and durability such as chemical resistance and moist heat resistance can be obtained.
- the method for controlling the titration amount by the turbidity point titration method within the above range is not particularly limited.
- a method of adjusting the reaction time and a method of appropriately adjusting the oxygen concentration during mixing and stirring are also exemplified.
- the progress of the transesterification reaction can be evaluated, so by setting a target value for the titer amount in the turbidity point titration method, the variation in the transesterification reaction depending on the production lot can be reduced, and the quality can be improved. There is a tendency to obtain a polycarbonate diol composition excellent in stabilization.
- the number average molecular weight can be calculated from the hydroxyl value of the polycarbonate diol composition using the method described in the examples below.
- polycarbonate diols have low solubility in solvents, so y tends to decrease as x increases. It is speculated that the more randomly the repeating structural units represented by the general formulas (I) to (IV) and the repeating structural units represented by the general formula (I) exist, the greater the titer of turbidity point titration. .
- the method for obtaining the polycarbonate diol composition satisfying the above formula (formula 1) is not particularly limited, but for example, a method of appropriately setting the reaction time until the modification progresses sufficiently can be mentioned.
- the content of the structural unit (I) is preferably 5% by mass or more and 95% by mass or less, and 20% by mass, based on the total mass of the structural units (I) to (IV). 90% by mass or less is more preferable, and 40% by mass or more and 90% by mass or less is even more preferable.
- the content of the structural unit (I) is at least the above lower limit, a polyurethane having excellent durability such as chemical resistance and moist heat resistance can be obtained, which is preferable.
- the content of the structural unit (I) is equal to or less than the above upper limit, the viscosity of the polycarbonate diol composition tends to be low.
- the content of structural unit (I) can be measured by the method described in Examples below.
- the number average molecular weight of the polycarbonate diol composition of the present embodiment is preferably 250 to 10,000, more preferably 400 to 8,000, even more preferably 500 to 5,000, and particularly preferably 500 to 3,000.
- the number average molecular weight of the polycarbonate diol composition of the present embodiment is equal to or less than the above upper limit, the viscosity tends to decrease and the handleability during polyurethane production tends to improve. Further, when the number average molecular weight is at least the above lower limit, the flexibility of the polyurethane produced using the polycarbonate diol composition of the present embodiment tends to be excellent.
- the method for controlling the number average molecular weight of the polycarbonate diol composition of the present embodiment within the above range is not particularly limited.
- the number average molecular weight of the polycarbonate diol composition can be measured by the method described in Examples below.
- the acid value of the polycarbonate diol composition of the present embodiment is preferably 0.001 mg-KOH/g or more and 0.8 mg-KOH/g or less, and is preferably 0.005 mg-KOH/g or more and 0.6 mg-KOH/g. It is more preferably 0.01 mg-KOH/g or more and 0.6 mg-KOH/g or less. Since it is difficult to remove all acidic compounds derived from raw materials, catalysts, additives, etc., it is preferable from the viewpoint of productivity of the polycarbonate diol composition that the acid value is at least the above lower limit. When it is equal to or less than the above upper limit, it tends to be possible to reduce the occurrence of coloring.
- the method for controlling the acid value of the polycarbonate diol composition within the above range is not particularly limited. There is a method of appropriately selecting the addition.
- the acid value of the polycarbonate diol composition can be measured by the method described in Examples below.
- the peroxide content (hereinafter also referred to as “peroxide value”) of the polycarbonate diol composition of the present embodiment is preferably 10 meq/kg or less, more preferably 3 meq/kg or less.
- the polycarbonate diol composition of the present embodiment has a peroxide value of 10 meq/kg or less, coloring tends to be suppressed.
- the lower limit of the peroxide value of the polycarbonate diol composition of the present embodiment is not particularly limited, it is, for example, 0.01 meq/kg.
- Examples of the method for measuring the peroxide value include a sodium thiosulfate titration method in which potassium iodide is allowed to act on oxidized fats and oils in an acidic manner to obtain liberated iodine by a titration method. It can be easily measured using a test paper for price measurement (trade name: “POV test paper”, manufactured by Shibata Chemical Co., Ltd.). Specifically, it can be measured by the method described in Examples below.
- the method for controlling the peroxide value of the polycarbonate diol composition within the above range is not particularly limited. Sometimes, there are a method of setting the oxygen concentration to 0.5% or less, and a method of setting the nitrogen flow rate during production to 0.1 L/min or more and 50 L/min or less, and the above methods may be combined.
- the Hazen color number (hereinafter also referred to as "APHA") value (APHA value: according to JIS K0071-1 (2017)) of the polycarbonate diol composition of the present embodiment is preferably 100 or less, more preferably 60 or less. , 50 or less.
- the lower limit of the APHA value is not particularly limited, it is 0, for example.
- a polycarbonate diol composition satisfying such an APHA value can be produced by adjusting the APHA of the raw material to be used to 100 or less. It becomes more effective when the concentration is 0.5% or less.
- the APHA value can be measured by the method described in Examples below.
- the method for producing the polycarbonate diol composition of the present embodiment is not particularly limited as long as it satisfies the above characteristics.
- I-1) an ether diol represented by the following general formula (II-1)
- ether diol (II-1) an ether diol represented by the following general formula (II-1)
- polycaprolactone diol (III-1) represented by III-1) hereinafter sometimes referred to as "lactone diol (III-1)
- polyester diol represented by the following general formula (IV-1) hereinafter sometimes referred to as "ester diol (IV-1)
- a method of performing an ester exchange reaction using at least one selected from the group consisting of polycarbonate diol (I-1) and a cyclic ester compound A method of reacting is mentioned.
- Polycarbonate Diol (I-1) As the polycarbonate diol (I-1) used for producing the polycarbonate diol composition of the present embodiment, any polycarbonate diol having a structure represented by the above general formula (I-1) may be used.
- the method for producing the polycarbonate diol (I-1) is not particularly limited, and known methods can be employed.
- a polycarbonate diol (I-1) can be obtained by reacting a carbonate compound and a diol compound in the presence of a transesterification catalyst.
- Carbonate compound examples of carbonate compounds used for producing polycarbonate diol (I-1) include, but are not limited to, alkylene carbonates, dialkyl carbonates, diaryl carbonates, and the like.
- the alkylene carbonate is not particularly limited, but examples thereof include ethylene carbonate, trimethylene carbonate, 1,2-propylene carbonate, 1,2-butylene carbonate, 1,3-butylene carbonate, 1,2-pentylene carbonate and the like. be done.
- the dialkyl carbonate is not particularly limited, but includes, for example, dimethyl carbonate, diethyl carbonate, dipropyl carbonate, dibutyl carbonate and the like.
- the diaryl carbonate is not particularly limited, but includes, for example, diphenyl carbonate.
- ethylene carbonate, dimethyl carbonate, diethyl carbonate, and diphenyl carbonate are preferable as the carbonate compound used for producing the polycarbonate diol (I-1), and ethylene carbonate is more preferable.
- the diol compound used for producing the polycarbonate diol (I-1) is not limited to the following, but examples thereof include linear diols, branched diols, cyclic diols, and diols having an aromatic ring.
- linear diols include, but are not limited to, ethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,6-hexanediol, and 1,7-heptane. diol, 1,8-octanediol, 1,9-nanodiol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like.
- branched diols include, but are not limited to, 2-methyl-1,8-octanediol, neopentyl glycol, 2-ethyl-1,6-hexanediol, 2-methyl-1,3-propanediol. , 3-methyl-1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and the like.
- the cyclic diol is not particularly limited, but includes, for example, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-bis(4-hydroxycyclohexyl)-propane and the like.
- the diol having an aromatic ring is not particularly limited, but examples include p-xylenediol, p-tetrachloroxylenediol, 1,4-bis(hydroxyethoxy)benzene, 2,2-bis[(4-hydroxyethoxy) phenyl]propane and the like.
- linear diols or branched diols having 3 to 10 carbon atoms are preferable, and 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol or 1,6-hexanediol, 1 ,9-nanodiol, 1,10-decanediol, 2-methyl-1,3-propanediol and 3-methyl-1,5-pentanediol are preferred, and 1,4-butanediol, 1,5-pentanediol or 1,6-hexanediol is more preferred.
- a transesterification catalyst can be used in the production of polycarbonate diol (I-1) as a starting material.
- the catalyst can be selected from common transesterification reaction catalysts.
- transesterification catalysts include, but are not limited to, alkali metals and alkaline earth metals, alcoholates thereof, hydrides thereof, oxides thereof, amides thereof, hydroxides thereof and salts thereof.
- the salts of alkali metals and alkaline earth metals are not particularly limited, but examples include carbonates, nitrogen-containing borates, basic salts with organic acids, and the like.
- alkali metals include, but are not limited to, lithium, sodium, and potassium.
- alkaline earth metals include, but are not limited to, magnesium, calcium, strontium, and barium.
- the transesterification catalyst using a metal other than alkali metals and alkaline earth metals is not particularly limited, but for example, metals other than alkali metals and alkaline earth metals, salts thereof, alcoholates thereof, and Examples include organic compounds containing metals.
- metals other than alkali metals and alkaline earth metals are not particularly limited, but include aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, germanium, zirconium, niobium , molybdenum, ruthenium, rhodium, palladium, silver, indium, tin, antimony, tungsten, rhenium, osmium, iridium, platinum, gold, thallium, lead, bismuth, ytterbium, and the like.
- transesterification catalysts can be used singly or in combination of two or more.
- metals selected from the group consisting of titanium, zirconium, tin, lead and ytterbium, salts thereof, alkoxides thereof, or organic compounds containing these metals are preferred.
- one or more metals selected from the group consisting of magnesium, titanium, ytterbium, tin and zirconium are more preferable.
- transesterification catalysts include, but are not limited to, magnesium organic compounds, lead organic compounds, titanium organic compounds, and the like.
- the organic compound of magnesium is not particularly limited, but examples include magnesium acetate tetrahydrate, magnesium acetate anhydrate, and the like.
- the organic compound of lead is not particularly limited, but examples include lead acetate trihydrate, tetraphenyl lead, and lead stearate.
- the organic compound of titanium is not particularly limited, but examples thereof include titanium tetra-n-butoxide, titanium tetra-n-propoxide, titanium tetraisopropoxide and the like.
- the amount of the transesterification reaction catalyst used is preferably 0.00001% by mass or more and 0.1% by mass or less, more preferably 0.0001% by mass or more and 0.05% by mass or less, relative to the total mass of the raw materials.
- the transesterification catalyst used in the transesterification reaction is not consumed in the transesterification reaction when heat treatment is performed following the production of polycarbonate diol, so it can be calculated based on the amount of the transesterification reaction catalyst used.
- the metal amount of the transesterification reaction catalyst contained in the polycarbonate diol is determined by measuring by ICP (inductively coupled plasma).
- the polycarbonate diol (I-1) used in the production of the polycarbonate diol composition of the present embodiment is added with a catalyst poison such as a phosphate ester compound in order to deactivate the transesterification reaction catalyst used in the production thereof. There may be.
- polycarbonate diol (I-1) which is a raw material, contains a catalyst poison or the like of the transesterification catalyst used during its production, it is usually treated with ether diol (II-1) or ester diol (IV-1 ) and the polycarbonate diol (I-1) tend to be difficult to proceed with. Therefore, when producing the polycarbonate diol composition of the present embodiment, a necessary amount of the transesterification reaction catalyst described above can be newly added.
