[go: up one dir, main page]

WO2021235214A1 - 高熱伝導性シリコーン組成物 - Google Patents

高熱伝導性シリコーン組成物 Download PDF

Info

Publication number
WO2021235214A1
WO2021235214A1 PCT/JP2021/017129 JP2021017129W WO2021235214A1 WO 2021235214 A1 WO2021235214 A1 WO 2021235214A1 JP 2021017129 W JP2021017129 W JP 2021017129W WO 2021235214 A1 WO2021235214 A1 WO 2021235214A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
silicone composition
conductive silicone
high thermal
group
Prior art date
Application number
PCT/JP2021/017129
Other languages
English (en)
French (fr)
Inventor
也実 細田
瞳子 高橋
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to EP21809031.4A priority Critical patent/EP4155347A4/en
Priority to JP2022524364A priority patent/JP7371249B2/ja
Priority to US17/922,895 priority patent/US20230167301A1/en
Priority to KR1020227040004A priority patent/KR20230015340A/ko
Priority to CN202180036987.0A priority patent/CN115667407B/zh
Publication of WO2021235214A1 publication Critical patent/WO2021235214A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • C08G77/18Polysiloxanes containing silicon bound to oxygen-containing groups to alkoxy or aryloxy groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • C08K2003/0812Aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/005Additives being defined by their particle size in general
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2314/00Polymer mixtures characterised by way of preparation
    • C08L2314/08Polymer mixtures characterised by way of preparation prepared by late transition metal, i.e. Ni, Pd, Pt, Co, Rh, Ir, Fe, Ru or Os, single site catalyst

