WO2022138627A1 - 耐水性を有する接着性ポリオルガノシロキサン組成物 - Google Patents
耐水性を有する接着性ポリオルガノシロキサン組成物 Download PDFInfo
- Publication number
- WO2022138627A1 WO2022138627A1 PCT/JP2021/047284 JP2021047284W WO2022138627A1 WO 2022138627 A1 WO2022138627 A1 WO 2022138627A1 JP 2021047284 W JP2021047284 W JP 2021047284W WO 2022138627 A1 WO2022138627 A1 WO 2022138627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- group
- curable
- component
- composition
- polyorganosiloxane composition
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L83/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
- C08L83/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/20—Polysiloxanes containing silicon bound to unsaturated aliphatic groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/34—Silicon-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/54—Silicon-containing compounds
- C08K5/541—Silicon-containing compounds containing oxygen
- C08K5/5415—Silicon-containing compounds containing oxygen containing at least one Si—O bond
- C08K5/5419—Silicon-containing compounds containing oxygen containing at least one Si—O bond containing at least one Si—C bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K7/00—Use of ingredients characterised by shape
- C08K7/16—Solid spheres
- C08K7/18—Solid spheres inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J183/00—Adhesives based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Adhesives based on derivatives of such polymers
- C09J183/04—Polysiloxanes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2170/00—Compositions for adhesives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/04—Polysiloxanes
- C08G77/12—Polysiloxanes containing silicon bound to hydrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G77/00—Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
- C08G77/70—Siloxanes defined by use of the MDTQ nomenclature
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/24—Acids; Salts thereof
- C08K3/26—Carbonates; Bicarbonates
- C08K2003/265—Calcium, strontium or barium carbonate
Definitions
- the present invention relates to an adhesive polyorganosiloxane composition having water resistance.
- Curable polyorganosiloxane compositions that produce rubbery elastic bodies are variously known as materials that can be used as adhesives.
- the polyorganosiloxane composition is roughly classified into an addition curing type and a moisture curing type according to the curing reaction mechanism.
- the addition reaction curing type polyorganosiloxane composition is cured by irradiation with light or heating at room temperature or about 40 ° C. to 150 ° C. to exhibit adhesiveness to various adherends.
- Patent Document 1 proposes an adhesive polyorganosiloxane composition containing a zirconium compound and a specific adhesive-imparting agent (Japanese Patent Laid-Open No. 2019-151695).
- the adhesive part may come into contact with antifreeze liquid such as engine oil or LLC liquid, or may be exposed to harsh conditions due to heat. Therefore, oil resistance and less deterioration of physical properties are also one of the characteristics required for the adhesive (Japanese Patent Laid-Open Nos. 2003-183504, 2003-327829, 2015-06647). ). Polyorganosiloxane compositions are also used to solve the lack of reliability, which has been one of the problems of organic rubbers and the like that have been conventionally used.
- JP-A-2019-151695 Japanese Patent Application Laid-Open No. 2003-221506 Japanese Unexamined Patent Publication No. 2016-199687 Japanese Patent Application Laid-Open No. 2003-183504 Japanese Patent Application Laid-Open No. 2003-327829 Japanese Unexamined Patent Publication No. 2015-06647
- An object of the present invention is to provide an adhesive having improved adhesive durability to various substrates in a portion in contact with an aqueous solution (water, LLC, salt water, etc.).
- an aqueous solution water, LLC, salt water, etc.
- the cause of the adhesive being peeled off or corroded by water is that water or the like permeates between the adhesive and the base material, and the bond of the bonded portion is broken. It was found that the adhesion was considered to be reduced. In order to prevent this, it is effective to lengthen the permeation distance of water and to make the water hydrophobic in order to prevent the permeation of water itself.
- the present inventors have found that it is effective to add a silane compound having a long-chain alkyl group in order to solve this problem in the addition-curable adhesive.
- the present invention provides a polyorganosiloxane composition that can be used as an adhesive and has improved adhesive durability to various substrates at a portion in contact with an aqueous solution (water, LLC, salt water, etc.). That is, the present invention relates to the following [1] to [9].
- the silicon compound having a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group directly bonded to the (d) silicon atom has the following formula: R 1 n Si (OR 2 ) 4-n (In the formula, R 1 is a monovalent alkyl group having 8 to 30 carbon atoms, R 2 is a hydrogen or an alkyl group having 1 to 6 carbon atoms, and n is an integer of 1 to 3).
- the curable polyorganosiloxane composition according to any one of the above [1] to [4].
- the silicon compound having a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group directly bonded to the (d) silicon atom has a monovalent alkyl group having 8 to 20 carbon atoms.
- a silicon compound having a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group directly bonded to the (d) silicon atom is 0.01 to 100 parts by mass of the entire composition.
- the curable polyorganosiloxane composition according to any one of [1] to [6] above which is contained in 10.0 parts by mass.
- the present invention comprises (a) a polyorganosiloxane having two or more curable functional groups capable of causing an addition reaction in one molecule; (b) a crosslinked group having reactivity with the curable functional group of (a) above.
- a cross-linking agent having three or more in one molecule; (c) a curing catalyst capable of catalyzing the cross-linking reaction of (a) and (b) above; and (d) directly bonded to a silicon atom and having 8 to 30 carbon atoms.
- the present invention relates to a curable polyorganosiloxane composition comprising a silicon compound having a monovalent alkyl group and a hydrolyzable group; and optionally (e) inorganic fine particles.
- a curable polyorganosiloxane composition comprising a silicon compound having a monovalent alkyl group and a hydrolyzable group; and optionally (e) inorganic fine particles.
- organic group means a group containing carbon.
- the valence of an organic group is indicated by describing n as an arbitrary natural number as “n-valent”.
- n-valent organic group means a carbon-containing group having only one bond. The bond may be possessed by an element other than carbon. Even if the valence is not specified, a person skilled in the art can grasp a suitable valence from the context.
- hydrocarbon group means a group containing carbon and hydrogen, from which at least one hydrogen atom has been desorbed from the molecule.
- the hydrocarbon group is not particularly limited, but may be substituted with one or more substituents, such as a hydrocarbon group having 1 to 20 carbon atoms, for example, an aliphatic hydrocarbon group. , Aromatic hydrocarbon groups and the like.
- the above-mentioned "aliphatic hydrocarbon group” may be linear, branched or cyclic, and may be saturated or unsaturated. Further, the hydrocarbon group may contain one or more ring structures.
- such a hydrocarbon group has one or more nitrogen atoms (N), oxygen atoms (O), sulfur atoms (S), silicon atoms (Si), amide bonds, and sulfonyls in its terminal or molecular chain. It may have a structure containing a hetero atom or a hetero atom such as a bond, a siloxane bond, a carbonyl group, and a carbonyloxy group.
- the substituent of the "hydrocarbon group” is not particularly limited, but may be, for example, a halogen atom; substituted with one or more halogen atoms, C 1-6 alkyl.
- a halogen atom substituted with one or more halogen atoms, C 1-6 alkyl.
- Examples include groups selected from groups, C 6-10 aryl groups and 5-10 membered heteroaryl groups.
- the alkyl group and the phenyl group may be unsubstituted or substituted unless otherwise specified.
- the substituent of such a group is not particularly limited, and for example, one or more groups selected from a halogen atom, a C 1-6 alkyl group, a C 2-6 alkenyl group and a C 2-6 alkynyl group can be used. Can be mentioned.
- the curable polyorganosiloxane composition of the present invention contains at least one polyorganosiloxane having two or more curable functional groups capable of causing an addition reaction in one molecule as the component (a).
- the component (a) functions as a base polymer of the curable polyorganosiloxane composition.
- the "curable functional group” refers to a functional group capable of causing a curing reaction, and in the present invention, refers to a functional group causing an addition reaction.
- Each curable functional group is preferably the same functional group, but different types of functional groups can be mixed in the same molecule as long as they are functional groups that cause an addition reaction.
- the curable functional group can be present at any position on the polyorganosiloxane molecule.
- a linear polyorganosiloxane it may have a curable functional group at the molecular terminal, or it may exist as a side chain at a site other than the terminal.
- at least one curable functional group is present at both ends of the molecular backbone of the component (a).
- the molecular backbone of the component (a) represents a relatively longest binding chain in the molecule of the component (a).
- the molecular skeleton of the component (a) is not particularly limited as long as the siloxane bond is the main skeleton.
- the siloxane skeleton may be interrupted by a divalent organic group.
- the structural unit of the siloxane compound may be described by the following abbreviations. Hereinafter, these structural units may be referred to as "M unit", “D unit”, etc., respectively.
- the siloxane compound is constructed by combining the above structural units, but the methyl group of the structural unit is a halogen such as fluorine, a hydrocarbon group such as a phenyl group, and the like. It may contain at least a partial replacement of the base of.
- the case of DH 20 D 20 is not intended to be followed by 20 DH units and then 20 D units, and each unit may be arbitrarily arranged.
- the siloxane compound can have various three-dimensional structures depending on the T unit or the Q unit. Therefore, the component (a) can take any molecular skeleton such as linear, branched chain, cyclic, and a combination of these structures.
- the component (a) preferably has a linear molecular skeleton.
- the component (a) has two or more alkenyl groups bonded to a silicon atom on average in one molecule, and the hydrosilyl group (Si—H group) of (b) described later. It is not particularly limited as long as it can form a network structure by the addition reaction.
- the component (a) is typically represented by the general formula (I) :. (R 1 ) a (R 2 ) b SiO (4-ab) / 2 (I) (During the ceremony, R 1 is an alkenyl group; R2 is a monovalent hydrocarbon group with no aliphatic unsaturated bond; a is an integer of 1 to 3; b is an integer of 0 to 2, where a + b is 1 to 3).
- the molecule has at least two alkenyl group-containing siloxane units represented by.
- (a1) a linear polyorganosiloxane is exemplified.
- (a1) the following equation (1): (R a ) 3-p R p Si-O- (Si (R) r (R a ) 2-r O) n -SiR q (R a ) 3-q ...
- Ra is a curable functional group independently of each other.
- R is a monovalent organic group independently of each other.
- p and q are 0, 1 or 2, respectively, independently of each other.
- r is 0, 1 or 2 independently of each other.
- n is a number having a viscosity at 23 ° C. of 0.1 to 500 Pa ⁇ s).
- the linear polyorganosiloxane represented by is exemplified.
- R those having a hydrocarbon group, particularly an alkyl group, an alkenyl group and an aryl group are preferable. From the viewpoint of controlling physical properties such as the refractive index, at least a part of R may be an aryl group such as a phenyl group. Polyorganosiloxanes in which R is all methyl are particularly preferably used because of their availability.
- the polyorganosiloxane having r of 2 in the above formula (1) that is, the linear polyorganosiloxane having at least one curable functional group only at both ends of the molecule. preferable.
- (a2) a branched alkenyl group-containing polyorganosiloxane is exemplified.
- (A2) is a branched unit including SiO 4/2 unit and R 3 SiO 1/2 unit as essential units, and R 2 SiO 2/2 unit and / or RSiO 3/2 unit as arbitrary units.
- Polyorganosiloxane can be mentioned.