- the transesterification reaction in the present embodiment tends to proceed easily.
- a necessary amount of the transesterification reaction catalyst can be newly added. In that case, the same transesterification catalyst as used in the production of the starting material polycarbonate diol (I-1) can be employed.
- the polycarbonate diol (I-1) used for producing the polycarbonate diol composition of the present embodiment may be a homopolycarbonate diol obtained from one type of diol compound, or a copolymer obtained from two or more types of diol compounds. A polycarbonate diol may also be used.
- a polycarbonate diol composition can be obtained by transesterification using any of the polycarbonate diols (I-1) exemplified above.
- homopolycarbonate diols obtained using 1,6-hexanediol which is widely used in the market, are usually solid at room temperature. Therefore, the polycarbonate diol composition obtained by the transesterification reaction with the homopolycarbonate diol also tends to be solid at room temperature.
- a copolymer polycarbonate diol obtained using any two of 1,4-butanediol, 1,5-pentanediol and 1,6-hexanediol is liquid at room temperature. Therefore, the polycarbonate diol composition obtained by the transesterification reaction with the copolymerized polycarbonate diol also tends to be liquid at room temperature.
- n11 represents the repeating number of the carbonate structure (-R 111 -O-CO-O-). Although n11 is an arbitrary integer, the average value of n11 is preferably in the range of 1 to 50, more preferably in the range of 2 to 50, still more preferably in the range of 3 to 30, and in the range of 4 to 20. is particularly preferred.
- the number average molecular weight of the polycarbonate diol (I-1) used for producing the polycarbonate diol composition of the present embodiment is not particularly limited, but is preferably 500 or more and 5000 or less, more preferably 1000 or more and 3000 or less.
- the number average molecular weight of the polycarbonate diol (I-1) is at least the above lower limit, the performance expected of the polycarbonate diol composition tends to be further improved.
- the number average molecular weight of the polycarbonate diol (I-1) is equal to or less than the above upper limit, it is preferable from the standpoint of handleability during production of the polycarbonate diol composition.
- the ether diol (II-1) used for producing the polycarbonate diol composition of the present embodiment may have a structure represented by the general formula (II-1).
- the ether diol (II-1) is preferably a polyoxyalkylene diol having primary hydroxyl groups at both ends.
- Ether diol (II-1) is commercially available as products with various molecular weights, and such commercially available products can also be used. Commercially available products of ether diol (II-1) are not particularly limited.
- the number average molecular weight of the ether diol (II-1) is not particularly limited, it is preferably 400 or more and 3000 or less, more preferably 600 or more and 2500 or less.
- the number average molecular weight of the ether diol (II-1) used for production is at least the above lower limit, flexibility tends to be further improved when used in polyurethane, and the number of ether diols (II-1)
- the average molecular weight is equal to or less than the above upper limit, the crystallinity of the polycarbonate diol composition of the present embodiment tends to be further suppressed.
- polycaprolactone diol (III-1) and cyclic ester compound The polycaprolactone diol (III-1) used for producing the polycarbonate diol composition of the present embodiment may have a structure represented by the above general formula (III-1). Among them, polycaprolactone diol (III-1) is commercially available in various molecular weight products, and such commercially available products can also be used. Examples of commercially available products include, but are not particularly limited to, the “PLAXEL” series manufactured by Daicel Organic Synthesis Company, and the “Polylite” series manufactured by DIC Corporation.
- n311 represents the number of repetitions of the structure (--R 311 --O--CO--).
- n311 is an arbitrary integer, but the average value of n311 is 1 or more, preferably 1 or more and 50 or less, more preferably 1 or more and 30 or less, 1 A range of 20 or less is particularly preferable.
- the number average molecular weight of polycaprolactone diol (III-1) is not particularly limited, it is preferably 400 or more and 3000 or less, more preferably 600 or more and 2000 or less.
- the number average molecular weight of the lactone diol (III-1) used for production is at least the above lower limit, the flexibility of the polyurethane obtained from the polycarbonate diol composition of the present embodiment tends to be further improved, and the lactone diol
- the number average molecular weight of (III-1) is equal to or less than the above upper limit, the polycarbonate diol composition of the present embodiment tends to have a lower viscosity.
- the cyclic ester compound may be subjected to ring-opening polymerization.
- cyclic ester compounds include, but are not limited to, ⁇ -propiolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ -C3-C12 such as methyl- ⁇ -caprolactone, ⁇ -methyl- ⁇ -caprolactone, ⁇ , ⁇ -dimethyl- ⁇ -caprolactone, 3,3,5-trimethyl ⁇ -caprolactone, and enantholactone (7-heptalidone) cyclic ester compounds of.
- ⁇ -caprolactone which gives the structural unit (III) in which R 31 in the formula (III) is a linear alkylene group having 5 carbon atoms.
- Ester diol (IV-1) used for producing the polycarbonate diol composition of the present embodiment may have a structure represented by general formula (IV-1) above.
- the ester diol (IV-1) is commercially available in various molecular weight products, and such commercially available products can also be used.
- Commercially available products of the ether diol (II-1) are not particularly limited, but examples include the "Polylite” series manufactured by DIC Corporation, the "Kuraray Polyol” series manufactured by Kuraray Co., Ltd., and the "Nipporan” series manufactured by Tosoh Corporation. , "ADEKA New Ace” series manufactured by ADEKA Corporation, and the like.
- n411 represents the number of repetitions of the structure (—CO—R 411 —CO—OR 421 —O—).
- n411 is an arbitrary integer, but the average value of n411 is 1 or more, preferably 1 or more and 50 or less, more preferably 2 or more and 30 or less, and 4 A range of 20 or less is particularly preferable.
- the number average molecular weight of the ester diol (IV-1) is not particularly limited, it is preferably 400 or more and 3000 or less, more preferably 600 or more and 2000 or less.
- the number average molecular weight of the ester diol (IV-1) used for production is at least the above lower limit, the flexibility of the polyurethane obtained from the polycarbonate diol composition of the present embodiment tends to be further improved.
- the number average molecular weight of (IV-1) is equal to or less than the above upper limit, the polycarbonate diol composition of the present embodiment tends to have a lower viscosity.
- the method for producing the polycarbonate diol composition of the present embodiment is not particularly limited, it is selected from the group consisting of polycarbonate diol (I-1), ether diol (II-1), ester diol (IV-1) and cyclic ester compound. It is preferable to manufacture by mixing with at least one kind of compound obtained and stirring while heating.
- the temperature during the reaction is not particularly limited, but is preferably 120°C or higher and 200°C or lower, more preferably 140°C or higher and 180°C or lower.
- the reaction temperature By setting the reaction temperature to the above lower limit or higher, the transesterification reaction can be carried out in a shorter time and tends to be economically efficient.
- the reaction temperature By setting the reaction temperature to the above upper limit or less, there is a tendency that the acid value of the resulting polycarbonate diol composition can be controlled within a specific range, and coloration can be prevented more effectively.
- the oxygen concentration it is preferable to keep the oxygen concentration at 0.5% or less during production.
- the method for reducing the oxygen concentration to 0.5% or less is not particularly limited. After reducing the pressure to s or less, nitrogen substitution is performed and the reaction is performed under a slightly reduced pressure. By setting the oxygen concentration to 0.5% or less, it tends to be possible to suppress the generation of peroxides and prevent the resulting polycarbonate diol composition from being colored.
- nitrogen flow is preferably performed at a nitrogen flow rate of 0.1 L / min or more and 50 L / min or less, and nitrogen flow is performed at 0.2 L / min or more and 30 L / min or less. is more preferable.
- the nitrogen flow rate is at least the above lower limit value, it is possible to prevent contamination of oxygen. It tends to be able to stabilize the hydroxyl value of the product.
- the polycarbonate diol composition of the present embodiment can be used as a raw material for polyurethane to be reacted with polyisocyanate.
- Polyurethanes using the polycarbonate diol composition of the present embodiment are excellent in chemical resistance, heat resistance, and weather resistance. It can be widely used for water-based polyurethane coatings and the like. Furthermore, it can be used for applications such as modifiers for polyesters and polyimides.
- the polyurethane of this embodiment uses the polycarbonate diol composition described above.
- the polyurethane of the present embodiment preferably has a ⁇ M of 1.0 or more and 19.0 or less, and 3.5 or more and 18.5 or less, as calculated by the following formula (B) for the stress at 100% elongation in a tensile test. is more preferably 5.0 or more and 17.0 or less.
- ⁇ M M1-M2 (B) (M1 in formula (B) is the stress at 100% elongation in a tensile test under -20°C conditions, and M2 represents the stress at 100% elongation in a tensile test under 23°C conditions.)
- the polyurethane of this embodiment tends to have an excellent balance between flexibility and durability because ⁇ M is equal to or higher than the above lower limit. Further, since the polyurethane of the present embodiment has a ⁇ M equal to or less than the above upper limit value, the difference in elastic modulus due to temperature is small, so that it tends to be excellent in mechanical properties at low temperatures.
- the method for producing the polyurethane of the present embodiment uses known polyurethane reaction conditions for producing ordinary polyurethanes, and can be carried out in the absence of a solvent or in the presence of a solvent.
- Examples thereof are not particularly limited, but for example, a method of collectively mixing the above-described polycarbonate diol composition, other polyols, polyisocyanate and chain extender to react (hereinafter sometimes referred to as “one-shot method”). ), or a method in which the above-described polycarbonate diol composition, other polyols and polyisocyanate are first reacted to prepare a prepolymer having both terminal isocyanate groups, and then the prepolymer and a chain extender are reacted (hereinafter referred to as "prepolymer (sometimes referred to as "law”), etc.
- prepolymer sometimes referred to as "law”
- the isocyanate compound contained in the polyurethane of the present embodiment is not particularly limited as long as it functions as a curing agent, and one having two or more isocyanate groups at the end is used.
- isocyanate compounds include, but are not limited to, chain aliphatic diisocyanates, cycloaliphatic diisocyanates, aromatic diisocyanates, and isocyanate compounds having three or more isocyanate groups, and these isocyanate compounds. Examples include isocyanurate-modified products and biuret-modified products.
- the chain aliphatic diisocyanate is not particularly limited, but includes, for example, hexamethylene diisocyanate and trimethylhexamethylene diisocyanate.
- the cycloaliphatic diisocyanate is not particularly limited, but examples include isophorone diisocyanate, 1,4-cyclohexane diisocyanate, 1-methyl-2,4-cyclohexane diisocyanate, 1-methyl-2,6-cyclohexane diisocyanate, 4,4' -dicyclohexylmethane diisocyanate and the like.
- the aromatic diisocyanate is not particularly limited, but includes, for example, tolylene diisocyanate, 4,4'-diphenylmethane diisocyanate (hereinafter sometimes abbreviated as "MDI"), xylylene diisocyanate and naphthylene diisocyanate.
- MDI 4,4'-diphenylmethane diisocyanate
- the isocyanate compound having 3 or more isocyanate groups is not particularly limited, but examples include triphenylmethane-4,4′-4′′-triisocyanate, 1,3,5-triisocyanatobenzene, 2,4 ,6-triisocyanatotoene and 4,4'-dimethyldiphenylmethane-2,2',5,5'-tetraisocyanate.
- a commercially available isocyanate compound may be used, or it may be synthesized using a known method.
- the content of the isocyanate compound may be appropriately adjusted according to the molar amount of hydroxyl groups in the polyol that is the main ingredient.