- R is R 1 or R 2 , but two or more of all R in one molecule are R 1 (that is, an alkenyl group). It is preferable that at least 3 Rs out of all Rs in one molecule are R1 and the remainder is R2 so as to be a cross-linking point in the curing reaction.
- the ratio of R 3 SiO 1/2 unit to SiO 4/2 unit is in the range of 1: 0.8 to 1: 3 as a molar ratio.
- a resinous substance that is solid or viscous at room temperature is preferable.
- R 1 may exist as R of R 3 SiO 1/2 unit, or may exist as R of R 2 SiO 2/2 unit or RSiO 3/2 unit.
- part or all of R 3 SiO 1/2 unit shall be R 1 R 2 2 SiO 1/2 unit, and part or all of R 2 SiO 2/2 unit.
- the unit is R 1 R 2 SiO 2/2 .
- the component (a) is a compound having two or more Si atoms bonded to an aliphatic unsaturated bond, particularly a group having an alkenyl group, such as a (meth) acrylic group or a vinyl group that is cured by an addition reaction. Can be done.
- the component (a) is preferably a polyorganosiloxane having two or more alkenyl groups in one molecule as a curable functional group.
- the curable functional group that causes the addition reaction is more preferably a vinyl group.
- the polyorganosiloxane having a curable functional group that causes an addition reaction p and q are 2 and r is 2 in the above formula (1), that is, one at each molecular terminal, for a total of two. Those having two addition-reactive groups, particularly vinyl groups, are preferable.
- a commercially available product can be used as such a component (a).
- a polyorganosiloxane having a curable functional group introduced by a known reaction may be used.
- the component (a) it may be classified according to the position or type of the substituent, the degree of polymerization, etc., and only one kind of compound may be used, or two or more kinds of compounds may be mixed and used. Since the component (a) is a polyorganosiloxane, it may be a mixture of polyorganosiloxanes having various degrees of polymerization.
- the blending amount of the component (a) is not particularly limited as long as it is within the range of the viscosity that the curable polyorganosiloxane composition can handle. Based on the amount of the component (a), the blending amount of the other components can be appropriately set within a preferable range shown individually below.
- the curable polyorganosiloxane composition of the present invention contains, as a cross-linking agent, a compound having three or more cross-linking groups having reactivity with the curable functional group of the component (a) in one molecule (hereinafter,). Sometimes simply referred to as "ingredient (b)").
- the cross-linking agent By including the cross-linking agent, the physical characteristics of the cured product obtained from the curable composition, for example, the tensile strength and the elastic modulus are improved.
- the cross-linking group contained in the component (b) a functional group that is generally used for the curing reaction of silicone and is active in the reaction can be used.
- cross-linking group for example, a hydrogen atom directly bonded to silicon, that is, a Si—H group can be adopted.
- the number of cross-linking groups of the component (b) per molecule is 3 or more, and therefore a network structure can be obtained by the cross-linking reaction.
- Each cross-linking group may be bonded to the same silicon atom or may be bonded to a different silicon atom.
- the component (b) may be a compound having only one silicon, that is, a derivative of silane, or a compound having two or more silicons.
- the component (b) preferably has a structure in which each silicon atom is linked by a siloxane bond in which each silicon atom is crosslinked with oxygen.
- the molecular skeleton of the component (b) containing two or more silicon atoms may be linear, branched or cyclic.
- the component (b) only one kind may be used, or two or more kinds may be used at the same time.
- cross-linking group of the component (b) examples include a Si—H bond.
- the cross-linking agent having such a cross-linking group hydrogenpolyorganosiloxane, which is a siloxane containing a hydrogen group, is used.
- Hydrogen polyorganosiloxane is a siloxane compound having a Si—H bond and is a component serving as a cross-linking agent.
- Hydrogenpolyorganosiloxane is typically described by the following formula (2): (R b ) x (R c ) y SiO (4-xy) / 2 (2)
- R b is a hydrogen atom and R c is a C 1-6 alkyl group (eg, methyl, ethyl, propyl, butyl, pentyl, hexyl, preferably methyl) or a phenyl group;
- x is 1 or 2;
- y is an integer of 0 to 2, where x + y is 1 to 3). It is preferable to have two or more units in the molecule so that the number of Si—H bonds is 3 or more.
- Examples of the siloxane skeleton in the hydrogen polyorganosiloxane include cyclic, branched and linear skeletons, preferably cyclic or linear skeletons, and more preferably linear skeletons.
- the main chain of the hydrogen polyorganosiloxane is preferably a linear skeleton, but may have a skeleton having a branched structure as a substituent.
- the number of hydrogen groups bonded to the silicon atom contained in one molecule is 3 or more, but the average number of hydrogen groups per molecule is 5 or more. It is preferable that the number is 8 or more, and even more preferably.
- organic groups other than hydrogen groups, bond positions, degree of polymerization, structure, etc. are not particularly limited, but in the case of a linear structure, the degree of polymerization is 5 to 200, particularly 10 The range of about 100 is preferable because the handleability of the obtained composition tends to be further improved.
- Specific examples of the hydrogen polyorganosiloxane that can be used include a linear chain containing 8 or more units having a Si—H bond ( MH or DH unit) and having a degree of polymerization in the range of 10 to 100. It is a hydrogen polyorganosiloxane having a skeleton.
- the component (b) can contain a cross-linking group in the range of, for example, 0.1 to 20 mol, with respect to 1 mol of the reactive functional group of the component (a), and specifically, 0.2 to 10 mol. It can be included in the range of moles.
- the blending amount of the component (b) can be designed to be within an appropriate range according to the amount of the reactive functional group possessed by the component (a), using the criteria described later.
- the component (b) may be classified according to the position or type of the cross-linking group, the degree of polymerization in the case of hydrogenpolyorganosiloxane, and the like, and only one kind of compound may be used, or two or more kinds of compounds may be used. It may be mixed and used.
- the component (b) may be a mixture of hydrogen polyorganosiloxane having various degrees of polymerization.
- the siloxane skeleton in the component (b) may be linear, branched or cyclic, and is preferably linear.
- the component (b) is a linear hydrocarbon having both ends ( b1) independently closed by R53 SiO 1/2 units and an intermediate unit consisting of only R5 2 SiO 2/2 units .
- Polyorganosiloxane or hydrogen polyorganosiloxane consisting of only (b2) R 5 3 SiO 1/2 unit and SiO 4/2 unit in each of the above formulas, R 5 is independently a hydrogen atom or It is a monovalent hydrocarbon group having no aliphatic unsaturated bond, but is preferably at least 3 or more hydrogen atoms per molecule of R5).
- examples of the R 5 3 SiO 1/2 unit include the HR 6 2 SiO 1/2 unit and the R 6 3 SiO 1/2 unit, and the R 5 2 SiO 2/2 unit.
- examples of the unit include HR 6 SiO 2/2 unit and R 6 2 SiO 2/2 unit (in each of the above formulas, R 6 is a monovalent hydrocarbon group having no aliphatic unsaturated bond). ..
- the hydrogen atom bonded to the silicon atom may be present at the terminal or in the intermediate unit, but is preferably present in the intermediate unit.
- (b1-1) is a linear polymethylhydrogensiloxane in which both ends are closed with M units (trimethylsiloxane units) and the intermediate unit is only DH units (methylhydrogensiloxane units).
- Polymethylhydrogensiloxane consisting of only 4/2 units) is particularly preferred.
- the component (b) may be one kind or a combination of two or more kinds.
- the blending amount thereof is directly bonded to the silicon atom with respect to the curable functional group of the component (a), particularly one unsaturated group such as a vinyl group.
- the amount of hydrogen atoms is preferably 0.1 to 10.0. If the number is less than 0.1, the curing may not proceed at a sufficient rate, and if the number exceeds 10.0, the cured product may become too hard and may adversely affect the physical properties after curing.
- the curable functional group is a vinyl group
- the amount of the polyorganosiloxane having one vinyl group in the molecule is the Si—H bond and the unsaturated bond of the hydrogen polyorganosiloxane, particularly the amount of the vinyl group.
- the H / Vi ratio is preferably in the range of 0.2 to 5.0, more preferably in the range of 0.5 to 3.0.
- the H / Vi ratio is preferably in the range of 0.2 to 5.0, more preferably in the range of 0.5 to 3.0.
- the component (b) can contain, for example, 0.1 mol or more of a cross-linking group with respect to 1 mol of the reactive functional group of the component (a) in the curable composition, specifically, 0.2. It can contain more than a mole.
- the component (b) can contain, for example, 20 mol or less of a cross-linking group, specifically 10 mol or less, and more specifically, with respect to 1 mol of the reactive functional group of the component (a). Can contain up to 5 mol.
- the curable polyorganosiloxane composition of the present invention contains a curing catalyst capable of catalyzing a cross-linking reaction between the component (a) and the component (b) (hereinafter, may be simply referred to as "component (c)").
- a curing catalyst capable of catalyzing a cross-linking reaction between the component (a) and the component (b)
- component (c) an addition curing type catalyst is used.
- a typical example is a platinum catalyst.
- the platinum catalyst is a curing catalyst for reacting the curable functional group of the component (b) with the hydrogen group of the component (b) to obtain a cured product.
- the platinum compound include platinum chloride acid, platinum olefin complex, platinum vinyl siloxane complex, platinum phosphorus complex, platinum alcohol complex, and platinum black.
- the blending amount is an amount of 0.1 to 1000 ppm as a platinum element with respect to the component (a). If it is less than 0.1 ppm, it will not be sufficiently cured, and if it exceeds 1000 ppm, no improvement in curing rate can be expected. Further, depending on the application, the activity of the catalyst can be suppressed by adding a reaction inhibitor in order to obtain a longer pot life.
- Known reaction inhibitors for platinum group metals include acetylene alcohols such as 2-methyl-3-butyne-2-ol, 3,5-dimethyl-1-hexin-3-ol, and 1-ethynyl-2-cyclohexanol. , Dialyl maleate, and tertiary amines such as tetramethylethylenediamine and pyridine.
- the curable composition of the present invention contains a silicon compound having a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group directly bonded to a silicon atom (hereinafter, simply “component (d)"). There are times when). Without being bound by a particular theory, component (d) may migrate to the surface of the substrate during or after curing of the composition, causing a reaction in which a hydrolyzable group adheres to the surface of the substrate. Alternatively, it is considered that by hydrolyzing the silicone rubber itself, it has an effect of making it difficult for moisture to pass through.
- the component (d) since the component (d) has an alkyl group having a relatively long carbon chain, it can bring about appropriate hydrophobicity to the curable composition, which contributes to the water resistance of the entire curable composition. It is thought that it will be done.
- the component (d) only one kind may be used, or two or more kinds may be used in combination.
- the monovalent alkyl group possessed by the component (d) has 8 to 30 carbon atoms, but here, it is determined that the carbon chain to which the carbon atom bonded to the silicon atom belongs has a length of 8 or more carbon atoms. Point to. It is more preferable that the number of carbon atoms is in the range of 8 to 20 from the viewpoint of affinity with other components in the curable composition.
- Examples of monovalent alkyl groups include octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadesyl group, icosyl group and triacontyl group.
- Such as a linear alkyl group; a branched chain alkyl group such as an isononyl group and a 2-methylnonyl group can be mentioned.
- the monovalent alkyl group may have one or more functional groups such as bromine, chlorine and fluorine as long as it does not reduce the hydrophobicity such as a hydroxyl group.
- hydrolyzable group means a group that is susceptible to a hydrolysis reaction, i.e., a group that can be desorbed from the main skeleton of a compound by a hydrolysis reaction.
- R' represents unsubstituted alkyl groups such as methyl group, ethyl group, propyl group, isopropyl group, n-butyl group and isobutyl group; substituted alkyl groups such as chloromethyl group.
- an alkyl group, particularly an unsubstituted alkyl group is preferable, and a methyl group or an ethyl group is more preferable.
- the hydrolyzable group is preferably an alkoxy group such as a methoxy group, an ethoxy group, a propoxy group and a butoxy group.
- the hydroxyl group is not particularly limited, but may be generated by hydrolyzing a hydrolyzable group.
- the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and among these, a chlorine atom is preferable.
- the structure of the silicon compound of the component (d) is not particularly limited as long as it has at least one monovalent alkyl group having 8 to 30 carbon atoms and one hydrolyzable group.
- the alkyl group may have two or more, or may be different types of alkyl groups from each other, but the component (d) preferably has one monovalent alkyl group.
- the component (d) may have a group other than a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group, for example, a lower alkyl group or a phenyl group.
- the number of silicon atoms contained in one molecule of the component (d) is not particularly limited, but a compound having 1 to 10 silicon atoms is preferable, and a compound having one silicon atom is more preferable.
- the monovalent alkyl group and the hydrolyzable group may be bonded to the same silicon atom or may be bonded to different silicon atoms. It is preferable that a monovalent alkyl group and a hydrolyzable group are bonded to the same silicon atom.
- a silicon compound having a monovalent alkyl group having 8 to 30 carbon atoms and a hydrolyzable group directly bonded to the silicon atom is preferably composed of the following formula (3): R 1 n Si (OR 2 ) 4-n (3)
- R 1 is a monovalent alkyl group having 8 to 30 carbon atoms, preferably a monovalent alkyl group having 8 to 20 carbon atoms
- R 2 is hydrogen or an alkyl group having 1 to 6 carbon atoms, n. Is an integer of 1 to 3, preferably 1).
- the component (d) is a compound having one monovalent alkyl group and three hydrolyzable groups in one silicon atom.
- a commercially available silicon compound satisfying the above conditions may be used, or a compound prepared by a method known to those skilled in the art may be used.
- Specific examples of the compound include octyltrimethoxysilane, decyltrimethoxysilane, hexadecyltrimethoxysilane, octadecyltrimethoxysilane, and octyltriethoxysilane.
- the component (d) is preferably contained in an amount of 0.01 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, based on 100 parts by mass of the curable polyorganosiloxane composition of the present invention. Even more preferably, it is contained in an amount of 0.3 to 2.5 parts by mass. Within this range, the composition can be provided with sufficient hydrophobicity to exhibit water resistance, and the properties of the adhesive are not impaired.
- the curable polyorganosiloxane composition of the present invention may contain a scaly inorganic filler as an optional additional component (hereinafter, may be simply referred to as “component (e)”). It is considered that the scaly inorganic filler can play a role of spatially inhibiting the invasion of moisture in the layer of the adhesive when the curable polyorganosiloxane composition of the present invention is used as the adhesive. Therefore, the component (e) can contribute to the water resistance of the curable polyorganosiloxane composition.
- the type of the inorganic fine particles is not particularly limited as long as it is in the form of scales, but silicon oxides and silicate minerals are preferable, and quartz powder and mica fine powder are more preferable. These scaly inorganic fine particles may be used alone or in combination of two or more.
- the average particle size of the scaly inorganic filler is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and particularly preferably 30 ⁇ m or less, from the viewpoint of maintaining the dispersibility and fluidity of the curable composition. ..
- the average particle size of the scaly inorganic filler means the length of the scaly particles in the major axis direction.
- the measured value of the average particle size is the median diameter (d50) measured by the laser diffraction / scattering method.
- the component (e) is preferably contained in an amount of 10 to 500 parts by mass, more preferably 15 to 300 parts by mass, and 20 to 200 parts by mass with respect to a total of 100 parts by mass of the components (a) to (d). It is more preferable that it is contained in parts by mass. If the amount added is less than 10 parts by mass with respect to 100 parts by mass of the total of the components (a) to (d), the effect on water resistance is not sufficient, and if it is more than 500 parts by mass, the viscosity is large. It may hinder handleability.
- the curable polyorganosiloxane of the present invention contains the above-mentioned components (a) to (d), and further contains the above-mentioned component (e) in some cases.
- the polyorganosiloxane composition of the present invention is not particularly limited in its properties as long as each component is uniformly mixed and has a fluidity to the extent that it can be applied to a substrate.
- the viscosity of the polyorganosiloxane composition can be controlled mainly by the viscosity of the component (a), and is preferably in the range of 0.1 to 500 Pa ⁇ s from the viewpoint of operability.
- the polyorganosiloxane composition can be a one-component type in which all the components are mixed, or a two-component type in which the component (b) and the component (c) are separately blended. .. Whether the composition is a one-component type or a two-component type can be appropriately selected in consideration of workability, curing conditions, and the like, and the method is known to those skilled in the art.
- the curable polyorganosiloxane composition of the present invention may contain other known components as long as it does not impair its purpose and effect.
- a flame retardant, an adhesiveness-imparting agent, a heat-resistant imparting agent, a diluent, an organic solvent, an inorganic substance, an organic pigment, or the like can be appropriately blended.
- a siloxane resin that does not correspond to the component (a) or the component (b) can also be blended. Examples of such a resin include polyorganosiloxane having only one curable functional group, polyorganosiloxane having no curable functional group such as dimethylsiloxane, and the like. These resins can be used as diluents.
- the curable polyorganosiloxane composition may further contain a siloxane resin that does not correspond to the components (a) and (b).
- a siloxane resin that does not correspond to the components (a) and (b).
- Such resins can also be used as diluents for adjusting the viscosity.
- a siloxane resin among the resins obtained by the combination of the M, D, T, and Q units, those having no or only one curable functional group, particularly the following formula (4): (R a ) 3-p R p Si-O- (SiR 2 O) n -SiR 3 ... (4) (In the equation, Ra , R, p, n are as defined in the equation (1)).
- a siloxane having no curable functional group, as shown by, can be used.
- Such a resin can be contained in, for example, 50 parts by mass or less, specifically 0.1 to 50 parts by mass, with respect to 100 parts by mass of the component (a) in the curable polyorganosiloxane composition. More specifically, it can contain 1 to 30 parts by mass.
- the composition can further include a hydrogen polyorganosiloxane having two hydrogen atoms bonded to a silicon atom in the molecule.
- a siloxane can function as a chain extender by an addition reaction with the component (a).
- An example of such a siloxane is as described in component (b), except that the molecule has two hydrogen atoms bonded to silicon atoms.
- Such a siloxane preferably has two units represented by the above-mentioned general formula (2) in the component (b) so that the number of Si—H bonds is 2.
- the siloxane skeleton in this component may be linear, branched or cyclic, and is preferably linear.
- the siloxane of this component has both ends independently closed by R 5 3 SiO 1/2 units, and the intermediate unit consists of only R 5 2 SiO 2/2 units (in the formula, R 5 is. , Independently, monovalent hydrocarbon groups that do not have hydrogen atoms or aliphatic unsaturated bonds, except that two of R5 per molecule are hydrogen atoms), linear hydrogen. More preferably, it is a polyorganosiloxane.
- the hydrogen atom bonded to the silicon atom may be present at the terminal or in the intermediate unit, but is preferably present at the terminal.
- siloxane of this component polymethylhydrogensiloxane in which both ends are clogged with MH units (dimethylhydrogensiloxane units) and the intermediate unit is only D units (dimethylsiloxane units) is particularly preferable.
- the curable polyorganosiloxane composition may further contain an adhesive-imparting agent.
- the adhesiveness-imparting agent is a component that improves the adhesion of the cured product of the composition to a substrate such as glass, metal, or plastic.
- the adhesive-imparting agent includes metal alkoxides, compounds having a hydrolyzable silyl group, compounds having a hydrolyzable silyl group and a reactive organic functional group in one molecule, and a hydrogen atom bonded to a silicon atom in one molecule.
- Examples thereof include a compound having a divalent aromatic group, a compound having a hydrogen atom bonded to a silicon atom in one molecule and a reactive organic functional group, and / or a partially hydrolyzed condensate thereof.
- metal alkoxides are aluminum alkoxides such as aluminum triethoxydo, aluminum tripropoxide, aluminum tributoxide; titanium tetraethoxyd, titanium tetrapropoxide, titanium tetraisopropoxide, titanium tetrabutoxide, titanium tetraisobutoxide.
- Metal alkoxides such as titanium alkoxides such as titanium tetraisopropenyl oxide.
- Examples of the adhesive-imparting agent for the organic compound include amino group-containing silanes, isocyanates, and carbacilatran compounds. Specific examples include tetraethoxysilane, tetramethoxysilane oligomer, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycid.
- (E1) A hydrogen atom bonded to a silicon atom and the following formula (6) bonded to a silicon atom: Organosilicon compounds with side chains, indicated by ( E2) an organosilicon compound having an n group and an epoxy group-containing group, and / or a partially hydrolyzed condensate thereof.
- (E3) Si (OR 3 ) A silane compound having n groups and an aliphatic unsaturated hydrocarbon group and / or a partially hydrolyzed condensate thereof, and (E4) Si (OR 4 ) 4 represented by a tetraalkoxysilane compound. And / or a partially hydrolyzed condensate thereof.
- Q 1 represents a linear or branched alkylene group forming a carbon chain having two or more carbon atoms between a silicon atom and an ester bond
- Q 2 represents an oxygen atom.
- R 3 is an alkyl group having 1 to 4 carbon atoms or 2- Represents a methoxyethyl group
- R4 represents an alkyl group having 1 to 3 carbon atoms
- n is an integer of 1 to 3).
- (E1), (E2), (E3) and (E4) may be one kind or a combination of two or more kinds, respectively.
- (E) may be a combination of one kind (E1), two kinds of (E2), and two kinds of (E3).
- (E1) is introduced into a crosslinked siloxane structure by an addition reaction with (A) during the curing of the composition and is crosslinked by the addition reaction with (A) and (B), and the side chain of the formula (6) is adhered.
- the alkoxy group existing in the side chain of (E1) (hereinafter, OR 3 represents an alkoxy group having 1 to 4 carbon atoms or a 2-methoxyethoxy group) is (E2), (E3) and / or (. It also contributes to the introduction of (E2), (E3) and / or (E4) into the siloxane structure by the co-hydrolysis / condensation reaction with the alkoxy group of E4).
- Q 1 is preferably an ethylene group or a 2-methylethylene group because it is easy to synthesize and handle.
- Q2 is preferably a trimethylene group because it is easy to synthesize and handle.
- R 3 is preferably a methyl group or an ethyl group, and particularly preferably a methyl group, because it gives good adhesiveness and the alcohol generated by hydrolysis is easily volatilized.