- the molar ratio (NCO/OH) of the isocyanate groups of the isocyanate compound to the hydroxyl groups of the polycarbonate diol can be, for example, 0.2 or more and 5.0 or less, for example, 0.4 or more and 3.0. For example, it can be 0.5 or more and 2.0 or less.
- the NCO/OH ratio is at least the above lower limit, a tougher coating film tends to be obtained.
- the NCO/OH is equal to or less than the above upper limit, the smoothness of the coating film tends to be further improved.
- chain extender used in producing the polyurethane of the present embodiment is not particularly limited, but examples include ordinary polyols and polyamines.
- polyol is not particularly limited, examples thereof include linear diols, branched diols, cyclic diols, diols having aromatic rings, and the like.
- linear diols include, but are not limited to, ethylene glycol, 1,3-propanediol, 1,5-pentanediol, 1,6-hexanediol, 1,7-heptanediol, and 1,8-octane. diol, 1,9-nanonediol, 1,10-decanediol, 1,11-undecanediol, 1,12-dodecanediol and the like.
- branched diols include, but are not limited to, 2-methyl-1,8-octanediol, neopentyl glycol, 2-ethyl-1,6-hexanediol, 2-methyl-1,3-propanediol. , 3-methyl-1,5-pentanediol, 2,4-dimethyl-1,5-pentanediol, 2,4-diethyl-1,5-pentanediol and the like.
- the cyclic diol is not particularly limited, but includes, for example, 1,3-cyclohexanediol, 1,4-cyclohexanediol, 1,4-cyclohexanedimethanol, 2-bis(4-hydroxycyclohexyl)-propane and the like.
- the diol having an aromatic ring is not particularly limited, but examples include p-xylenediol, p-tetrachloroxylenediol, 1,4-bis(hydroxyethoxy)benzene, 2,2-bis[(4-hydroxyethoxy) phenyl]propane and the like.
- Polyamines are not particularly limited, but include, for example, hydroxylamines and polyamines.
- hydroxylamines include, but are not limited to, N-methylethanolamine, N-ethylethanolamine, and the like.
- polyamines include, but are not limited to, ethylenediamine, 1,3-diaminopropane, hexamethylenediamine, triethylenetetramine, diethylenetriamine, isophoronediamine, 4,4′-diaminodicyclohexylmethane, 2-hydroxyethylpropylenediamine, Di-2-hydroxyethylethylenediamine, di-2-hydroxyethylpropylenediamine, 2-hydroxypropylethylenediamine, di-2-hydroxypropylethylenediamine, 4,4'-diphenylmethanediamine, methylenebis(o-chloroaniline), xylylenediamine , diphenyldiamine, tolylenediamine, hydrazine, piperazine, N,N'-diaminopiperazine and the like.
- chain extenders may be used alone or in combination of two or more.
- the synthetic leather of this embodiment contains the polyurethane described above.
- the synthetic leather of the present embodiment is not particularly limited, but examples thereof include synthetic leather in which a base fabric, an adhesive layer, an intermediate layer and a skin layer are sequentially laminated.
- at least one selected from the group consisting of the base fabric, the adhesive layer, the intermediate layer and the skin layer preferably contains the polyurethane described above.
- the base fabric various types can be used, and although not particularly limited, examples thereof include fibrous base materials.
- the fibrous base material is not particularly limited, but for example, a fiber assembly in which fibers are shaped into a non-woven fabric, a woven fabric, a net cloth, etc., or a fiber assembly in which each fiber is bonded with an elastic polymer. things, etc.
- the fibers used in this fiber assembly are not particularly limited, but for example, natural fibers such as cotton, hemp, and wool; regenerated or semisynthetic fibers such as rayon and acetate; polyamides, polyesters, polyacrylonitrile, polyvinyl alcohol, and polyolefins. and synthetic fibers such as These fibers may be singly spun fibers or mixed spun fibers.
- Examples of other substrates include, but are not limited to, paper, release paper, plastic films of polyester or polyolefin, metal plates such as aluminum, and glass plates.
- the polyurethane described above for the adhesive layer, intermediate layer, and skin layer.
- a cross-linking agent other resins, antioxidants, ultraviolet absorbers, hydrolysis inhibitors, pigments, dyes, colorants, flame retardants, organic solvents, etc. may be added. can.
- the method for producing the synthetic leather of the present embodiment is not particularly limited as long as the polyurethane described above is used, and a known method for producing synthetic leather can be used.
- paint or coating agent composition The paint or coating agent composition (paint) of the present embodiment uses the polycarbonate diol composition described above.
- a production method known in the industry is used.
- a two-component solvent-based coating composition in which a coating main agent obtained from the polycarbonate diol composition described above and a curing agent composed of polyisocyanate are mixed immediately before coating;
- a one-component solvent-based coating composition comprising a urethane prepolymer having an isocyanate terminal group obtained by:
- a one-component solvent-based coating composition comprising a polyurethane resin obtained by reacting the above polycarbonate diol, an organic polyisocyanate and a chain extender.
- the paint or coating composition (paint) of the present embodiment includes, for example, a curing accelerator (catalyst), a leveling agent, a filler, a dispersant, a flame retardant, a dye, an organic or inorganic pigment, a separating
- a curing accelerator catalyst
- a leveling agent such as a filler, a dispersant, a flame retardant, a dye, an organic or inorganic pigment
- a separating Other additives such as mold agents, fluidity modifiers, plasticizers, antioxidants, UV absorbers, light stabilizers, antifoaming agents, colorants, and solvents can be added.
- a curing accelerator catalyst
- a leveling agent such as a filler, a dispersant, a flame retardant, a dye, an organic or inorganic pigment, a separating
- Other additives such as mold agents, fluidity modifiers, plasticizers, antioxidants, UV absorbers, light stabilizer
- the curing accelerator is not particularly limited, but includes, for example, monoamines, diamines, other triamines, cyclic amines, alcohol amines, ether amines, and metal catalysts that are commonly used.
- Examples of monoamines include, but are not limited to, triethylamine, N,N-dimethylcyclohexylamine, and the like.
- Examples of the diamine include, but are not particularly limited to, tetramethylethylenediamine.
- the alcohol aminon is not particularly limited, but includes, for example, dimethylethanolamine.
- metal catalysts include, but are not limited to, potassium acetate, potassium 2-ethylhexanoate, calcium acetate, lead octylate, dibutyltin dilaurate, tin octoate, bismuth neodecanoate, bismuth oxycarbonate, bismuth 2 - ethylhexanoate, zinc octoate, zinc neodecanoate, phosphine, phospholine, and the like.
- organic solvents include, but are not limited to, amide solvents, sulfoxide solvents, ketone solvents, ether solvents, ester solvents, carbonate solvents, aromatic hydrocarbon solvents, and the like.
- organic solvents may be used alone or as a mixed solvent of two or more.
- hydroxyl value of the polycarbonate diol (composition) was measured by the following method. First, using a volumetric flask, pyridine was added to 12.5 g of acetic anhydride to make 50 mL to prepare an acetylation reagent. Next, 2.5 g of the sample was accurately weighed into a 100 mL eggplant flask. Next, 5 mL of the acetylating reagent and 10 mL of toluene were added to the round-bottomed flask using a whole pipette, and a cooling tube was attached to stir and heat the solution in the round-bottomed flask at 100° C. for 1 hour.
- x is the repeating structural unit represented by the general formula (I) with respect to the total mass (% by mass) of the repeating structural units represented by the general formulas (I) to (IV) is the content (% by mass) of the polycarbonate diol composition
- y is the titration amount (mL) of the polycarbonate diol composition by the turbidity point titration method
- Mn is the number average molecular weight of the polycarbonate diol composition.
- Molecular weight (B) A portion of the polyurethane film obtained in Application Examples and Comparative Application Examples described later was cut out, and an N,N-dimethylformamide solution was prepared so that the concentration of polyurethane was 0.1% by mass. manufactured by HLC-8320 (column: Tskgel SuperHM-H, 4 columns), and a solution of 2.6 g of lithium bromide dissolved in 1 L of dimethylformamide is used as the eluent. The number average molecular weight (Mn) and weight average molecular weight (Mw) of the polyurethane were measured. Also, the molecular weight distribution (Mw/Mn) was calculated from these measurement results.
- Turbidity point titration 0.5 x I x 56.1/(J x K) (iii)
- I represents the titration amount (mL) obtained above
- J represents the weighed sample mass (g)
- K represents the hydroxyl value of the polycarbonate diol composition (mg-KOH/g ).
- Acid value The acid value of the polycarbonate diol compositions obtained in Examples and Comparative Examples described later was measured according to JIS K 0070-1992 except that the solvent was changed to toluene/ethanol (2/1). asked.
- GC analysis uses gas chromatography GC-14B (manufactured by Shimadzu Corporation, Japan) equipped with DB-WAX (manufactured by J&W, USA) as a column, diethylene glycol diethyl ester as an internal standard, flame ionization type detection group (FID ) was used as a detector to quantitatively analyze each component.
- the temperature rise profile of the column was as follows: after holding at 60°C for 5 minutes, the temperature was raised to 250°C at 10°C/min.
- the composition of the polycarbonate diol composition was obtained from each alcohol component and the dibasic acid-derived methyl ester component detected from the above analysis results.
- the composition of polyester polycarbonate polyol containing dibasic acid is obtained by subtracting the same number of moles of diol from the number of moles of methyl ester derived from dibasic acid. , the number of moles of the diols constituting the carbonate skeleton was determined (when multiple diols were used, the ratio of the diols determined by gas chromatography was used to determine the composition of the diol in the carbonate skeleton and the composition of the diol in the ester skeleton. are the same).
- ⁇ 100% elongation stress (hereinafter sometimes referred to as “ ⁇ M”) From the 100% modulus (stress at 100% elongation) obtained in [Evaluation 1] and [Evaluation 2] above, ⁇ M was obtained by the following formula (B).
- ⁇ M M1-M2 (B) (M1 in formula (B) is the stress at 100% elongation under the -20°C condition obtained in [Evaluation 2], and M2 is the stress at 100% elongation under the 23°C condition obtained in [Evaluation 1]. be.)
- A-1 Polyoxytetramethylene glycol (manufactured by Mitsubishi Chemical Corporation, "PTMG2000” (trade name), number average molecular weight: about 2000, in general formula (II-1), R 211 : tetramethylene group, n211: about 28)
- A-2 Polyoxytetramethylene glycol (manufactured by Mitsubishi Chemical Corporation, "PTMG1000” (trade name), number average molecular weight: about 1000, in general formula (II-1), R 211 : tetramethylene group, n211: about 14)
- A-3 Polyoxyethylene polyoxypropylene glycol (manufactured by Sanyo Chemical Industries, Ltd., "Newpol PE-61” (trade name), number average molecular weight: about 2000, R 211 in general formula (II-1): isopropylene group and methylene group, n211: about 35)
- A-4 Polyoxyethylene polyoxypropylene glycol (manufactured by
- the reactor was directly connected to a condenser, the temperature of the oil bath was raised to 180° C., the pressure was gradually lowered, and the reaction was continued for another 3 hours to produce polycarbonate diol P-1 (466 g), which is liquid at room temperature. Obtained.
- the hydroxyl value of the obtained polycarbonate diol P-1 was 55.2 mg-KOH/g.
- the polycarbonate diol P-1 thus obtained had a number average molecular weight of 2,033.
- the reactor was directly connected to a condenser, the temperature of the oil bath was raised to 180° C., and the pressure was gradually lowered to carry out the reaction for another 8 hours to obtain polycarbonate diol P-2 (462 g), which is liquid at room temperature. Obtained.
- the obtained polycarbonate diol P-2 had a hydroxyl value of 56.1 mg-KOH/g.
- the polycarbonate diol P-2 thus obtained had a number average molecular weight of 2,000.
- polycarbonate diol P-3 (478 g), which is liquid at room temperature. Obtained.
- the obtained polycarbonate diol P-3 had a hydroxyl value of 112.0 mg-KOH/g.
- the polycarbonate diol P-3 thus obtained had a number average molecular weight of 1,002.
- Example 1 Production of polycarbonate diol composition SA-1 90 mass of polycarbonate diol P-2 obtained in Synthesis Example 2 was placed in a 1 L glass flask (hereinafter also referred to as "reactor") equipped with a stirrer. (360 g) and 10 parts by mass (40 g) of polyoxytetramethylene glycol (manufactured by Mitsubishi Chemical Corporation, "PTMG2000” (trade name), number average molecular weight: about 2000). Then, in the reactor, 0.1 kPa. After the pressure was reduced to 120° C. for 10 minutes, the mixture was purged with nitrogen, and it was confirmed that the oxygen concentration was 0.5% or less.
- reactor 1 L glass flask
- the reactor While maintaining a nitrogen flow rate of 1 L/min, the reactor was heated and stirred at a temperature of about 145° C. for 12 hours. The reaction solution was subjected to turbidity point titration over time, and when it was confirmed that there was no change in the turbidity point titration amount, dibutyl phosphate was added to titanium tetra-n-butoxide so that the mass ratio was 1.3 times. Then, the mixture was heat-treated for 3 hours at 110° C. as the internal temperature of the reactor to obtain a polycarbonate diol composition SA-1. Each physical property of the resulting polycarbonate diol composition SA-1 was measured by the methods described above. Table 1 shows the results.
- the hydroxyl value of the resulting polycarbonate diol composition SA-1 was 56.6 mg-KOH/g.
- the polycarbonate diol composition SA-1 thus obtained had a number average molecular weight of 1,982.
- the obtained polycarbonate diol composition SA-1 contained a repeating structural unit represented by the following formula (A1) and a repeating structural unit represented by the following formula (B1).
- A1 In general formula (A1), R 11 is an aliphatic hydrocarbon group having 4 or 6 carbon atoms.)
- ... (B1) In general formula (B1), R 21 is a tetramethylene group, and the average value of n21 is about 28.)
- Examples 2 to 13 The reaction was carried out under the same conditions and by the same method as in Example 1, except that the types and amounts of each raw material were changed as shown in Tables 1 and 2, respectively, to obtain polycarbonate diol compositions SA- of Examples 2 to 13. 2 to SA-13 were obtained. Periodical quantification and physical properties during turbidity point titration of the obtained polycarbonate diol compositions SA-2 to SA-13 were measured by the above methods. Results are shown in Tables 1 and 2. In addition, the obtained polycarbonate diol compositions SA-2 to SA-13 were sequentially represented by repeating structural units represented by the following formulas (A2) to (A13) and the following formulas (B2) to (B13). and a repeating structural unit. ...
- the polyurethanes obtained from the polycarbonate diol compositions of Examples are excellent in flexibility and mechanical properties at low temperatures, and are also excellent in balance with durability such as resistance to moist heat. all right.
- the APHA of the polyurethane solution obtained from the polycarbonate diol composition of the example also changed well with time.
- the polycarbonate diol composition of the present embodiment can be made high-solid during the production of paints and polyurethanes, and is useful as a raw material for paints and polycarbonate-based polyurethanes.
- the polyurethane produced using the polycarbonate diol composition of the present embodiment has a stable color tone, excellent low-temperature flexibility, and excellent durability. It can be suitably used in a wide range of fields such as paints and high-performance elastomers.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Dispersion Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Polyesters Or Polycarbonates (AREA)
- Polyurethanes Or Polyureas (AREA)
Abstract
Description
[1]
下記一般式(I)で表される繰り返し構造単位を含み、さらに下記一般式(II)で表される繰り返し構造単位、下記一般式(III)で表される繰り返し構造単位、及び、下記一般式(IV)で表される繰り返し構造単位からなる群より選ばれる少なくとも1つの繰り返し構造単位を含み、下記式(式1)を満たすポリカーボネートジオール組成物。
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
xy≧3.7×α (α=22.4×Mn-0.41) ・・・(式1)
((式1)中、xは前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量(質量%)に対して、前記一般式(I)で表される繰り返し構造単位の含有量(質量%)の割合であり、yはポリカーボネートジオール組成物の濁点滴定方法での滴定量(mL)であり、Mnはポリカーボネートジオール組成物の数平均分子量である。)
[2]
下記一般式(I)で表される繰り返し構造単位を含み、さらに下記一般式(II)で表される繰り返し構造単位、下記一般式(III)で表される繰り返し構造単位、及び、下記一般式(IV)で表される繰り返し構造単位からなる群より選ばれる少なくとも1つの繰り返し構造単位を含み、前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、40質量%以上であり、濁点滴定方法での滴定量が4.0mL以上9.5mL以下である、ポリカーボネートジオール組成物。
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
[3]
前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、5質量%以上95質量%以下である、[1]に記載のポリカーボネートジオール組成物。
[4]
前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、40質量%以上90質量%以下である、[1]~[3]のいずれかに記載のポリカーボネートジオール組成物。
[5]
酸価が0.001mg-KOH/g以上0.8mg-KOH/g以下である、[1]~[4]のいずれかに記載のポリカーボネートジオール組成物。
[6]
過酸化物含有量が10meq/kg以下である、[1]~[5]のいずれかに記載のポリカーボネートジオール組成物。
[7]
JIS K0071-1(2017)に準拠ハーゼン色数の値(APHA値)が100以下である、[1]~[6]のいずれかに記載のポリカーボネートジオール組成物。
[8]
前記一般式(II)~(IV)で表される繰り返し構造単位のうち、一般式(II)で表される繰り返し構造単位の繰り返し数n21の平均値が15以上である、[1]~[7]のいずれかに記載のポリカーボネートジオール組成物。
[9]
前記一般式(II)~(IV)で表される繰り返し構造単位のうち、少なくとも一般式(II)若しくは(IV)で表される繰り返し構造単位を含む、[1]~[8]のいずれかに記載のポリカーボネートジオール組成物。
[10]
前記一般式(II)~(IV)で表される繰り返し構造単位のうち、少なくとも一般式(II)で表される繰り返し構造単位を含む、[1]~[9]のいずれかに記載のポリカーボネートジオール組成物。
[11]
[1]~[10]のいずれかに記載のポリカーボネートジオール組成物を用いてなるポリウレタン。
[12]
前記ポリウレタンの引張試験による100%伸長時応力について、下記式(B)で算出されるΔMが1.0以上19.0以下である、[11]に記載のポリウレタン。
ΔM=M1-M2 ・・・(B)
(式(B)中のM1は-20℃条件下での引張試験の100%伸長時応力であり、M2は23℃条件下での引張試験の100%伸長時応力を表す。)
[13]
[11]又は[12]に記載のポリウレタンを含む、合成皮革。
本実施形態の第1のポリカーボネートジオール組成物は、下記一般式(I)で表される繰り返し構造単位(以下、単に「構造単位(I)」とも記す。)を含み、さらに下記一般式(II)で表される繰り返し構造単位(以下、単に「構造単位(II)」とも記す。)、下記一般式(III)で表される繰り返し構造単位(以下、単に「構造単位(III)」とも記す。)、及び、下記一般式(IV)で表される繰り返し構造単位(以下、単に「構造単位(IV)」とも記す。)からなる群より選ばれる少なくとも1つの繰り返し構造単位を含み、下記式(式1)を満たす。