- the hydrogen atom and the side chain, which are the characteristics of (E1), are preferably bonded to separate silicon atoms because they are easy to synthesize. Therefore, the basic portion of (E1) preferably forms a chain-like, branched or cyclic siloxane skeleton, and a specific compound can be synthesized and purified in a controlled manner, so that a cyclic siloxane skeleton is particularly preferable.
- the number of Si—H bonds contained in (E1) is any number of 1 or more, and in the case of a cyclic siloxane compound, 2 or 3 is preferable.
- Examples of (E1) include the following compounds.
- (E2) has a crosslinked siloxane structure by a co-hydrolysis / condensation reaction between an alkoxy group bonded to a silicon atom and an alkoxy group bonded to a silicon atom of (E1), (E3) and / or (E4).
- the introduced epoxy group that exhibits adhesiveness it is a component that contributes to the improvement of the adhesiveness of the composition at room temperature, particularly the adhesiveness to plastics.
- R 3 gives good adhesiveness, a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
- n is preferably 2 or 3.
- an aliphatic epoxy group-containing group containing an ether oxygen atom such as a 3-glycidoxypropyl group, because it is easy to synthesize, has no hydrolyzability, and exhibits excellent adhesiveness;
- An alicyclic epoxy group-containing group such as a 2- (3,4-epoxidecyclohexyl) ethyl group is preferable.
- the number of OR 3 groups is preferably 2 or more in the molecule.
- the OR 3 group and the epoxy group-containing group may be bonded to the same silicon atom or may be bonded to another silicon atom.
- Examples of (E2) include 3-glycidoxypropyl group-containing alkoxysilanes such as 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, and 3-glycidoxypropyl (methyl) dimethoxysilane.
- (E3) is introduced into the crosslinked siloxane structure by an addition reaction with (B) during the curing of the composition and is crosslinked by the addition reaction with (A) and (B), and the alkoxy group present in the side chain is As a portion that develops adhesiveness, it is a component that contributes to improving the adhesiveness of the composition at room temperature, particularly to the metal.
- the alkoxy group of (E3) is (E1), (E2) and / or (E4) by a co-hydrolysis / condensation reaction with the alkoxy group of (E1), (E2) and / or (E4). It also contributes to introduction into the crosslinked siloxane structure.
- (E3) is preferably a silane compound having an Si (OR 3 ) n group and one aliphatic unsaturated hydrocarbon group, and / or a partially hydrolyzed condensate thereof.
- the alkoxy group is used in combination with another (E3) alkoxy group and (E2), the other (E3) and / or (E2) is subjected to a co-hydrolysis / condensation reaction with the (E2) alkoxy group. Introduce into siloxane structure.
- a methyl group and an ethyl group are preferable, and a methyl group is particularly preferable.
- n is preferably 2 or 3.
- the aliphatic unsaturated hydrocarbon group is preferably a monovalent group. In the case of an alkenyl group such as vinyl, allyl, or 3-butenyl, the aliphatic unsaturated hydrocarbon group may be directly bonded to a silicon atom, such as 3-acryloxypropyl and 3-methacryloxypropyl. An unsaturated acyloxy group may be bonded to a silicon atom via three or more carbon atoms.
- the unsaturated hydrocarbon group-containing group a vinyl group, a methacryloxypropyl group, or the like is preferable because it is easy to synthesize and handle.
- the number of OR 3 groups is preferably 2 or more in the molecule.
- the OR 3 group and the aliphatic unsaturated hydrocarbon group may be bonded to the same silicon atom or may be bonded to another silicon atom.
- Examples of (E3) include alkenylalkoxysilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, methylvinyldimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, and methylallyldimethoxysilane.
- alkenylalkoxysilanes such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltris (2-methoxyethoxy) silane, methylvinyldimethoxysilane, allyltrimethoxysilane, allyltriethoxysilane, and methylallyldimethoxysilane.
- (E4) is a component that further improves the adhesiveness of the composition to the metal at room temperature.
- R4 include linear or branched alkyl groups such as methyl, ethyl, propyl and isopropyl, which are easily available, easy to handle and have a remarkable effect of improving adhesiveness.
- a group and an ethyl group are preferable.
- (E4) can be used as a simple substance of the tetraalkoxysilane compound, it is preferably a partially hydrolyzed condensate of the tetraalkoxysilane compound from the viewpoint of excellent hydrolyzability and low toxicity.
- Adhesives include aluminum alkoxides such as aluminum triethoxydo, aluminum tripropoxide, and aluminum tributoxide; titanium tetraethoxydo, titanium tetrapropoxide, titanium tetraiso.
- Zirconium acylate such as zirconium octanate, tetra (2-ethylhexanoic acid) zirconium, zirconium stearate; n-propyl Zirconium alkoxides such as zirconate and n-butylzirconate (excluding zirconium chelate); tributoxyzirconium acetylacetonate, dibutoxyzirconium bis (ethylacetoacetate), zirconiumtetraacetylacetonate, zirconium monoacetylacetonate.
- Metal alkoxides such as zirconium chelate such as zirconium ethyl acetoacetate and the like.
- a compound having a hydrolyzable silyl group and a reactive organic functional group in one molecule and / or a partially hydrolyzed condensate thereof (however, (E1) to (E4) are not included);
- a compound having a hydrogen atom bonded to a silicon atom and a reactive organic functional group in one molecule such as; Examples thereof include a compound having a hydrogen atom bonded to a silicon atom and a divalent aromatic group in one molecule (k is an integer of 1 to 3 in the formula).
- the adhesive strength can be further increased by using other adhesive-imparting agents in combination.
- (E) preferably contains a combination of (E1), (E2), (E3) and / or (E4).
- (E1) to (E4) may be one kind or a combination of two or more kinds, respectively.
- (E) may be a combination of one kind (E1), two kinds of (E2), and two kinds of (E3).
- the adhesiveness-imparting agent can be contained in the curable polyorganosiloxane composition in an amount of, for example, 10 parts by mass or less, specifically 0.01 to 10 parts by mass, with respect to 100 parts by mass of the component (a). More specifically, it can contain 0.1 to 5 parts by mass.
- the adhesiveness-imparting agent one type may be used alone, or two or more types may be mixed and used.
- the curable polyorganosiloxane composition of the present invention can contain inorganic fine particles other than the above-mentioned (e).
- inorganic fine particles an inorganic material used as a filler in silicone rubber can be used.
- the particles of the inorganic material can take a shape other than the scaly shape, and can take a shape such as a sphere or an amorphous shape, for example.
- Inorganic materials include oxides of fuming silica, calcined silica, silica aerogel, precipitated silica, diatomaceous earth, ground silica, molten silica, fuming titanium oxide, iron oxide, zinc oxide, titanium oxide, aluminum oxide and the like; these surfaces.
- hydrophobic agent such as trimethylchlorosilane, dimethyldichlorosilane, hexamethyldisilazane, octamethylcyclotetrasiloxane; carbonates such as calcium carbonate, magnesium carbonate and zinc carbonate; silicic acid such as aluminosilicate and calcium silicate. Examples thereof include acid salts; talc; composite oxides such as glass wool; conductive fillers such as carbon black, copper powder, and nickel powder.
- a hydrophobic agent such as trimethylchlorosilane, dimethyldichlorosilane, hexamethyldisilazane, octamethylcyclotetrasiloxane
- carbonates such as calcium carbonate, magnesium carbonate and zinc carbonate
- silicic acid such as aluminosilicate and calcium silicate. Examples thereof include acid salts; talc; composite oxides such as glass wool; conductive fillers such as carbon black, copper powder, and nickel powder.
- aerosolized silica is preferably contained in an amount of 1 to 50 parts by mass, more preferably 2 to 30 parts by mass, based on 100 parts by mass of the entire curable composition of the present invention. It is preferably contained in an amount of 5 to 15 parts by mass, more preferably 5 to 15 parts by mass. Within this range, it is possible to adjust the fluidity of the composition before curing and to reinforce the hardness, durability and the like when the composition is cured without impairing the effect of the present invention.
- inorganic fillers other than fumes silica those skilled in the art can appropriately change the blending amount according to the type and role of the filler.
- the curable polyorganosiloxane composition may contain a solvent.
- the curable polyorganosiloxane composition can be used by dissolving it in a suitable solvent at a desired concentration depending on its use and purpose.
- the concentration of the solvent may be, for example, 80 parts by mass or less, 50 parts by mass or less, or 30 parts by mass or less with respect to 100 parts by mass of the curable polyorganosiloxane composition. It may be 20 parts by mass or less. From the viewpoint of adjusting the viscosity of the curable composition, it is preferable to contain a solvent. By including the solvent, the handleability of the curable composition can be improved.
- One aspect of the present invention is an adhesive containing the curable polyorganosiloxane composition.
- the adhesive preferably contains the above-mentioned adhesive-imparting agent in addition to the curable polyorganosiloxane composition.
- the cured product of the composition and various base materials may have an adhesive portion, and the shape is not limited.
- one embodiment of the method for producing an article comprising an adhesive portion between a substrate and a cured product of the composition is a step of preparing a component and a composition containing the substrate; the composition is placed on the surface of the substrate. The step of applying; and the step of curing the composition and adhering the base material and the cured product of the composition are included.
- the material of the base material to which the adhesive containing the curable polyorganosiloxane composition of the present invention is applied is not particularly limited.
- the base material includes metals such as aluminum, copper, nickel, iron, brass, and stainless steel; polyester resins such as epoxy resin, polyethylene terephthalate, and polybutylene terephthalate (PBT) resin, polycarbonate resin, acrylic resin, polyimide resin, and phenol resin.
- Engineering plastics such as polyamide resin, polyphenylene sulfide (PPS) resin, modified polyphenylene ether (PPE) resin; glass and the like can be used.
- PPS polyphenylene sulfide
- PPE modified polyphenylene ether
- the wall surface of the void or the like may be subjected to a primer treatment according to a conventional method.
- the shape and thickness of the base material are not particularly limited.
- Adhesives containing a curable polyorganosiloxane composition can be dropped, injected, cast, extruded from a container, bar-coated, or roll-coated to a predetermined thickness on the surface of a component including a substrate to be adhered. It is applied by a method such as coating, screen printing, dipping method, brush coating method, spraying method, dispensing method and the like. These methods are known to those skilled in the art.
- the composition may be applied entirely and uniformly on the surface of the component, or may be applied non-uniformly or partially, such as linear, striped, dot-like, or the like.
- the applicable thickness of the composition is usually 0.01 to 3 mm, preferably 0.05 to 2 mm.
- the composition applied to the surface of the component can be left at room temperature (for example, 23 ° C.) or heated to a higher temperature to be cured to adhere the base material to the cured product of the composition. can. When heated to a higher temperature, it can be cured in a shorter time than room temperature, and work efficiency can be improved.
- the heating conditions can be appropriately adjusted according to the heat resistant temperature of the member to which the composition is applied, and the curing time can be determined.
- heat above room temperature (23 ° C.) and 200 ° C. or lower can be applied in the range of 1 minute to 2 weeks, preferably 5 minutes to 72 hours.
- the heating temperature is preferably 40 to 180 ° C, particularly preferably 50 to 150 ° C.
- the heating time is preferably 5 minutes to 72 hours, and particularly preferably 5 minutes to 24 hours, from the viewpoint of the simplicity of the curing step.
- the curing time is preferably 1 week or less, more preferably 72 hours or less, and particularly preferably 24 hours or less.