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
xy≧3.7×α (α=22.4×Mn-0.41) ・・・(式1)
((式1)中、xは前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量(質量%)に対して、前記一般式(I)で表される繰り返し構造単位の含有量(質量%)の割合であり、yはポリカーボネートジオール組成物の濁点滴定方法での滴定量(mL)であり、Mnはポリカーボネートジオール組成物の数平均分子量である)
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
本実態形態のポリカーボネートジオール組成物において、構造単位(I)の詳細について、以下に説明する。
一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有してもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。
次いで、構造単位(II)の詳細について以下に説明する。
一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。
一般式(II)中、n21は構造(-R21-O-)の繰り返し数を表す。一般式(II)中、n21は任意の整数であるが、本実施形態のポリカーボネートジオール組成物全体におけるn21の平均値は、好ましくは12以上であり、より好ましくは12以上70以下の範囲であり、12以上60以下の範囲がさらに好ましく、15以上がよりさらに好ましく、15以上50以下の範囲が特に好ましい。
次いで、構造単位(III)の詳細について以下に説明する。
一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。
次いで、構造単位(IV)の詳細について以下に説明する。
一般式(IV)中、R41は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41は互いに同一であってもよく、異なっていてもよい。
一般式(IV)中、R42は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR42は互いに同一であってもよく、異なっていてもよい。
本実施形態のポリカーボネートジオール組成物は、下記一般式(II)で表される繰り返し構造単位、下記一般式(III)で表される繰り返し構造単位、及び、下記一般式(IV)で表される繰り返し構造単位からなる群より選ばれる少なくとも1つの繰り返し構造単位を含む。
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
本実施形態の第2のポリカーボネートジオール組成物は、濁点滴定方法での滴定量が4.0mL以上9.5mL以下であり、4.0mL以上8.5mL以下であることが好ましい。
本実施形態の第1のポリカーボネートジオール組成物は下記式(式1)を満たす。
xy≧3.7×α (α=22.4×Mn-0.41) ・・・(式1)
((式1)中、xは前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量(質量%)に対して、前記一般式(I)で表される繰り返し構造単位の含有量(質量%)であり、yはポリカーボネートジオール組成物の濁点滴定方法での滴定量(mL)であり、Mnはポリカーボネートジオール組成物の数平均分子量である)
本実施形態のポリカーボネートジオール組成物において、構造単位(I)~(IV)の合計質量に対して、構造単位(I)の含有量は、5質量%以上95質量%以下が好ましく、20質量%以上90質量%以下がより好ましく、40質量%以上90質量%以下であることがさらに好ましい。構造単位(I)の含有量が上記下限値以上であることにより、耐薬品性や耐湿熱性等の耐久性により優れたポリウレタンが得られるので好ましい。また、構造単位(I)の含有量が上記上限値以下であることにより、ポリカーボネートジオール組成物の粘度が低くなる傾向がある。なお、構造単位(I)の含有量は後述の実施例に記載の方法により測定することができる。
本実施形態のポリカーボネートジオール組成物の数平均分子量は250以上10000以下であることが好ましく、400以上8000以下がより好ましく、500以上5000以下がさらに好ましく、500以上3000以下が特に好ましい。本実施形態のポリカーボネートジオール組成物は、該数平均分子量が上記上限値以下であることにより、粘度が下がり、ポリウレタン製造時のハンドリング性が向上する傾向にある。また、該数平均分子量が上記下限値以上であることにより、本実施形態のポリカーボネートジオール組成物を使用して製造されたポリウレタンの柔軟性が優れる傾向にある。
本実施形態のポリカーボネートジオール組成物の酸価は、0.001mg-KOH/g以上0.8mg-KOH/g以下であることが好ましく、0.005mg-KOH/g以上0.6mg-KOH/g以下であることがより好ましく、0.01mg-KOH/g以上0.6mg-KOH/g以下であることがさらに好ましい。原料、触媒、添加物等由来の酸性化合物をすべて取り除くことは困難であるため、酸価が上記下限値以上であることにより、ポリカーボネートジオール組成物の生産性の面から好ましく、また、酸価が上記上限値以下であることにより、着色の発生を低減できる傾向にある。
本実施形態のポリカーボネートジオール組成物の過酸化物含有量(以下「過酸化物価」とも記す)は、10meq/kg以下が好ましく、3meq/kg以下がより好ましい。本実施形態のポリカーボネートジオール組成物は、過酸化物価が10meq/kg以下であると、着色が抑制される傾向がある。本実施形態のポリカーボネートジオール組成物の過酸化物価の下限は、特に限定されないが、例えば、0.01meq/kgである。なお、前記過酸化物価の測定法としては、酸化した油脂に酸性でヨウ化カリウムを作用させ、遊離してくるヨウ素を滴定法で求めるチオ硫酸ナトリウム滴定法などが挙げられるが、例えば、過酸化物価測定用試験紙(商品名:「POV試験紙」、柴田化学株式会社製)を用いて簡便に測定することができる。具体的には、後述の実施例に記載の方法により測定することができる。
本実施形態のポリカーボネートジオール組成物のハーゼン色数(以下「APHA」とも記す)の値(APHA値:JIS K0071-1(2017)に準拠)は100以下であることが好ましく、60以下がより好ましく、50以下であることがさらに好ましい。APHA値は低い程、ポリカーボネートジオール組成物自体も、このポリカーボネートジオール組成物を用いて得られるポリウレタンの色調も良好となる。APHA値の下限は特に限定されないが、例えば、0である。
本実施形態のポリカーボネートジオール組成物を製造する方法については上記特徴を満たさすことができれば特に制限はないが、例えば、下記一般式(I-1)表されるポリカーボネートジオール(以下、「ポリカーボネートジオール(I-1)」と称する場合がある)と、下記一般式(II-1)で表されるエーテルジオール(以下、「エーテルジオール(II-1)」と称する場合がある)、下記一般式(III-1)で表されるポリカプロラクトンジオール(III-1)(以下、「ラクトンジオール(III-1)」と称する場合がある)及び下記一般式(IV-1)で表されるポリエステルジオール(以下、「エステルジオール(IV-1)」と称する場合がある)からなる群より選ばれる少なくとも1つとを用いて、エステル交換反応を行う方法や、ポリカーボネートジオール(I-1)と環状エステル化合物とを反応させる方法が挙げられる。
(一般式(I-1)中、R111及びR112はそれぞれ上記R11と同じである。n11は任意の整数である。)
(一般式(II-1)中、R211は上記R21と同じである。n211は上記n21と同じである。)
(一般式(III-1)中、R311は上記R31と同じである。n311は任意の整数である)
(一般式(IV-1)中、R411及びR421はそれぞれ上記R41及びR42と同じである。n411は任意の整数である。)
本実施形態のポリカーボネートジオール組成物の製造に用いられるポリカーボネートジオール(I-1)としては、上記一般式(I-1)で表される構造を有するものであればよい。ポリカーボネートジオール(I-1)の製造方法としては、特に限定されず、公知の方法を採用することもできる。例えば、カーボネート化合物と、ジオール化合物とを、エステル交換触媒の存在下で反応させて、ポリカーボネートジオール(I-1)を得ることができる。
ポリカーボネートジオール(I-1)の製造に用いられるカーボネート化合物としては、以下のものに限定されないが、例えば、アルキレンカーボネート、ジアルキルカーボネート、ジアリールカーボネート等が挙げられる。
ポリカーボネートジオール(I-1)の製造に用いられるジオール化合物としては、以下のものに限定されないが、例えば、直鎖状ジオール、分岐鎖状ジオール、環状ジオール、芳香環を有するジオールが挙げられる。
原料であるポリカーボネートジオール(I-1)の製造に際しては、エステル交換反応触媒を用いることができる。触媒としては、通常のエステル交換反応触媒から選択することができる。
一般式(I-1)中、n11は、カーボネート構造(-R111-O-CO-O-)の繰り返し数を表す。n11は任意の整数であるが、n11の平均値は、1以上50以下の範囲が好ましく、2以上50以下の範囲がより好ましく、3以上30以下の範囲がさらに好ましく、4以上20以下の範囲が特に好ましい。
本実施形態のポリカーボネートジオール組成物の製造に用いられるエーテルジオール(II-1)としては、上記一般式(II-1)で表される構造を有するものであればよい。中でも、エーテルジオール(II-1)としては、両末端1級の水酸基を有するポリオキシアルキレンジオールが好ましい。エーテルジオール(II-1)は、各種の分子量の製品が市販されており、このような市販品を用いることもできる。エーテルジオール(II-1)の市販品としては、特に限定されないが、例えば、三洋化成工業株式会社製の「ニューポール」シリーズや、「プライムポール」シリーズ、「サンニックス」シリーズ、日油株式会社製の「プロノン」シリーズ、AGC株式会社製の「プレミノール」、「エクセノール」シリーズ、三菱ケミカル株式会社製の「PTMG」シリーズ等のポリオキシアルキレンジオール、旭化成株式会社製のPTXG等のポリエーテルグリコール等が挙げられる。
本実施形態のポリカーボネートジオール組成物の製造に用いられるポリカプロラクトンジオール(III-1)としては、上記一般式(III-1)で表される構造を有するものであればよい。中でも、ポリカプロラクトンジオール(III-1)は、各種の分子量の製品が市販されており、このような市販品を用いることもできる。市販品としては、特に限定されないが、例えば、株式会社ダイセル有機合成カンパニー製の「プラクセル」シリーズ、DIC株式会社製の「ポリライト」シリーズ等が挙げられる。
一般式(III-1)中、n311は構造(-R311-O-CO-)の繰り返し数を表す。一般式(III-1)中、n311は任意の整数であるが、n311の平均値は1以上であり、好ましくは1以上50以下の範囲であり、1以上30以下の範囲がより好ましく、1以上20以下の範囲が特に好ましい。
本実施形態のポリカーボネートジオール組成物の製造に用いられるエステルジオール(IV-1)としては、上記一般式(IV-1)で表される構造を有するものであればよい。中でも、エステルジオール(IV-1)は、各種の分子量の製品が市販されており、このような市販品を用いることもできる。エーテルジオール(II-1)の市販品としては、特に限定されないが、例えば、DIC株式会社製の「ポリライト」シリーズ、株式会社クラレ製の「クラレポリオール」シリーズ、東ソー株式会社製の「ニッポラン」シリーズ、株式会社ADEKA製の「アデカニューエース」シリーズ等が挙げられる。
一般式(IV-1)中、n411は構造(-CO-R411-CO-O-R421-O-)の繰り返し数を表す。一般式(IV-1)中、n411は任意の整数であるが、n411の平均値は1以上であり、好ましくは1以上50以下の範囲であり、2以上30以下の範囲がより好ましく、4以上20以下の範囲が特に好ましい。
本実施形態のポリカーボネートジオール組成物は、ポリイソシアネートと反応させるためのポリウレタンの原料として用いることができる。本実施形態のポリカーボネートジオール組成物を用いてなるポリウレタンは、耐薬品性、耐熱性、耐候性に優れることから、フォーム、エラストマー、塗料、コーティング剤、粘着剤、接着剤、人工皮革、合成皮革、水系ポリウレタン塗料等に広く用いることができる。さらには、ポリエステルやポリイミドの改質剤などの用途に用いることができる。
本実施形態のポリウレタンは、上述のポリカーボネートジオール組成物を用いてなる。
本実施形態のポリウレタンは、引張試験による100%伸長時応力について、下記式(B)で算出されるΔMが1.0以上19.0以下であることが好ましく、3.5以上18.5以下であることがより好ましく、5.0以上17.0以下であることがさらに好ましい。
ΔM=M1-M2 ・・・(B)
(式(B)中のM1は-20℃条件下での引張試験の100%伸長時応力であり、M2は23℃条件下での引張試験の100%伸長時応力を表す。)
本実施形態の合成皮革は、上述のポリウレタンを含む。
本実施形態の塗料又はコーティング剤組成物(塗料)は、上述のポリカーボネートジオール組成物を用いてなる。
ポリカーボネートジオール(組成物)の水酸基価は、以下の方法で測定した。
まず、メスフラスコを用い、無水酢酸12.5gにピリジンを加えて50mLとし、アセチル化試薬を調製した。次いで、100mLのナスフラスコに、サンプルを2.5g精秤した。次いで、前記ナスフラスコに、アセチル化試薬5mLとトルエン10mLとをホールピペットで添加後、冷却管を取り付けて、100℃で1時間、前記ナスフラスコ中の溶液を撹拌加熱した。次いで、前記ナスフラスコに、蒸留水2.5mLをホールピペットで添加後、さらに10分、前記ナスフラスコ中の溶液を加熱撹拌した。前記ナスフラスコ中の溶液を2~3分冷却後、前記ナスフラスコに、エタノールを12.5mL添加した。次いで、前記ナスフラスコに、指示薬としてフェノールフタレインを2~3滴入れ、0.5mol/Lのエタノール性水酸化カリウムで滴定した。次いで、アセチル化試薬5mL、トルエン10mL、及び、蒸留水2.5mLを100mLのナスフラスコに入れ、10分間、前記ナスフラスコ中の溶液を加熱撹拌した後、同様に滴定を行った(空試験)。この結果をもとに、下記式(i)でポリカーボネートジオール(組成物)の水酸基価を計算した。