- the article using the curable polyorganosiloxane composition of the present invention as an adhesive has excellent durability including water resistance on the adhesive surface, and therefore should be satisfactorily used as various parts in the fields of aircraft, automobile applications, and electronic materials. Can be done.
- composition of the present invention will be described more specifically through the following examples, but the present invention is not limited to the embodiments of these examples.
- n1 is a value such that the viscosity at 23 ° C. is 10 Pa ⁇ s.
- Siloxane silica and calcium carbonate treated with siloxane and hexamethyldisilazane (HMDZ) as a filler, and scaly mica (average particle size 23 ⁇ m) as a component (e) are transferred to a universal kneader at room temperature (23 ° C.). Was stirred for 60 minutes and then stirred at 150 ° C. for 60 minutes under reduced pressure. The mixture was cooled to 50 ° C. or lower, a Pt-octanol complex having a platinum content of 3.4% and a reaction inhibitor were added as the component (c), and the mixture was stirred for 30 minutes.
- HMDZ hexamethyldisilazane
- the mixture thus obtained has hydrogen polyorganosiloxane represented by MD H 20 D 20 M as the component (b), octyltriethoxysilane (C 8 H 17 Si (OEt) 3 ) as the component (d), and adhesion imparting.
- the agent was added and the mixture was stirred at room temperature for 10 minutes.
- As the adhesiveness-imparting agent 3-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane and a siloxane represented by the following formula were used.
- the reaction inhibitor diallyl maleate and 3,5-dimethyl-1-hexin-3-ol were used.
- Example 2 The composition 2 was obtained in the same manner as in Example 1 except that the amount of octyltriethoxysilane used in 0.5 parts by mass was changed to 1.5 parts by mass.
- Example 3 The composition 3 was obtained in the same manner as in Example 1 except that the octyltriethoxysilane used in Example 1 was changed to 0.5 parts by mass of decyltrimethoxysilane (C 10H 21 Si (OMe) 3 ). ..
- Example 4 The composition 4 was obtained in the same manner as in Example 3 except that the decyltrimethoxysilane used in 0.5 parts by mass in Example 3 was changed to 1.5 parts by mass.
- Example 5 The composition 5 was obtained in the same manner as in Example 1 except that the octyltriethoxysilane used in Example 1 was changed to 0.5 parts by mass of hexadecyltrimethoxysilane (C 16 H 33 Si (OMe) 3 ). rice field.
- Example 6 The composition 6 was obtained in the same manner as in Example 5 except that the hexadecyltrimethoxysilane used in 0.5 parts by mass was changed to 1.5 parts by mass.
- Example 1 A composition was obtained in the same manner as in Example 1 except that the octyltriethoxysilane used in Example 1 was changed to 0.5 parts by mass of hexyltrimethoxysilane ( C6H 11 Si (OMe) 3 ).
- Example 2 A composition was obtained in the same manner as in Example 2 except that the octyltriethoxysilane used in Example 2 was changed to 1.5 parts by mass of hexyltrimethoxysilane ( C6H 11 Si (OMe) 3 ).
- Example 3 A composition was obtained in the same manner as in Example 1 except that the silane compound corresponding to the component (d) was not used.
- Comparative Example 4 A composition was obtained in the same manner as in Comparative Example 3 except that quartz powder (average particle size 5 ⁇ m) was used instead of scaly mica as the inorganic fine particles.
- Example 1 Peeling test
- the composition of Example or Comparative Example was applied to an aluminum plate having a thickness of 2 mm to a uniform thickness (0.5 mm), and the composition was cured by heating at 150 ° C. for 1 hour in a hot air circulation type dryer.
- An aluminum plate coated with a cured product of the polyorganosiloxane composition was immersed in warm water at 80 ° C., and a peeling test was performed after a lapse of a specific time.
- the aluminum plate was manually peeled off, and the peeled surface was visually observed.
- Tables 1 and 2 In the table, ⁇ indicates that cohesive fracture occurred, and at this time, the adhesive maintains the adhesiveness to the substrate. ⁇ indicates that coagulation fracture and peeling are mixed, and ⁇ indicates that the adhesive has peeled.
- the horizontal line (-) is omitted because the adhesive has been peeled off.
- Comparative Example 3 In Comparative Example 3 to which a silane compound having a long-chain alkyl group, which corresponds to a conventional adhesive, was not added, the adhesive portion was peeled off within 2 weeks in the test under the above conditions. On the other hand, from Examples 1 to 6, it was found that the addition of a silane compound having a long-chain alkyl group improves the long-term water resistance. Comparative Examples 1 and 2 to which hexyltrialkoxysilane having a small number of carbon chains was added showed only the same level of water resistance as Comparative Example 3 to which no silane compound was added, and long-term stability was not obtained. ..
- Example 7 The composition 7 was obtained in the same manner as in Example 3 except that the scaly mica was changed to quartz powder (average particle size 5 ⁇ m) and the tetraethoxysilane used as the adhesive-imparting agent was changed to a tetramethoxysilane oligomer. ..
- Example 8 The composition 8 was obtained in the same manner as in Example 7 except that the amount of decyltrimethoxysilane used in 0.5 parts by mass was changed to 1.5 parts by mass.
- Example 9 The composition 9 was obtained in the same manner as in Example 7 except that the decyltrimethoxysilane used in Example 7 was changed to 0.5 parts by mass of hexadecyltrimethoxysilane.
- Example 10 The composition 10 was obtained in the same manner as in Example 9 except that the hexadecyltrimethoxysilane used in 0.5 parts by mass was changed to 1.5 parts by mass.
- Example 5 A composition was obtained in the same manner as in Example 7 except that the decyltrimethoxysilane used in Example 7 was changed to 0.5 parts by mass of hexyltrimethoxysilane.
- Example 6 A composition was obtained in the same manner as in Example 8 except that the decyltrimethoxysilane used in Example 8 was changed to 1.5 parts by mass of hexyltrimethoxysilane ( C6H 11 Si (OMe) 3 ).
- Example 7 A composition was obtained in the same manner as in Example 7 except that the silane compound corresponding to the component (d) was not used.
- composition of the present invention has high water resistance for a long period of time, and is useful for adhesion between substrates having a site where contact with moisture is expected. Therefore, it can be used as an adhesive for aircraft and automobiles.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