水酸基価(mg-KOH/g)={(F-E)×28.05×f}/G ・・・(i)
なお、式(i)中、Eはサンプルの滴定量(mL)を表し、Fは空試験の滴定量(mL)を表し、Gはサンプル質量(g)を表し、fは滴定液のファクターを表す。
ポリカーボネートジオール(組成物)の数平均分子量(A)は、[物性1]で求められた水酸基価から、下記式(ii)を用いて計算した。
数平均分子量(A)=2/(H×10-3/56.11) ・・・(ii)
なお、式(ii)中、Hはポリカーボネートジオール(組成物)の水酸基価(mg-KOH/g)を表す。
なお、後述の実施例及び比較例において、下記式1に適用されるポリカーボネートジオール組成物の数平均分子量Mnは、上記式(ii)を用いて計算した数平均分子量(A)とした。
xy≧3.7×α (α=22.4×Mn-0.41) ・・・(式1)
((式1)中、xは前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量(質量%)に対して、前記一般式(I)で表される繰り返し構造単位の含有量(質量%)の割合であり、yはポリカーボネートジオール組成物の濁点滴定方法での滴定量(mL)であり、Mnはポリカーボネートジオール組成物の数平均分子量である。)
後述の応用例及び応用比較例で得られたポリウレタンフィルムの一部を切り取り、ポリウレタンの濃度が0.1質量%になるように、N,N-ジメチルホルムアミド溶液を調製し、GPC装置〔東ソー社製、製品名「HLC-8320」(カラム:Tskgel SuperHM-H・4本)、溶離液にはリチウムブロマイド2.6gをジメチルホルムアミド1Lに溶解させた溶液を使用〕を用い、標準ポリスチレン換算でのポリウレタンの数平均分子量(Mn)及び重量平均分子量(Mw)を測定した。また、これらの測定結果から分子量分布(Mw/Mn)を算出した。
JIS K0071-1(2017)に準拠して、比色管に入れた標準液と比較して、後述の実施例及び比較例で得られたポリカーボネートジオール組成物のAPHAを測定した。試薬は色度標準液1000度(富士フィルム和光純薬株式会社)を使用した。また、APHA30までは5刻みで溶液を調製し判定した。微濁液体の場合は60℃で加温し、溶解させてから測定した。
25℃条件下で、後述の実施例及び比較例で得られたポリカーボネートジオール組成物0.5gを酢酸ブチル8.8gに溶解させ、得られた溶液を撹拌しながらヘキサンを少量ずつ滴下し、白く濁り始めた時点の滴定量を求め、下記式(iii)にて濁点滴定を算出した。
濁点滴定=0.5×I×56.1/(J×K)・・・(iii)
なお、下記式(iii)中、Iは上述で求めた滴定量(mL)を表し、Jは秤量したサンプル質量(g)を表し、Kはポリカーボネートジオール組成物の水酸基価(mg-KOH/g)を表す。
溶剤をトルエン/エタノール(2/1)に変更する以外はJIS K 0070-1992に準ずる方法にて後述の実施例及び比較例で得られたポリカーボネートジオール組成物の酸価を求めた。
100mLのナスフラスコに後述の実施例及び比較例で得られたポリカーボネートジオール組成物のサンプルを1g取り、メタノール30g、28%ナトリウムメトキシドメタノール溶液8gを投入し、100℃で1時間反応した。反応液を室温まで冷却後、指示薬にフェノールフタレインを2~3滴添加し、塩酸で中和した。冷蔵庫で1時間冷却後、フィルターで濾過し、ガスクロマトグラフィー(GC)を用いて分析した。GC分析は、カラムとしてDB-WAX(米国、J&W製)を備えたガスクロマトグラフィーGC-14B(日本、島津製作所製)を用い、ジエチレングリコールジエチルエステルを内部標準として、水素炎イオン化型検出基(FID)を検出器として行い、各成分の定量分析を行った。なお、カラムの昇温プロファイルは、60℃で5分保持した後、10℃/minで250℃まで昇温した。
上記分析結果より検出された各アルコール成分及び、二塩基酸由来のメチルエステル成分から、ポリカーボネートジオール組成物の組成を求めた。
二塩基酸由来のメチルエステル成分は検出されない場合、二塩基酸を含むポリエステルポリカーボネートポリオールの組成については、二塩基酸由来のメチルエステルのモル数と同モル数のジオールを減じた値を用いることにより、カーボネート骨格を構成するジオール類のモル数を求めた(複数のジオールを用いた場合は、ガスクロマトグラフィーで求められたジオールの比率により、カーボネート骨格中のジオールの組成とエステル骨格のジオールの組成が同一であるとして計算した)。
後述の実施例及び比較例で得られたポリカーボネートジオール組成物のサンプルをPOV試験紙(柴田科学株式会社)の試験部に浸漬させ、3分間放置して純水で洗浄した。当該サンプルのPOV試験紙と標準色見本とを比較し、サンプルにおける過酸化物価(POV)を以下のとおり判定した。
[判定基準]
標準色見本で0と検出される0meq/kg以上3meq/kg以下を〇。
標準色見本の10と同等の3meq/kg超10meq/kg以下を△。
標準色見本の30と同等の10meq/kg超40meq/kg以下を×。
後述の実施例及び比較例で得られたポリカーボネートジオール組成物を25℃条件下で6カ月保管し、製造直後との外観の変化から、品質の安定性を以下のとおり評価した。
[評価基準]
〇:製造直後から外観変化がない
×:製造直後と比較して外観変化がある(例えば、2層分離、白濁、沈殿等)
後述の実施例及び比較例で得られたポリカーボネートジオール組成物の相溶性を以下のとおり評価した。ポリオールの一例として、ポリエステルポリオール(昭和電工マテリアルズ株式会社製、「テスラック2460」(商品名)、数平均分子量:約2000)を用いた。当該ポリエステルポリオールとポリカーボネートジオール組成物とを順に7:3の質量比で混合撹拌し、得られた溶液の外観から相溶性を以下のとおり評価した。
[評価基準]
〇:透明である
△:やや白濁若しくは僅かに2層分離している
×:白濁している
後述の実施例及び比較例で得られたポリカーボネートジオール組成物の相溶性を以下のとおり評価した。溶剤の一例として、メチルイソブチルケトン(以下、「MIBK」とも記す)を用いた。メチルイソブチルケトンに固形分75%となるようポリカーボネートジオール組成物を配合し、25℃下で混合撹拌し、30分静置後、得られた溶液の外観から相溶性を以下のとおり評価した。
[評価基準]
〇:透明である
△:やや白濁している
×:白濁している
JIS K6250(2019)に準じ、後述の応用例及び応用比較例で得られたポリウレタンフィルムから幅10mm、長さ100mm、厚み約0.1mmの短冊状の試験片を作成した。作成した試験片について、引張試験機(株式会社オリエンテック社製、製品名「テンシロン、モデルRTE-1210」)を用いて、チャック間距離20mm、引張速度100mm/分にて、温度23℃(相対湿度55%)で引張試験を実施し、試験片が100%伸長した時点での応力(100%モジュラス)を測定した。100%モジュラスが低いほど常温での柔軟性に優れると評価した。
JIS K6250(2019)に準じ、後述の応用例及び応用比較例で得られたポリウレタンフィルムから幅10mm、長さ100mm、厚み約0.1mmの短冊状の試験片を作成した。作成した試験片を、恒温槽(株式会社オリエンテック社製、「モデルTLF-R3T-E-W」)付き引張試験機(株式会社オリエンテック社製、製品名「テンシロン、モデルRTE-1210」に、チャック間距離20mmで設置した。続いて、試験片を-20℃で5分間静置した後に引張速度100mm/分にて試験片の引張試験を実施し、試験片が100%伸長した時点での応力(100%モジュラス)を測定した。100%モジュラスが低いほど低温での柔軟性に優れると評価した。
前述の[評価1]及び[評価2]で求めた100%モジュラス(100%伸長時応力)から、下記式(B)によりΔMを求めた。
ΔM=M1-M2 ・・・(B)
(式(B)中のM1は[評価2]で求めた-20℃条件下の100%伸長時応力であり、M2は[評価1]で求めた23℃条件下の100%伸長時応力である。)
後述の応用例及び応用比較例で得られたポリウレタンフィルムから、幅10mm、長さ100mm、厚さ約100μmの短冊状のサンプルを作成した。作成したサンプルについて、エスペック社製、恒温恒湿器、製品名「PL-1J」にて温度85℃、湿度85%条件下で10日間加熱を行った。加熱後のサンプルを、上記<常温引張試験>と同様に、破断強度を測定し、下記式(C)から破断強度の保持率(%)を求めた。
保持率=加熱後の破断強度/加熱前の破断強度×100・・・(C)
後述の応用例及び応用比較例で得られたポリウレタン溶液を40℃の小型環境試験機で保管し、ポリウレタン溶液調製直後のAPHAと40℃、3か月保管後のポリウレタン溶液のAPHAとの経時変化(ΔAPHA(3か月保管後-調製直後))を測定した。
A-1:ポリオキシテトラメチレングリコール(三菱ケミカル株式会社製、「PTMG2000」(商品名)、数平均分子量:約2000、一般式(II-1)中、R211:テトラメチレン基、n211:約28)
A-2:ポリオキシテトラメチレングリコール(三菱ケミカル株式会社製、「PTMG1000」(商品名)、数平均分子量:約1000、一般式(II-1)中、R211:テトラメチレン基、n211:約14)
A-3:ポリオキシエチレンポリオキシプロピレングリコール(三洋化成工業株式会社製、「ニューポールPE-61」(商品名)、数平均分子量:約2000、一般式(II-1)中、R211:イソプロピレン基及びメチレン基、n211:約35)
A-4:ポリオキシエチレンポリオキシプロピレングリコール(三洋化成工業株式会社製、「ニューポールPE-62」(商品名)、数平均分子量:約2400、一般式(II-1)中、R211:イソプロピレン基及びメチレン基、n211:約44)
A-5:テトラハイドロフランとネオペンチルグリコールとの共重合ポリマー(旭化成株式会社製、「PTXG」(商品名)、数平均分子量:約1800、一般式(II-1)中、R211:2,2-ジメチルトリメチレン基及びテトラメチレン基、n211:約23)
B-1:ポリカプロラクトンポリオール(株式会社ダイセル有機合成カンパニー製、「プラクセル220」(商品名)、数平均分子量:約2000、一般式(III-1)中、R311:ペンタメチレン基、n311:約18)
B-2:ポリエステルポリオール(DIC株式会社製、「OD-X-2692」(商品名)、数平均分子量:約2000、一般式(IV-1)中、R411:テトラメチレン基、R421:イソブチレン基、n411:約10)
B-3:ポリエステルポリオール(株式会社クラレ製、「P-2020」(商品名)、数平均分子量:約2000、一般式(IV-1)中、R411:フェニレン基、R421:3-メチルペンタメチレン基、n411:約8)
規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に1,5-ペンタンジオール230g、1,6-ヘキサンジオール250g、及び、エチレンカーボネート400gを仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0468g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに3時間反応を行い、常温で液体であるポリカーボネートジオールP-1(466g)を得た。得られたポリカーボネートジオールP-1の水酸基価は、55.2mg-KOH/gであった。また、得られたポリカーボネートジオールP-1の数平均分子量は、2033であった。
規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に1,6-ヘキサンジオール270g、1,4-ブタンジオール250g、及び、エチレンカーボネート445gを仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0960g入れた。反応器を140~160℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度90~160℃で20時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を180℃に上げた後、圧力を徐々に下げでさらに8時間反応を行い、常温で液体であるポリカーボネートジオールP-2(462g)を得た。得られたポリカーボネートジオールP-2の水酸基価は、56.1mg-KOH/gであった。また、得られたポリカーボネートジオールP-2の数平均分子量は、2000であった。
規則充填物を充填した精留塔と攪拌装置とを備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に1,5-ペンタンジオール230g、1,6-ヘキサンジオール250g、及び、エチレンカーボネート400gを仕込んだ後、触媒としてチタンテトラ-n-ブトキシドを0.0468g入れた。反応器を180℃のオイルバスに浸漬し、留出液の一部を抜き出しながら、反応温度165℃で12時間反応した。次いで、反応器を直接コンデンサーに接続し、オイルバスの温度を165℃に上げた後、圧力を徐々に下げでさらに3時間反応を行い、常温で液体であるポリカーボネートジオールP-3(478g)を得た。得られたポリカーボネートジオールP-3の水酸基価は、112.0mg-KOH/gであった。また、得られたポリカーボネートジオールP-3の数平均分子量は、1002であった。
攪拌装置を備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に、合成例2で得られたポリカーボネートジオールP-2を90質量部(360g)、及び、ポリオキシテトラメチレングリコール(三菱ケミカル株式会社製、「PTMG2000」(商品名)、数平均分子量:約2000)を10質量部(40g)仕込んだ。次いで、反応器内において、真空ポンプを用いて0.1kPa.s以下の減圧にして120℃で10分間撹拌し、その後窒素置換を行い、酸素濃度が0.5%以下であることを確認した。窒素流量1L/minを維持しながら、反応器内温度を約145℃で12時間に加熱撹拌した。反応液について、経時的に濁点滴定を行い、濁点滴定量に変化がなくなったことを確認したら、ジブチルリン酸をチタンテトラ-n-ブトキシドに対して、質量比で1.3倍量になるよう加えて、反応器内温度として110℃で3時間加熱処理することによりポリカーボネートジオール組成物SA-1を得た。得られたポリカーボネートジオール組成物SA-1の各物性を上記の方法により測定した。結果を表1に示す。得られたポリカーボネートジオール組成物SA-1の水酸基価は、56.6mg-KOH/gであった。また、得られたポリカーボネートジオール組成物SA-1の数平均分子量は、1982であった。
また、得られたポリカーボネートジオール組成物SA-1は、下記式(A1)で表される繰り返し構造単位と、下記式(B1)で表される繰り返し構造単位と、を含有していた。
(一般式(A1)中、R11は、炭素数4又は6の脂肪族炭化水素基である。)
(一般式(B1)中、R21は、テトラメチレン基であり、n21の平均値は約28である。)
各原料の種類、仕込み量をそれぞれ表1及び2に記載のとおりに変更したこと以外はすべて実施例1と同様の条件と方法で反応を行い、実施例2~13のポリカーボネートジオール組成物SA-2~SA-13を得た。得られたポリカーボネートジオール組成物SA-2~SA-13の濁点滴定の際の定期定量及び各物性を上記の方法により測定した。結果を表1及び2に示す。
また、得られたポリカーボネートジオール組成物SA-2~SA-13は、順に下記式(A2)~(A13)で表される繰り返し構造単位と、下記式(B2)~(B13)で表される繰り返し構造単位と、を含有していた。
(一般式(A2)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B2)中、R21は、テトラメチレン基であり、n21の平均値は約28である。)
(一般式(A3)中、R11は、炭素数4又は6の脂肪族炭化水素基である。)
(一般式(B3)中、R21は、イソプロピレン基及びメチレン基であり、n21の平均値は約35である。)
(一般式(A4)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B4)中、R21は、テトラメチレン基あり、n21の平均値は約28である。)
(一般式(A5)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B5)中、R21は、2,2-ジメチルトリメチレン基及びテトラメチレン基あり、n21の平均値は約23である。)
(一般式(A6)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B6)中、R21は、2,2-ジメチルトリメチレン基及びテトラメチレン基あり、n21の平均値は約23である。)
(一般式(A7)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B7)中、R21は、テトラメチレン基あり、n21の平均値は約14である。)
(一般式(A8)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B8)中、R21は、イソプロピレン基及びメチレン基あり、n21の平均値は約44である。)
(一般式(A9)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B9)中、R21は、イソプロピレン基及びメチレン基あり、n21の平均値は約35である。)
(一般式(A10)中、R11は、炭素数4又は6の脂肪族炭化水素基である。)
(一般式(B10)中、R31は、ペンタメチレン基である。)
(一般式(A11)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B11)中、R41は、テトラメチレン基であり、R42は、イソブチレン基である。)
(一般式(A12)中、R11は、炭素数5又は6の脂肪族炭化水素基である。)
(一般式(B12)中、R41は、フェニレン基であり、R42は、3-メチルペンタメチレン基である。)
(一般式(A3)中、R11は、炭素数4又は6の脂肪族炭化水素基である。)
(一般式(B3)中、R21は、イソプロピレン基及びメチレン基であり、n21の平均値は約35である。)
攪拌装置を備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に、合成例1で得られたポリカーボネートジオールP-1を25質量部(100g)、及び、ポリオキシテトラメチレングリコール(三菱ケミカル株式会社製、「PTMG2000」(商品名)、数平均分子量:約2000)を75質量部(300g)仕込んだ。エアー雰囲気下、反応器内温度を約145℃に加熱し、撹拌しながら10時間維持した。次いで、ジブチルリン酸をチタンテトラ-n-ブトキシドに対して、質量比で1.3倍量になるよう加えて、反応器内温度として110℃で3時間加熱処理することによりポリカーボネートジオール組成物SB-1を得た。得られたポリカーボネートジオール組成物SB-1の各物性を上記の方法により測定した。結果を表3に示す。得られたポリカーボネートジオール組成物SB-1の水酸基価は、56.2mg-KOH/g、数平均分子量は、1996であった。
各原料の種類、仕込み量をそれぞれ表2に記載のとおりに変更したこと以外はすべて比較例1と同様の条件と方法で反応を行い、比較例2のポリカーボネートジオール組成物SB-2を得た。得られたポリカーボネートジオール組成物SB-2の各物性を上記の方法により測定した。結果を表3に示す。
攪拌装置を備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に、合成例2で得られたポリカーボネートジオールP-2を400g、ジブチルリン酸をチタンテトラ-n-ブトキシドに対して、質量比で1.3倍量になるよう加えて、反応器内温度として110℃で3時間加熱処理することによりポリカーボネートジオール組成物SB-3を得た。得られたポリカーボネートジオール組成物SB-3の各物性を上記の方法により測定した。結果を表3に示す。得られたポリカーボネートジオール組成物SB-3の水酸基価は、56.1mg-KOH/g、数平均分子量は、2000であった。
攪拌装置を備えた1Lのガラス製フラスコ(以下「反応器」とも記す)に、合成例2で得られたポリカーボネートジオールP-2を90質量部(360g)、及び、ポリオキシテトラメチレングリコール(三菱ケミカル株式会社製、「PTMG2000」(商品名)、数平均分子量:約2000)を10質量部(40g)仕込んだ。次いで、反応器内において、真空ポンプを用いて0.1kPa.s以下の減圧にして120℃で10分間撹拌し、その後窒素置換を行い、酸素濃度が0.5%以下であることを確認した。窒素流量1L/minを維持しながら、反応器内温度を約145℃で6時間に加熱撹拌した。反応液について、経時的にGPC測定を行い、原料に由来するピークの消失及び生成物に由来するピークの出願を経時的に確認し、反応の進行を確認した。その後、ジブチルリン酸をチタンテトラ-n-ブトキシドに対して、質量比で1.3倍量になるよう加えて、反応器内温度として110℃で3時間加熱処理することによりポリカーボネートジオール組成物SB-4を得た。得られたポリカーボネートジオール組成物SB-4の各物性を上記の方法により測定した。結果を表3に示す。得られたポリカーボネートジオール組成物SB-4の水酸基価は、56.2mg-KOH/gであった。また、得られたポリカーボネートジオール組成物SB-4の数平均分子量は、1996であった。
熱電対と冷却管とを設置した500mLセパラブルフラスコに、ポリカーボネートジオール組成物SA-1 38g、ジメチルホルムアミド(以下、DMFと略記することがある) 224g、1%ジブチル錫ジラウレートトルエン溶液 0.26g(MDIとポリカーボネートジオール組成物との合計質量に対して50ppm)を入れ、40℃のオイルバスで加温した。フラスコ内窒素雰囲気下100rpmでフラスコ内の溶液を攪拌しながら、MDIを14.8g(ポリカーボネートジオール組成物のOH[mol]に対し3.09倍[mol]))を滴下し、さらにフラスコ内の溶液を1.5時間程度攪拌した。イソシアネート基濃度を分析し、理論量消費されたことを確認し、プレポリマーを得た。続いて、残存イソシアネートより算出した必要量の1,4-ブタンジオール(1,4-BD)3.2gをフラスコ内に分割添加した。フラスコ内の溶液を約1時間攪拌後、エタノールを約1g添加し、さらにフラスコ内の溶液を30分攪拌し、数平均分子量74000のポリウレタン溶液を得た。
0.8mm厚アプリケーターを用い、ガラス板(JIS R3202、2mm×100mm×150mm)上に、得られたポリウレタン溶液を板上部に滴下し、乾燥膜厚が50~150μmになるよう塗工し、表面温度60℃のホットプレート上で2時間、続いて80℃のオーブン中で12時間乾燥させた。さらに23℃、55%RHの恒温恒湿下で12時間以上静置しポリウレタンフィルムPA-1を得た。得られたポリウレタンフィルムPA-1について上記の方法により各種物性の評価に供した。評価結果を表4に示す。
応用例1のポリウレタンフィルムの製造において、使用するポリカーボネートジオール組成物を実施例2~12で製造したポリカーボネートジオール組成物SA-2~SA-13に変更した以外は応用例1と同様の条件で反応を行い、ポリウレタンフィルムPA-2~PA-13を得た。得られたポリウレタンフィルムPA-2~PA-13について上記の方法により各種物性の評価に供した。評価結果を表4及び5に示す。
応用例1のポリウレタンフィルムの製造において、使用するポリカーボネートジオール組成物等を比較例1~3で製造したポリカーボネートジオール組成物等SB-1~SB-4に変更した以外は応用例1と同様の条件で反応を行い、ポリウレタンフィルムPB-1~PB-4を得た。得られたポリウレタンフィルムPB-1~PB-4について上記の方法により各種物性の評価に供した。評価結果を表6に示す。
Claims (13)
- 下記一般式(I)で表される繰り返し構造単位を含み、さらに下記一般式(II)で表される繰り返し構造単位、下記一般式(III)で表される繰り返し構造単位、及び、下記一般式(IV)で表される繰り返し構造単位からなる群より選ばれる少なくとも1つの繰り返し構造単位を含み、下記式(式1)を満たすポリカーボネートジオール組成物。
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。)
xy≧3.7×α (α=22.4×Mn-0.41) ・・・(式1)
((式1)中、xは前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量(質量%)に対して、前記一般式(I)で表される繰り返し構造単位の含有量(質量%)の割合であり、yはポリカーボネートジオール組成物の濁点滴定方法での滴定量(mL)であり、Mnはポリカーボネートジオール組成物の数平均分子量である。) - 下記一般式(I)で表される繰り返し構造単位を含み、さらに下記一般式(II)で表される繰り返し構造単位、下記一般式(III)で表される繰り返し構造単位、及び、下記一般式(IV)で表される繰り返し構造単位からなる群より選ばれる少なくとも1つの繰り返し構造単位を含み、前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、40質量%以上であり、濁点滴定方法での滴定量が4.0mL以上9.5mL以下である、ポリカーボネートジオール組成物。
(一般式(I)中、R11は、炭素数2以上15以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基であり、ヘテロ原子を有していてもよい。複数ある場合のR11は互いに同一であってもよく、異なっていてもよい。)
(一般式(II)中、R21は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR21は互いに同一であってもよく、異なっていてもよい。n21は任意の整数である。)
(一般式(III)中、R31は、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR31は互いに同一であってもよく、異なっていてもよい。)
(一般式(IV)中、R41及びR42は、各々独立して、炭素数2以上20以下の2価の直鎖状、分岐鎖状若しくは環状の脂肪族炭化水素基、又は、芳香族炭化水素基である。複数ある場合のR41及びR42は互いに同一であってもよく、異なっていてもよい。) - 前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、5質量%以上95質量%以下である、請求項1に記載のポリカーボネートジオール組成物。
- 前記一般式(I)~(IV)で表される繰り返し構造単位の合計質量に対して、前記一般式(I)で表される繰り返し構造単位の含有量が、40質量%以上90質量%以下である、請求項1~3のいずれか一項に記載のポリカーボネートジオール組成物。
- 酸価が0.001mg-KOH/g以上0.8mg-KOH/g以下である、請求項1~4のいずれか一項に記載のポリカーボネートジオール組成物。
- 過酸化物含有量が10meq/kg以下である、請求項1~5のいずれか一項に記載のポリカーボネートジオール組成物。
- JIS K0071-1(2017)に準拠ハーゼン色数の値(APHA値)が100以下である、請求項1~6のいずれか一項に記載のポリカーボネートジオール組成物。
- 前記一般式(II)~(IV)で表される繰り返し構造単位のうち、一般式(II)で表される繰り返し構造単位の繰り返し数n21の平均値が15以上である、請求項1~7のいずれか一項に記載のポリカーボネートジオール組成物。
- 前記一般式(II)~(IV)で表される繰り返し構造単位のうち、少なくとも一般式(II)若しくは(IV)で表される繰り返し構造単位を含む、請求項1~8のいずれか一項に記載のポリカーボネートジオール組成物。
- 前記一般式(II)~(IV)で表される繰り返し構造単位のうち、少なくとも一般式(II)で表される繰り返し構造単位を含む、請求項1~9のいずれか一項に記載のポリカーボネートジオール組成物。
- 請求項1~10のいずれか一項に記載のポリカーボネートジオール組成物を用いてなるポリウレタン。
- 前記ポリウレタンの引張試験による100%伸長時応力について、下記式(B)で算出されるΔMが1.0以上19.0以下である、請求項11に記載のポリウレタン。
ΔM=M1-M2 ・・・(B)
(式(B)中のM1は-20℃条件下での引張試験の100%伸長時応力であり、M2は23℃条件下での引張試験の100%伸長時応力を表す。) - 請求項11又は12に記載のポリウレタンを含む、合成皮革。
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/285,980 US20240199802A1 (en) | 2021-04-21 | 2022-04-20 | Polycarbonate diol composition |