航空機や自動車用途では長期の信頼性は安全に関わる要素でもあるため、特に長期にわたって、接着剤の耐水性を向上させることに対する需要は強く存在する。
すなわち、本発明は以下の[1]~[9]に関する。
[1](a)1分子中に付加反応を起こし得る硬化性官能基を2つ以上有するポリオルガノシロキサン;
(b)前記(a)の硬化性官能基との反応性を有する架橋基を1分子中に3つ以上有する架橋剤;
(c)前記(a)及び(b)の架橋反応を触媒し得る、硬化触媒;及び
(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物;
を含む、硬化性ポリオルガノシロキサン組成物。
[2]前記(a)が、1分子中に2個以上のアルケニル基を有するポリオルガノシロキサンであり、前記(c)が、白金化合物である、前記[1]の硬化性ポリオルガノシロキサン組成物。
[3]さらに、(e)鱗片状の形状を有する無機微粒子を、前記(a)~(d)成分の合計100質量部に対して10~500質量部の量で含む、前記[1]又は[2]記載の硬化性ポリオルガノシロキサン組成物。
[4]前記鱗片状の形状を有する無機微粒子が、シリカ、ケイ酸塩鉱物又はそれらの混合物を含む、前記[3]記載の硬化性ポリオルガノシロキサン組成物。
[5]前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、次式:
R1 nSi(OR2)4-n
(式中、R1は炭素数8~30の1価アルキル基であり、R2は水素又は炭素数1~6のアルキル基であり、nは1~3の整数である)で示される化合物である、前記[1]~[4]のいずれか記載の硬化性ポリオルガノシロキサン組成物。
[6]前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、炭素数8~20の1価アルキル基を有する、前記[1]~[5]のいずれか記載の硬化性ポリオルガノシロキサン組成物。
[7]前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、組成物全体の100質量部に対して0.01~10.0質量部含まれる、前記[1]~[6]のいずれか記載の硬化性ポリオルガノシロキサン組成物。
[8]さらに、接着性付与剤を含む、前記[1]~[7]のいずれか記載の硬化性ポリオルガノシロキサン組成物。
[9]前記[1]~[8]のいずれか記載の硬化性ポリオルガノシロキサン組成物を含む、接着剤。
以下、本発明の組成物について、項目毎に詳細に説明する。なお、本明細書において、数値範囲を示す「~」とは、その前後に記載された数値を下限値及び上限値として含む意味で使用される。
本発明の硬化性ポリオルガノシロキサン組成物は、成分(a)として、1分子内に付加反応を起こし得る硬化性官能基を2つ以上有するポリオルガノシロキサンを少なくとも1種含む。成分(a)は、硬化性ポリオルガノシロキサン組成物のベースポリマーとして機能する。ここで、「硬化性官能基」とは、硬化反応を起こすことが可能な官能基を指し、本発明においては、付加反応を起こす官能基を指す。各々の硬化性官能基は、同じ官能基であることが好ましいが、付加反応を起こす官能基であれば、異なる種類の官能基であっても同一分子内に混在することができる。硬化性官能基は、ポリオルガノシロキサン分子の任意の位置に存在することができる。例えば直鎖状のポリオルガノシロキサンの場合、分子末端に硬化性官能基を有していてもよく、末端以外の部位に側鎖として存在していてもよい。硬化性官能基は、直鎖状のポリオルガノシロキサンの場合、好ましくは成分(a)の分子主鎖の両末端に少なくとも1つずつ存在する。またここで、本明細書において、成分(a)の分子主鎖とは、成分(a)の分子中で相対的に最も長い結合鎖を表す。
M:-Si(CH3)3O1/2
MH:-SiH(CH3)2O1/2
MVi:-Si(CH=CH2)(CH3)2O1/2
D:Si(CH3)2O2/2
DH:SiH(CH3)O2/2
T:Si(CH3)O3/2
Q:SiO4/2
以下、本明細書において、シロキサン化合物は、上記の構造単位を組み合わせて構築されるものであるが、上記構造単位のメチル基がフッ素のようなハロゲン、フェニル基のような炭化水素基等、他の基に置き換わったものを少なくとも部分的に含んでいてもよい。また、例えばDH 20D20と記した場合には、DH単位が20個続いた後D単位が20個続くことを意図するものではなく、各々の単位は任意に配列していてもよいことが理解される。シロキサン化合物は、T単位又はQ単位により、3次元的に様々な構造を取ることができる。よって成分(a)は、直鎖状、分岐鎖状、環状、これらの構造の組合せ等任意の分子骨格をとることができる。成分(a)は、好ましくは、直鎖状の分子骨格を有する。
(R1)a(R2)bSiO(4-a-b)/2 (I)
(式中、
R1は、アルケニル基であり;
R2は、脂肪族不飽和結合を有しない1価の炭化水素基であり;
aは、1~3の整数であり;
bは、0~2の整数であり、但し、a+bは1~3である)
で示されるアルケニル基含有シロキサン単位を、分子中に、少なくとも2個有する。
(Ra)3-pRpSi-O-(Si(R)r(Ra)2-rO)n-SiRq(Ra)3-q・・・(1)
(式中、
Raは、それぞれ独立して、硬化性官能基であり、
Rは、それぞれ独立して、1価の有機基であり、
p及びqは、各々独立して、0、1又は2であり、
rは、それぞれ独立して、0、1又は2であり、
nは、23℃における粘度を0.1~500Pa・sとする数である)
で表される直鎖状ポリオルガノシロキサンが例示される。Rとしては、炭化水素基、特にアルキル基、アルケニル基、アリール基を有するものが好ましい。屈折率等の物性を制御する観点から、Rの少なくとも一部がフェニル基等のアリール基であってもよい。Rが全てメチルであるようなポリオルガノシロキサンが、入手の容易性から特に好ましく用いられる。硬化性官能基の位置に関しては、上記式(1)においてrが2であるポリオルガノシロキサン、すなわち、分子の両末端のみに硬化性官能基が少なくとも1つずつ存在する直鎖状ポリオルガノシロキサンが好ましい。
(a2)において、R1は、R3SiO1/2単位のRとして存在してもよく、R2SiO2/2単位又はRSiO3/2単位のRとして存在してもよい。室温で速い硬化が得られる観点から、R3SiO1/2単位の一部又は全部が、R1R2 2SiO1/2単位であること、R2SiO2/2単位の一部又は全部が、R1R2SiO2/2単位であることが好ましい。
本発明の硬化性ポリオルガノシロキサン組成物は、架橋剤として、前記成分(a)が有する硬化性官能基との反応性を有する架橋基を1分子中に3つ以上有する化合物を含む(以下、単に「成分(b)」ということがある)。架橋剤を含むことにより、硬化性組成物から得られる硬化物の物性、例えば引張強度や弾性率が良好になる。成分(b)が有する架橋基としては、一般的にシリコーンの硬化反応に利用される反応に活性な官能基を用いることができる。架橋基としては例えば、ケイ素に直接結合した水素原子、即ちSi-H基を採用することができる。成分(b)が1分子あたりに有する架橋基の数は3つ以上であり、このため架橋反応により網目状構造をもたらすことができる。各々の架橋基は、同一のケイ素原子に結合していてもよいし、異なるケイ素原子に結合していてもよい。
(Rb)x(Rc)ySiO(4-x-y)/2 (2)
(式中、
Rbは、水素原子であり、
Rcは、C1-6アルキル基(例えば、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、好ましくはメチル)又はフェニル基であり;
xは、1又は2であり;
yは、0~2の整数であり、ただし、x+yは1~3である)
で示される単位を、Si-H結合の数が3以上となるように、好ましくは分子中に2個以上有する。
成分(b)におけるシロキサン骨格は、直鎖状、分岐状又は環状のいずれであってもよく、直鎖状が好ましい。
本発明の硬化性ポリオルガノシロキサン組成物は、前記成分(a)と成分(b)との架橋反応を触媒しうる硬化触媒を含む(以下、単に「成分(c)」ということがある)。硬化触媒としては、付加硬化型の触媒が用いられる。代表的な例として、白金触媒が挙げられる。白金触媒は、前記成分(b)の硬化性官能基と前記成分(b)の水素基を反応させ、硬化物を得るための硬化用触媒である。この白金化合物としては、塩化白金酸、白金オレフィン錯体、白金ビニルシロキサン錯体、白金リン錯体、白金アルコール錯体、白金黒等が例示される。その配合量は、前記成分(a)に対し、白金元素として0.1~1000ppmとなる量である。0.1ppmより少ないと十分に硬化せず、また1000ppmを超えても特に硬化速度の向上は期待できない。また、用途によってはより長いポットライフを得るために、反応抑制剤の添加により、触媒の活性を抑制することができる。公知の白金族金属用の反応抑制剤として、2-メチル-3-ブチン-2-オール、3,5-ジメチル-1-ヘキシン-3-オール、1-エチニル-2-シクロヘキサノール等のアセチレンアルコール、マレイン酸ジアリル、また、テトラメチルエチレンジアミン、ピリジン等の3級アミンが挙げられる。
本発明の硬化性組成物には、ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が含まれる(以下、単に「成分(d)」ということがある)。特定の理論に束縛されるものではないが、成分(d)は、組成物の硬化途上又は硬化後に基材表面に移行し、加水分解可能な基が基材表面に付着する反応を起こすか、或いは、シリコーンゴム自体を疎水化することで、湿気を通しにくくする作用があると考えられる。また、成分(d)は、比較的炭素鎖の長いアルキル基を有していることで、硬化性組成物に適度な疎水性をもたらすことができ、これが硬化性組成物全体の耐水性に寄与するものと考えられる。成分(d)は、1種類のみを用いてもよいし、2種類以上を併用してもよい。
R1 nSi(OR2)4-n (3)
(式中、R1は炭素数8~30の1価アルキル基、好ましくは炭素数8~20の1価アルキル基であり、R2は水素又は炭素数1~6のアルキル基であり、nは1~3の整数であり、好ましくは1である)で示される化合物である。特に好ましい態様では、成分(d)は、1つのケイ素原子に1つの1価アルキル基と3つの加水分解可能な基を有する化合物である。
本発明の硬化性ポリオルガノシロキサン組成物には、任意追加的な成分として、鱗片状の無機充填材が含まれていてもよい(以下、単に「成分(e)ということがある」)。鱗片状の無機充填材は、本発明の硬化性ポリオルガノシロキサン組成物を接着剤として用いたときに、接着剤の層において湿気の侵入を空間的に阻害する役割を果たし得るものと考えられる。そのため、成分(e)は硬化性ポリオルガノシロキサン組成物の耐水性に寄与し得る。無機微粒子としては、鱗片状のものであればその種類は特に制限されないが、ケイ素酸化物、ケイ酸塩鉱物が好ましく、石英粉末、マイカ微粉末がより好ましい。これらの鱗片状の無機微粒子は、1種類を単独で用いてもよく、2種類以上を混合して用いてもよい。
本発明の硬化性ポリオルガノシロキサンは、上記成分(a)ないし(d)を含有し、さらに場合により上記成分(e)を含有するものである。
硬化性ポリオルガノシロキサン組成物は、前記成分(a)及び(b)に該当しないシロキサン樹脂をさらに含んでもよい。そのような樹脂は、粘度を調整するための希釈剤としても用いることができる。そのようなシロキサン樹脂としては、前記M、D、T、Q単位の組合せで得られる樹脂のうち硬化性官能基を持たないか又は1つだけ有するもの、特に下記式(4):
(Ra)3-pRpSi-O-(SiR2O)n-SiR3・・・(4)
(式中、Ra、R、p、nは、式(1)において定義したとおりである)
で示されるような、1つだけ硬化性官能基を有するシロキサンや、式(5):
R3Si-O-(SiR2O)n-SiR3・・・(5)
(式中、R、nは、式(1)において定義したとおりである)
で示される、硬化性官能基を有さないシロキサンを用いることができる。このようなシロキサン樹脂を用いることで、硬化性ポリオルガノシロキサン組成物を硬化させたときの硬度を制御することや、組成物の粘度を制御することができ、取り扱い性や要求される物性に対して広く対応することができる。
組成物は、更に、分子中にケイ素原子に結合した水素原子を2個有するハイドロジェンポリオルガノシロキサンを含むことができる。このようなシロキサンは、成分(a)と付加反応することにより、鎖延長剤として機能し得る。このようなシロキサンの例は、分子中にケイ素原子に結合した水素原子を2個有すること以外は、成分(b)において説明したとおりである。このようなシロキサンは、成分(b)において前記した一般式(2)で示される単位をSi-H結合の数が2となるように、好ましくは分子中に2個有する。
硬化性ポリオルガノシロキサン組成物は、接着性付与剤をさらに含んでもよい。接着性付与剤は、組成物の硬化物の、ガラス、金属、プラスチック等の基材への密着性を向上させる成分である。接着性付与剤としては、金属アルコキシド類、加水分解性シリル基を有する化合物、一分子中に加水分解性シリル基と反応性有機官能基を有する化合物、一分子中にケイ素原子に結合した水素原子と2価の芳香族基を有する化合物、一分子中にケイ素原子に結合した水素原子と反応性有機官能基を有する化合物、並びに/又はそれらの部分加水分解縮合物が挙げられる。金属アルコキシドの例としては、アルミニウムトリエトキシド、アルミニウムトリプロポキシド、アルミニウムトリブトキシドのようなアルミニウムアルコキシド;チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトライソプロペニルオキシドのようなチタンアルコキシド等の金属アルコキシド類が挙げられる。有機化合物の接着性付与剤としては、アミノ基含有シラン、イソシアヌレート類、カルバシラトラン化合物が挙げられる。具体的な例として、テトラエトキシシラン、テトラメトキシシランのオリゴマー、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3,4-エポキシシクロヘキシルエチルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン等が挙げられる。
(E1)ケイ素原子に結合した水素原子と、ケイ素原子に結合した下記式(6):
で示される側鎖とを有する有機ケイ素化合物、
(E2)Si(OR3)n基とエポキシ基含有基を有する有機ケイ素化合物、及び/又はその部分加水分解縮合物、
(E3)Si(OR3)n基と脂肪族不飽和炭化水素基を有するシラン化合物、及び/又はその部分加水分解縮合物、並びに
(E4)Si(OR4)4で示されるテトラアルコキシシラン化合物、及び/又はその部分加水分解縮合物。
(上記各式中、Q1は、ケイ素原子とエステル結合の間に2個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;Q2は、酸素原子と側鎖のケイ素原子の間に3個以上の炭素原子を有する炭素鎖を形成する、直鎖状又は分岐状のアルキレン基を表し;R3は、炭素数1~4のアルキル基又は2-メトキシエチル基を表し;R4は、炭素数1~3のアルキル基を表し;nは、1~3の整数である)