JP2023515502A JP7461100B2 (ja) | 2021-04-21 | 2022-04-20 | ポリカーボネートジオール組成物 |
CN202280029570.6A CN117178006A (zh) | 2021-04-21 | 2022-04-20 | 聚碳酸酯二醇组合物 |
CN202410576288.0A CN118440278A (zh) | 2021-04-21 | 2022-04-20 | 聚碳酸酯二醇组合物 |
EP22791767.1A EP4328255A4 (en) | 2021-04-21 | 2022-04-20 | POLYCARBONATE DIOLS COMPOSITION |
JP2024043585A JP2024073615A (ja) | 2021-04-21 | 2024-03-19 | ポリカーボネートジオール組成物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021072116 | 2021-04-21 | ||
JP2021-072116 | 2021-04-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022224996A1 true WO2022224996A1 (ja) | 2022-10-27 |
Family
ID=83722327
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/018339 WO2022224996A1 (ja) | 2021-04-21 | 2022-04-20 | ポリカーボネートジオール組成物 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240199802A1 (ja) |
EP (1) | EP4328255A4 (ja) |
JP (2) | JP7461100B2 (ja) |
CN (2) | CN117178006A (ja) |
WO (1) | WO2022224996A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03252420A (ja) | 1990-03-01 | 1991-11-11 | Daicel Chem Ind Ltd | 共重合ポリカーボネートジオールの製造方法 |
JP3874664B2 (ja) | 2000-05-24 | 2007-01-31 | 旭化成ケミカルズ株式会社 | 高い1級末端oh比率を有するポリカーボネートジオール |
CN102002142A (zh) * | 2010-09-21 | 2011-04-06 | 中国科学院宁波材料技术与工程研究所 | 一种可生物降解聚氨酯及其制备方法 |
WO2013095289A1 (en) * | 2011-12-21 | 2013-06-27 | St. Jude Medical Systems Ab | Biocompatible x-ray opaque polymers for medical device |
WO2014069563A1 (ja) * | 2012-10-31 | 2014-05-08 | 宇部興産株式会社 | ポリエステルポリカーボネートポリオール |
JP2016113528A (ja) * | 2014-12-15 | 2016-06-23 | 宇部興産株式会社 | 非環状アルキレンポリカーボネートジオールの製造方法 |
JP2016191075A (ja) * | 2016-08-19 | 2016-11-10 | 宇部興産株式会社 | ポリカーボネートジオール及びその製造方法 |
WO2019131617A1 (ja) | 2017-12-25 | 2019-07-04 | 旭化成株式会社 | 塗料組成物 |
JP2019151813A (ja) | 2018-03-01 | 2019-09-12 | 三菱ケミカル株式会社 | ポリエステルポリカーボネートジオールおよびその製造方法、並びにポリウレタン |
WO2020125577A1 (zh) * | 2018-12-21 | 2020-06-25 | 山东一诺威聚氨酯股份有限公司 | 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 |
US20200339746A1 (en) * | 2019-04-25 | 2020-10-29 | J & A Technology Corporation | Method of producing oligomer or polymer with carbonate segment chemical structure |
JP2021072116A (ja) | 2019-10-30 | 2021-05-06 | 天宿智能科技股▲分▼有限公司 | ブロックチェーンに基づく資産権利管理システムとその方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011129377A1 (ja) * | 2010-04-14 | 2011-10-20 | 三菱化学株式会社 | ポリカーボネートジオール及びその製造法、並びにそれを用いたポリウレタン及び活性エネルギー線硬化性重合体組成物 |
JP6849362B2 (ja) * | 2016-09-28 | 2021-03-24 | 旭化成株式会社 | ポリカーボネートジオール組成物 |
JP7226042B2 (ja) | 2019-04-09 | 2023-02-21 | 三菱ケミカル株式会社 | ポリエーテルポリカーボネートジオール組成物及びその製造方法 |
CN113825783B (zh) | 2019-08-07 | 2023-10-24 | 三菱化学株式会社 | 聚醚聚碳酸酯二醇及其制造方法 |
-
2022
- 2022-04-20 EP EP22791767.1A patent/EP4328255A4/en active Pending
- 2022-04-20 CN CN202280029570.6A patent/CN117178006A/zh active Pending
- 2022-04-20 WO PCT/JP2022/018339 patent/WO2022224996A1/ja active Application Filing
- 2022-04-20 CN CN202410576288.0A patent/CN118440278A/zh active Pending
- 2022-04-20 JP JP2023515502A patent/JP7461100B2/ja active Active
- 2022-04-20 US US18/285,980 patent/US20240199802A1/en active Pending
-
2024
- 2024-03-19 JP JP2024043585A patent/JP2024073615A/ja active Pending
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03252420A (ja) | 1990-03-01 | 1991-11-11 | Daicel Chem Ind Ltd | 共重合ポリカーボネートジオールの製造方法 |
JP3874664B2 (ja) | 2000-05-24 | 2007-01-31 | 旭化成ケミカルズ株式会社 | 高い1級末端oh比率を有するポリカーボネートジオール |
CN102002142A (zh) * | 2010-09-21 | 2011-04-06 | 中国科学院宁波材料技术与工程研究所 | 一种可生物降解聚氨酯及其制备方法 |
WO2013095289A1 (en) * | 2011-12-21 | 2013-06-27 | St. Jude Medical Systems Ab | Biocompatible x-ray opaque polymers for medical device |
WO2014069563A1 (ja) * | 2012-10-31 | 2014-05-08 | 宇部興産株式会社 | ポリエステルポリカーボネートポリオール |
JP2016113528A (ja) * | 2014-12-15 | 2016-06-23 | 宇部興産株式会社 | 非環状アルキレンポリカーボネートジオールの製造方法 |
JP2016191075A (ja) * | 2016-08-19 | 2016-11-10 | 宇部興産株式会社 | ポリカーボネートジオール及びその製造方法 |
WO2019131617A1 (ja) | 2017-12-25 | 2019-07-04 | 旭化成株式会社 | 塗料組成物 |
JP2019151813A (ja) | 2018-03-01 | 2019-09-12 | 三菱ケミカル株式会社 | ポリエステルポリカーボネートジオールおよびその製造方法、並びにポリウレタン |
WO2020125577A1 (zh) * | 2018-12-21 | 2020-06-25 | 山东一诺威聚氨酯股份有限公司 | 可生物降解热塑性聚氨酯弹性体发泡珠粒及其制备方法 |
US20200339746A1 (en) * | 2019-04-25 | 2020-10-29 | J & A Technology Corporation | Method of producing oligomer or polymer with carbonate segment chemical structure |
JP2021072116A (ja) | 2019-10-30 | 2021-05-06 | 天宿智能科技股▲分▼有限公司 | ブロックチェーンに基づく資産権利管理システムとその方法 |
Non-Patent Citations (2)
Title |
---|
"Structure Control and Modification", December 2014, TECHNICAL INFORMATION INSTITUTE CO., LTD, article "Case Studies of Polyurethane Material Selection", pages: 51 - 62 |
See also references of EP4328255A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4328255A1 (en) | 2024-02-28 |
CN117178006A (zh) | 2023-12-05 |
JP2024073615A (ja) | 2024-05-29 |
JP7461100B2 (ja) | 2024-04-03 |
US20240199802A1 (en) | 2024-06-20 |
EP4328255A4 (en) | 2024-10-23 |
CN118440278A (zh) | 2024-08-06 |
JPWO2022224996A1 (ja) | 2022-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2514779B1 (en) | Polycarbonate diol-containing composition, process for producing the same, polyurethane obtained using the same, and process for producing the polyurethane | |
CA2344784C (en) | Aliphatic thermoplastic polyurethanes and use thereof | |
JP6252070B2 (ja) | ポリカーボネートジオール | |
JP6828237B2 (ja) | ポリカーボネート樹脂 | |
EP2716679B1 (en) | Method for producing polycarbonate polyols, polyurethane using said polycarbonate polyols | |
JP6544889B2 (ja) | ポリカーボネートジオールおよびその製造方法並びにそれを用いたポリウレタン | |
TWI567104B (zh) | Polycarbonate diol | |
JP7461100B2 (ja) | ポリカーボネートジオール組成物 | |
JP7276997B2 (ja) | ポリカーボネートジオール組成物 | |
JP2022166839A (ja) | ポリオール組成物、ポリウレタン樹脂組成物、皮膜、及び皮革様シート | |
JPH10251369A (ja) | ポリウレタン樹脂の製造方法 | |
JP7654030B2 (ja) | ポリカーボネートジオール組成物 | |
WO2024143545A1 (ja) | オキシアルキレン構造含有ポリカーボネートポリオール組成物 | |
EP4345118A1 (en) | Aqueous composition and use thereof | |
JP3550976B2 (ja) | ポリオール及びこれを用いたウレタン樹脂 | |
JP2019044003A (ja) | 二液硬化型ウレタン樹脂組成物及びフィルム成形品 | |
JP5797697B2 (ja) | ポリウレタン樹脂 | |
JP2024024597A (ja) | カーボネート基含有ポリオール、ポリウレタン樹脂組成物、人工皮膜、及び皮革様シート | |
CN117586512A (zh) | 含有碳酸酯基的多元醇、聚氨酯树脂组合物、人工覆膜和皮革样片材 | |
WO2020179462A1 (ja) | ポリカーボネートジオール | |
CN107245142A (zh) | 一种聚碳酸酯多元醇及其制备方法与用途 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22791767 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023515502 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18285980 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022791767 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022791767 Country of ref document: EP Effective date: 20231121 |