(E1)は、組成物の硬化の際に(A)と付加反応して、(A)及び(B)との付加反応によって架橋したシロキサン構造に導入され、式(6)の側鎖が接着性を発現する部分として、組成物の室温における接着性に寄与する成分である。また、(E1)の側鎖に存在するアルコキシ基(以下、OR3は、炭素数1~4のアルコキシ基又は2-メトキシエトキシ基を表す)は、(E2)、(E3)及び/又は(E4)のアルコキシ基との共加水分解・縮合反応により、(E2)、(E3)及び/又は(E4)をシロキサン構造に導入することにも寄与する。
(E2)は、ケイ素原子に結合したアルコキシ基と、(E1)、(E3)及び/又は(E4)のケイ素原子に結合したアルコキシ基との共加水分解・縮合反応によって、架橋したシロキサン構造に導入され、エポキシ基が接着性を発現する部分として、組成物の室温における接着性、特にプラスチックに対する接着性の向上に寄与する成分である。
(E3)は、組成物の硬化の際に(B)と付加反応して、(A)及び(B)との付加反応によって架橋したシロキサン構造に導入され、側鎖に存在するアルコキシ基が、接着性を発現する部分として、組成物の室温における接着性、特に金属に対する接着性の向上に寄与する成分である。また、(E3)のアルコキシ基は、(E1)、(E2)及び/又は(E4)のアルコキシ基との共加水分解・縮合反応により、(E1)、(E2)及び/又は(E4)を架橋したシロキサン構造に導入するにも寄与する。(E3)は、Si(OR3)n基と1個の脂肪族不飽和炭化水素基を有するシラン化合物、及び/又はその部分加水分解縮合物であることが好ましい。
アルコキシ基が他の(E3)のアルコキシ基、及び(E2)と併用する場合は、(E2)のアルコキシ基との共加水分解・縮合反応によって、他の(E3)及び/又は(E2)をシロキサン構造に導入する。
(E4)は、組成物の室温における金属への接着性を、更に向上させる成分である。R4としては、メチル、エチル、プロピル、イソプロピルのような、直鎖状又は分岐状のアルキル基が挙げられ、容易に入手でき、取扱いが容易で、接着性の向上効果が著しいことから、メチル基、エチル基が好ましい。また、(E4)は、テトラアルコキシシラン化合物単体で使用できるが、加水分解性に優れる点及び毒性が低くなる点から、テトラアルコキシシラン化合物の部分加水分解縮合物であることが好ましい。
(E1)~(E4)以外の他の接着性付与剤としては、アルミニウムトリエトキシド、アルミニウムトリプロポキシド、アルミニウムトリブトキシドのようなアルミニウムアルコキシド;チタンテトラエトキシド、チタンテトラプロポキシド、チタンテトライソプロポキシド、チタンテトラブトキシド、チタンテトライソブトキシド、チタンテトライソプロペニルオキシドのようなチタンアルコキシド等、オクタン酸ジルコニウム、テトラ(2-エチルヘキサン酸)ジルコニウム、ステアリン酸ジルコニウム等のジルコニウムアシレート;n-プロピルジルコネート、n-ブチルジルコネート等のジルコニウムアルコキシド(但し、ジルコニウムキレートを除く。);トリブトキシジルコニウムアセチルアセトネート、ジブトキシジルコニウムビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート、ジルコニウムモノアセチルアセトネート、ジルコニウムエチルアセトアセテート等のジルコニウムキレート等の金属アルコキシド類等が挙げられる。
等の一分子中に加水分解性シリル基と反応性有機官能基を有する化合物及び/又はその部分加水分解縮合物(但し、(E1)~(E4)を含まない);
等の一分子中にケイ素原子に結合した水素原子と反応性有機官能基を有する化合物;
(式中、kは1~3の整数である)等の一分子中にケイ素原子に結合した水素原子と2価の芳香族基を有する化合物等が挙げられる。他の接着性付与剤の併用により、更に接着強さを高めることができる。
本発明の硬化性ポリオルガノシロキサン組成物は、前述の(e)以外の無機微粒子を含むことができる。そのような無機微粒子としては、シリコーンゴムにおいて充填材として用いられる無機材料を用いることができる。無機材料の粒子は鱗片状以外の形状をとることができ、例えば、球形、不定形などの形状をとることができる。無機材料としては、煙霧質シリカ、焼成シリカ、シリカエアロゲル、沈澱シリカ、珪藻土、粉砕シリカ、溶融シリカ、煙霧質酸化チタン、酸化鉄、酸化亜鉛、酸化チタン、酸化アルミニウム等の酸化物;これらの表面をトリメチルクロロシラン、ジメチルジクロロシラン、ヘキサメチルジシラザン、オクタメチルシクロテトラシロキサン等の疎水化剤で処理したもの;炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛等の炭酸塩;アルミノケイ酸、ケイ酸カルシウム等のケイ酸塩;タルク;グラスウール等の複合酸化物;カーボンブラック、銅粉、ニッケル粉等の導電性充填剤等が例示される。
硬化性ポリオルガノシロキサン組成物は、溶剤を含んでいてもよい。この場合、硬化性ポリオルガノシロキサン組成物は、その用途、目的に応じて適当な溶剤に所望の濃度に溶解して使用し得る。上記溶剤の濃度は、例えば、硬化性ポリオルガノシロキサン組成物100質量部に対して、80質量部以下であってもよく、50質量部以下であってもよく、30質量部以下であってもよく、20質量部以下であってもよい。硬化性組成物の粘度を調整する観点からは、溶剤を含むことが好ましい。溶剤を含むことにより、硬化性組成物の取り扱い性が良好になり得る。
[実施例1]
成分(a)として、あらかじめ所定量のM5DViQ8を溶解させたMviDn1Mvi(式中、n1は、23℃における粘度が10Pa・sであるような値である)で示される直鎖状ポリメチルビニルシロキサン及びMviDn2Mvi(式中、n2は、23℃における粘度が1.0Pa・sであるような値である)で示される直鎖状ポリメチルビニルシロキサン及び充填剤としてのヘキサメチルジシラザン(HMDZ)で処理した煙霧質シリカ及び炭酸カルシウム、成分(e)として鱗片状雲母(平均粒径23μm)を万能混練機に移して、室温(23℃)で60分間撹拌し、150℃で60分間減圧下に撹拌した。50℃以下まで冷却して、成分(c)として白金含有量3.4%のPt-オクタノール錯体、反応抑制剤を加えて30分間撹拌した。こうして得た混合物に、成分(b)としてMDH 20D20Mで示されるハイドロジェンポリオルガノシロキサン、成分(d)としてオクチルトリエトキシシラン(C8H17Si(OEt)3)並びに接着性付与剤を加え、室温で10分間撹拌した。
接着性付与剤は、3-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン及び下記式で示されるシロキサンを用いた。
反応抑制剤は、マレイン酸ジアリル及び3,5-ジメチル-1-ヘキシン-3-オールを用いた。
実施例1において0.5質量部用いたオクチルトリエトキシシランの量を1.5質量部に変更した以外は実施例1と同様にして、組成物2を得た。
実施例1において用いたオクチルトリエトキシシランをデシルトリメトキシシラン(C10H21Si(OMe)3)0.5質量部に変更した以外は実施例1と同様にして、組成物3を得た。
実施例3において0.5質量部用いたデシルトリメトキシシランを1.5質量部に変更した以外は実施例3と同様にして、組成物4を得た。
実施例1において用いたオクチルトリエトキシシランをヘキサデシルトリメトキシシラン(C16H33Si(OMe)3)0.5質量部に変更した以外は実施例1と同様にして、組成物5を得た。
実施例5において0.5質量部用いたヘキサデシルトリメトキシシランを1.5質量部に変更した以外は実施例5と同様にして、組成物6を得た。
実施例1において用いたオクチルトリエトキシシランをヘキシルトリメトキシシラン(C6H11Si(OMe)3)0.5質量部に変更した以外は実施例1と同様にして、組成物を得た。
実施例2において用いたオクチルトリエトキシシランをヘキシルトリメトキシシラン(C6H11Si(OMe)3)1.5質量部に変更した以外は実施例2と同様にして、組成物を得た。
成分(d)に対応するシラン化合物を用いなかったこと以外は実施例1と同様にして、組成物を得た。
無機微粒子として鱗片状雲母に代えて石英粉末(平均粒径5μm)を用いたこと以外は比較例3と同様にして、組成物を得た。
厚み2mmのアルミニウムプレートに実施例又は比較例の組成物を均一な厚み(0.5mm)に塗布し、熱風循環式乾燥機中で150℃1時間加熱することにより組成物を硬化させた。ポリオルガノシロキサン組成物の硬化物が塗布されたアルミニウムプレートを、80℃の温水中に浸漬させ、特定の時間が経過したのちに剥離試験を行った。アルミニウムプレートを手動で剥がし、剥がした面を目視で観察した。結果を表1及び2に纏めている。表において、〇は凝集破壊が起きたことを示し、このとき接着剤は基材への接着性を保っている。△は凝集破壊と剥離が混在していることを示し、×は接着剤が剥離したことを示す。横線(-)の箇所は、接着剤が剥離した後であるため試験を省略している。
鱗片状雲母を石英粉末(平均粒径5μm)に、接着性付与剤として用いたテトラエトキシシランをテトラメトキシシランオリゴマーにそれぞれ変更した以外は、実施例3と同様にして、組成物7を得た。
実施例7において0.5質量部用いたデシルトリメトキシシランの量を1.5質量部に変更した以外は実施例7と同様にして、組成物8を得た。
実施例7において用いたデシルトリメトキシシランをヘキサデシルトリメトキシシラン0.5質量部に変更した以外は実施例7と同様にして、組成物9を得た。
実施例9において0.5質量部用いたヘキサデシルトリメトキシシランを1.5質量部に変更した以外は実施例9と同様にして、組成物10を得た。
実施例7において用いたデシルトリメトキシシランをヘキシルトリメトキシシラン0.5質量部に変更した以外は実施例7と同様にして、組成物を得た。
実施例8において用いたデシルトリメトキシシランをヘキシルトリメトキシシラン(C6H11Si(OMe)3)1.5質量部に変更した以外は実施例8と同様にして、組成物を得た。
成分(d)に対応するシラン化合物を用いなかったこと以外は実施例7と同様にして、組成物を得た。
試験例1と同様の条件にて、組成物の剥離試験を行った。結果を表2に示す。
Claims (9)
- (a)1分子中に付加反応を起こし得る硬化性官能基を2つ以上有するポリオルガノシロキサン;
(b)前記(a)の硬化性官能基との反応性を有する架橋基を1分子中に3つ以上有する架橋剤;
(c)前記(a)及び(b)の架橋反応を触媒し得る、硬化触媒;及び
(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物;
を含む、硬化性ポリオルガノシロキサン組成物。 - 前記(a)が、1分子中に2個以上のアルケニル基を有するポリオルガノシロキサンであり、前記(c)が、白金化合物である、請求項1記載の硬化性ポリオルガノシロキサン組成物。
- さらに、(e)鱗片状の形状を有する無機微粒子を、前記(a)~(d)成分の合計100質量部に対して10~500質量部の量で含む、請求項1又は2記載の硬化性ポリオルガノシロキサン組成物。
- 前記鱗片状の形状を有する無機微粒子が、シリカ、ケイ酸塩鉱物又はそれらの混合物を含む、請求項3記載の硬化性ポリオルガノシロキサン組成物。
- 前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、次式:
R1 nSi(OR2)4-n
(式中、R1は炭素数8~30の1価アルキル基であり、R2は水素又は炭素数1~6のアルキル基であり、nは1~3の整数である)で示される化合物である、請求項1~4のいずれか一項記載の硬化性ポリオルガノシロキサン組成物。 - 前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、炭素数8~20の1価アルキル基を有する、請求項1~5のいずれか一項記載の硬化性ポリオルガノシロキサン組成物。
- 前記(d)ケイ素原子に直接結合した、炭素数8~30の1価アルキル基及び加水分解可能な基を有するケイ素化合物が、組成物全体の100質量部に対して0.01~10.0質量部含まれる、請求項1~6のいずれか一項記載の硬化性ポリオルガノシロキサン組成物。
- さらに、接着性付与剤を含む、請求項1~7のいずれか一項記載の硬化性ポリオルガノシロキサン組成物。
- 請求項1~8のいずれか1項記載の硬化性ポリオルガノシロキサン組成物を含む、接着剤。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/268,883 US20240052140A1 (en) | 2020-12-21 | 2021-12-21 | Water-resistant adhesive polyorganosiloxane composition |
EP21910770.3A EP4265688A4 (en) | 2020-12-21 | 2021-12-21 | WATER-RESISTANT ADHESIVE POLYORGANOSILOXANE COMPOSITION |
JP2022500711A JP7626312B2 (ja) | 2020-12-21 | 2021-12-21 | 耐水性を有する接着性ポリオルガノシロキサン組成物 |
KR1020237024098A KR20230122088A (ko) | 2020-12-21 | 2021-12-21 | 내수성을 갖는 접착성 폴리오르가노실록산 조성물 |
CN202180086288.7A CN116601229A (zh) | 2020-12-21 | 2021-12-21 | 具有耐水性的粘接性聚有机硅氧烷组合物 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-211566 | 2020-12-21 | ||
JP2020211566 | 2020-12-21 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022138627A1 true WO2022138627A1 (ja) | 2022-06-30 |
Family
ID=82159381
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/047284 WO2022138627A1 (ja) | 2020-12-21 | 2021-12-21 | 耐水性を有する接着性ポリオルガノシロキサン組成物 |
Country Status (7)
Country | Link |
---|---|
US (1) | US20240052140A1 (ja) |
EP (1) | EP4265688A4 (ja) |
JP (1) | JP7626312B2 (ja) |
KR (1) | KR20230122088A (ja) |
CN (1) | CN116601229A (ja) |
TW (1) | TW202239872A (ja) |
WO (1) | WO2022138627A1 (ja) |
Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003183504A (ja) | 2001-12-25 | 2003-07-03 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2003221506A (ja) | 2002-01-31 | 2003-08-08 | Dow Corning Toray Silicone Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2003327829A (ja) | 2002-05-09 | 2003-11-19 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2009234112A (ja) * | 2008-03-27 | 2009-10-15 | Shin Etsu Chem Co Ltd | 熱伝導性積層体およびその製造方法 |
JP2009292928A (ja) * | 2008-06-04 | 2009-12-17 | Shin-Etsu Chemical Co Ltd | 低温加熱時における硬化速度を促進した熱伝導性シリコーン組成物 |
JP2010013521A (ja) * | 2008-07-02 | 2010-01-21 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーン組成物 |
JP2011098566A (ja) * | 2009-10-08 | 2011-05-19 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーンゴム複合シート |
JP2011246536A (ja) * | 2010-05-25 | 2011-12-08 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーングリース組成物 |
CN103881393A (zh) * | 2014-03-20 | 2014-06-25 | 东莞优邦材料科技有限公司 | 双组分加成型有机聚硅氧烷组合物及其制备方法及应用 |
JP2014218564A (ja) * | 2013-05-07 | 2014-11-20 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及びその硬化物 |
JP2015067647A (ja) | 2013-09-27 | 2015-04-13 | 信越化学工業株式会社 | 室温硬化性オルガノポリシロキサン組成物 |
JP2016151010A (ja) * | 2015-02-19 | 2016-08-22 | 信越化学工業株式会社 | 付加硬化型シリコーン組成物 |
JP2016199687A (ja) | 2015-04-10 | 2016-12-01 | 信越化学工業株式会社 | 室温硬化性オルガノポリシロキサン組成物 |
WO2019021826A1 (ja) * | 2017-07-24 | 2019-01-31 | 東レ・ダウコーニング株式会社 | 多成分硬化型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 |
WO2019021824A1 (ja) * | 2017-07-24 | 2019-01-31 | 東レ・ダウコーニング株式会社 | 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 |
JP2019151695A (ja) | 2018-03-01 | 2019-09-12 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | 接着性ポリオルガノシロキサン組成物 |
WO2020203297A1 (ja) * | 2019-03-29 | 2020-10-08 | ダウ・東レ株式会社 | 多成分型硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体 |
WO2020213306A1 (ja) * | 2019-04-15 | 2020-10-22 | 積水ポリマテック株式会社 | 熱伝導性組成物、熱伝導性部材、バッテリモジュール |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6531238B2 (ja) * | 2016-10-31 | 2019-06-19 | ダウ・東レ株式会社 | 1液硬化型熱伝導性シリコーングリース組成物及び電子・電装部品 |
CN113519051A (zh) * | 2019-03-29 | 2021-10-19 | 陶氏东丽株式会社 | 多组分导热硅酮凝胶组合物、导热部件以及散热结构体 |
-
2021
- 2021-12-21 EP EP21910770.3A patent/EP4265688A4/en active Pending
- 2021-12-21 JP JP2022500711A patent/JP7626312B2/ja active Active
- 2021-12-21 KR KR1020237024098A patent/KR20230122088A/ko active Pending
- 2021-12-21 WO PCT/JP2021/047284 patent/WO2022138627A1/ja active Application Filing
- 2021-12-21 TW TW110147942A patent/TW202239872A/zh unknown
- 2021-12-21 CN CN202180086288.7A patent/CN116601229A/zh active Pending
- 2021-12-21 US US18/268,883 patent/US20240052140A1/en active Pending
Patent Citations (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003183504A (ja) | 2001-12-25 | 2003-07-03 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2003221506A (ja) | 2002-01-31 | 2003-08-08 | Dow Corning Toray Silicone Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2003327829A (ja) | 2002-05-09 | 2003-11-19 | Shin Etsu Chem Co Ltd | 室温硬化性オルガノポリシロキサン組成物 |
JP2009234112A (ja) * | 2008-03-27 | 2009-10-15 | Shin Etsu Chem Co Ltd | 熱伝導性積層体およびその製造方法 |
JP2009292928A (ja) * | 2008-06-04 | 2009-12-17 | Shin-Etsu Chemical Co Ltd | 低温加熱時における硬化速度を促進した熱伝導性シリコーン組成物 |
JP2010013521A (ja) * | 2008-07-02 | 2010-01-21 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーン組成物 |
JP2011098566A (ja) * | 2009-10-08 | 2011-05-19 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーンゴム複合シート |
JP2011246536A (ja) * | 2010-05-25 | 2011-12-08 | Shin-Etsu Chemical Co Ltd | 熱伝導性シリコーングリース組成物 |
JP2014218564A (ja) * | 2013-05-07 | 2014-11-20 | 信越化学工業株式会社 | 熱伝導性シリコーン組成物及びその硬化物 |
JP2015067647A (ja) | 2013-09-27 | 2015-04-13 | 信越化学工業株式会社 | 室温硬化性オルガノポリシロキサン組成物 |
CN103881393A (zh) * | 2014-03-20 | 2014-06-25 | 东莞优邦材料科技有限公司 | 双组分加成型有机聚硅氧烷组合物及其制备方法及应用 |
JP2016151010A (ja) * | 2015-02-19 | 2016-08-22 | 信越化学工業株式会社 | 付加硬化型シリコーン組成物 |
JP2016199687A (ja) | 2015-04-10 | 2016-12-01 | 信越化学工業株式会社 | 室温硬化性オルガノポリシロキサン組成物 |
WO2019021826A1 (ja) * | 2017-07-24 | 2019-01-31 | 東レ・ダウコーニング株式会社 | 多成分硬化型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 |
WO2019021824A1 (ja) * | 2017-07-24 | 2019-01-31 | 東レ・ダウコーニング株式会社 | 熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体 |
JP2019151695A (ja) | 2018-03-01 | 2019-09-12 | モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 | 接着性ポリオルガノシロキサン組成物 |
WO2020203297A1 (ja) * | 2019-03-29 | 2020-10-08 | ダウ・東レ株式会社 | 多成分型硬化性オルガノポリシロキサン組成物、熱伝導性部材および放熱構造体 |
WO2020213306A1 (ja) * | 2019-04-15 | 2020-10-22 | 積水ポリマテック株式会社 | 熱伝導性組成物、熱伝導性部材、バッテリモジュール |
Non-Patent Citations (1)
Title |
---|
See also references of EP4265688A4 |
Also Published As
Publication number | Publication date |
---|---|
CN116601229A (zh) | 2023-08-15 |
KR20230122088A (ko) | 2023-08-22 |
US20240052140A1 (en) | 2024-02-15 |
JP7626312B2 (ja) | 2025-02-07 |
EP4265688A4 (en) | 2024-12-11 |
TW202239872A (zh) | 2022-10-16 |
JPWO2022138627A1 (ja) | 2022-06-30 |
EP4265688A1 (en) | 2023-10-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5062430B2 (ja) | 室温速硬化性オルガノポリシロキサン組成物及びその硬化方法 | |
KR100720021B1 (ko) | 열경화성 실리콘 엘라스토머용 프라이머 | |
JP6939878B2 (ja) | 室温硬化性オルガノポリシロキサン組成物及び基材 | |
JP6922917B2 (ja) | 脱アルコール型室温硬化性オルガノポリシロキサン組成物及び該組成物の硬化物でシールされた物品 | |
JP2011122156A (ja) | 耐候性シリコーン皮膜を有する物品 | |
KR101954055B1 (ko) | 다성분 실온-경화성 실리콘 탄성중합체 조성물 | |
JPWO2014196386A1 (ja) | シリコーンコーティング組成物及び被覆物品 | |
WO2022113437A1 (ja) | 室温硬化性オルガノポリシロキサン組成物及び物品並びに加水分解性オルガノシラン化合物及びその製造方法 | |
WO2017122762A1 (ja) | 縮合反応型シリコーン組成物及び硬化物 | |
WO2020203298A1 (ja) | 室温硬化性オルガノポリシロキサン組成物および電気・電子部品の保護剤または接着剤組成物 | |
WO2020209083A1 (ja) | オイルシール用室温硬化性オルガノポリシロキサン組成物及び自動車用部品 | |
JP7324186B2 (ja) | 硬化性表面保護コーティング組成物、その調製のための方法、およびその金属基材への適用および得られるコーティングされた金属基材 | |
KR20090055352A (ko) | 세라믹 졸을 이용한 무기 코팅조성물과 그 제조방법 및코팅막이 형성된 코팅제품 | |
KR102009276B1 (ko) | 경화성 수지 조성물 및 프라이머 조성물 | |
JP2016050276A (ja) | 塗装鋼板用表面処理剤 | |
JP7086894B2 (ja) | オルガノポリシロキサンおよびそれを含む活性エネルギー線硬化性組成物 | |
JP7353026B2 (ja) | 室温硬化性ポリオルガノシロキサン組成物及びその硬化物 | |
WO2022138627A1 (ja) | 耐水性を有する接着性ポリオルガノシロキサン組成物 | |
KR101475567B1 (ko) | 부착 성능이 우수한 고무 코팅용 실리콘 조성물 | |
KR101139571B1 (ko) | 자동차의 도장 보호용의 코팅재 | |
JP4860112B2 (ja) | 室温硬化性オルガノポリシロキサン組成物 | |
JP7353027B2 (ja) | 室温硬化性ポリオルガノシロキサン組成物及びその硬化物 | |
WO2021235286A1 (ja) | オルガノポリシロキサン、およびそれを含有する組成物 | |
JP2014514398A (ja) | 光学的にクリアな組成物 | |
JP4009837B2 (ja) | シリコーンコーティング剤、その製造方法及び硬化物 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2022500711 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21910770 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180086288.7 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18268883 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20237024098 Country of ref document: KR Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021910770 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021910770 Country of ref document: EP Effective date: 20230721 |