Definitions

  • the present invention relates to a highly thermally conductive silicone composition capable of maintaining high heat dissipation performance.
  • thermo paste exhibits high performance from the viewpoint of thermal resistance because it can be used with a thin thickness at the time of mounting.
  • thermal paste that is sandwiched between members and then heat-cured before use.
  • Thermal grease contains a large amount of filler to improve thermal conductivity, but as a result, the elongation after heat curing decreases. There is a concern that the material loses its flexibility due to the decrease in elongation, and it becomes impossible to follow the warp during operation. If it cannot follow, a gap is generated between the member and the heat radiating grease, and the heat radiating performance deteriorates.
  • a component containing an alkenyl group at the end of the molecular chain and a component containing an alkenyl group at the side chain and / or the end of the molecular chain the elongation after curing is high and the warp during operation is high.
  • a thermally conductive silicone composition capable of following the above has been proposed.
  • the warp of the base material has tended to increase, and the conventional material has a thin material thickness, which may make it difficult to follow the warp.
  • the conventional material has a thin material thickness, which may make it difficult to follow the warp.
  • a heat conductive filler having a large particle size is used, there is a problem that the filling property is poor and the material thickness becomes thick, resulting in high thermal resistance and insufficient heat dissipation performance.
  • the present invention has been made in view of the above circumstances.
  • the thick material makes it possible to follow the warp of the base material, and since it has high thermal conductivity, it has a high thermal conductivity silicone composition that can maintain heat dissipation performance.
  • the purpose is to provide things.
  • the present invention comprises a highly thermally conductive silicone composition.
  • A An organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity of 100 to 100,000 mm 2 / s at 25 ° C.
  • (B) Aluminum powder having an average particle size of 50 ⁇ m or more, (C) A thermally conductive filler having an average particle size of less than 0.1 to 50 ⁇ m, (D) Organohydrogenpolysiloxane having a hydrogen atom (Si—H group) bonded to two or more silicon atoms in one molecule: ⁇ number of Si—H groups of the component (D) above ⁇ / ⁇ the above ( A) The number of alkenyl groups in the component ⁇ is 0.5 to 1.5.
  • the high thermal conductive silicone composition contains an amount of 0.1% by mass to 5% by mass based on the total amount of the above.
  • the high thermal conductive silicone composition is heat-cured at 150 ° C. for 60 minutes to prepare a 2 mm thick sheet, and then the shape of the No. 2 dumbbell described in JIS K6251 is prepared and the elongation measured is measured. It is preferably a highly thermally conductive silicone composition having a content of 30% or more.
  • the material thickness can be increased, further high thermal conductivity can be imparted, and thermal performance can be maintained. Can be done.
  • the present inventor has a high material thickness, can follow the warp of the base material, and has high thermal conductivity to maintain heat dissipation performance.
  • a silicone composition was developed.
  • the present invention is a highly thermally conductive silicone composition.
  • A An organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity of 100 to 100,000 mm 2 / s at 25 ° C.
  • (B) Aluminum powder having an average particle size of 50 ⁇ m or more, (C) A thermally conductive filler having an average particle size of less than 0.1 to 50 ⁇ m, (D) Organohydrogenpolysiloxane having a hydrogen atom (Si—H group) bonded to two or more silicon atoms in one molecule: ⁇ number of Si—H groups of the component (D) above ⁇ / ⁇ the above ( A) The number of alkenyl groups in the component ⁇ is 0.5 to 1.5.
  • Component (A) is an organopolysiloxane having at least two aliphatic unsaturated hydrocarbon groups in one molecule and having a kinematic viscosity of 100 to 100,000 mm 2 / s at 25 ° C. ..
  • the organopolysiloxane of the component (A) contains two alkenyl groups directly linked to a silicon atom in one molecule, and may be linear or branched, or may be a mixture of these two or more different viscosities. ..
  • alkenyl group examples include a vinyl group, an allyl group, a 1-butenyl group, a 1-hexenyl group and the like, but a vinyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the residual organic group bonded to the silicon atom includes an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group, an aryl group such as a phenyl group, a 2-phenylethyl group and a 2-phenylpropi.
  • aralkyl group such as a ru group is exemplified, and a substituted hydrocarbon group such as a chloromethyl group and a 3,3,3-trifluoropropyl group is also mentioned as an example. Of these, a methyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the alkenyl group bonded to the silicon atom is preferably present at the end of the molecular chain of the organopolysiloxane.
  • the kinematic viscosity of the organopolysiloxane at 25 ° C. measured by the Ubbelohde type Ostwald viscometer is in the range of 100 to 100,000 mm 2 / s, preferably 500 to 100,000 mm 2 / s.
  • the component (B) is an aluminum powder having an average particle size of 50 ⁇ m or more, and functions as a thermally conductive filler of the highly thermally conductive silicone composition of the present invention.
  • the component (B) may be used alone or in combination of two or more.
  • the shape of the component (B) is not particularly limited, and examples thereof include a spherical shape, a dendritic shape, a flaky shape, a needle shape, and an irregular shape.
  • the particle shape of the component (B) has a large bulk density such as a dendritic shape, a flake shape, a needle shape, or an irregular shape. It is preferable that it is spherical rather than.
  • the average particle size of the component (B) is 50 ⁇ m or more, preferably 55 to 100 ⁇ m, and more preferably 55 to 80 ⁇ m. If the average particle size is less than 50 ⁇ m, the material thickness of the high thermal conductive silicone grease becomes thin, and there is a possibility that the warp of the base material cannot be followed.
  • the average particle size is a volume-based volume average diameter and can be measured by Nikkiso Co., Ltd. Microtrack MT3300EX.
  • the filling amount of the component (B) is preferably in the range of 20 to 60% by mass with respect to the entire composition. If the filling amount is at least the lower limit, the thermal conductivity of the composition is high, and if it is at least the upper limit, the composition becomes uniform and there is no risk of oil separation.
  • the component (C) is a thermally conductive filler having an average particle size of less than 0.1 to 50 ⁇ m, and functions to improve the thermal conductivity of the highly thermally conductive silicone composition of the present invention. By allowing the component (C) to enter the gap between the components (B), it is possible to improve the filling property of the heat conductive filler ⁇ (B) component and (C) component ⁇ as a whole in the composition.
  • the heat conductive fillers include aluminum powder, copper powder, nickel powder, gold powder, metallic silicon powder, aluminum nitride powder, boron nitride powder, alumina powder, diamond powder, carbon powder, indium powder, gallium powder, and zinc oxide powder. And so on.
  • the component (C) may be used alone or in combination of two or more.
  • the component (C) is preferably aluminum powder, alumina powder, or zinc oxide powder, and more preferably aluminum powder and zinc oxide powder, from the viewpoint of thermal conductivity and availability.
  • the average particle size of the component (C) is in the range of 0.1 to less than 50 ⁇ m, preferably 0.2 to 45 ⁇ m, and more preferably 0.2 to 40 ⁇ m. If the average particle size is less than 0.1 ⁇ m, the bulk density of the component (C) tends to increase, so that the viscosity of the composition may increase and the workability may decrease. On the other hand, when the average particle size is 50 ⁇ m or more, close-packing by the combination of the component (B) and the component (C) becomes difficult.
  • the filling amount of the component (C) is preferably in the range of 30 to 70% by mass, more preferably in the range of 30 to 65% by mass with respect to the entire composition. If the filling amount is not less than the lower limit, the effect of adding the component (C) can be easily obtained. On the other hand, if it is not more than the upper limit, the viscosity of the obtained composition becomes low and the workability is improved.
  • the total of the component (B) and the component (C) is 90 to 95% by mass, preferably 91 to 95% by mass, and more preferably 92 to 95% by mass with respect to the entire composition.
  • the range of mass% is good. If the total amount is less than the lower limit, it may be difficult to achieve the thermal conductivity of 7 W / m ⁇ K in the composition. On the other hand, if the upper limit is exceeded, the composition becomes highly viscous and the workability is lowered.
  • the organohydrogenpolysiloxane of component (D) needs to have two or more hydrogen atoms (Si—H groups) directly linked to silicon atoms in one molecule in order to network the composition by cross-linking. It may be linear or branched, or it may be a mixture of two or more of these different viscosities.
  • the residual organic group bonded to the silicon atom includes an alkyl group such as a methyl group, an ethyl group, a propyl group, a butyl group, a hexyl group and a dodecyl group, an aryl group such as a phenyl group, a 2-phenylethyl group and a 2-phenylpropi.
  • aralkyl group such as a ru group is exemplified, and a substituted hydrocarbon group such as a chloromethyl group and a 3,3,3-trifluoropropyl group is also mentioned as an example.
  • a methyl group is preferable from the viewpoint of ease of synthesis and cost.
  • the blending amount of the component (D) is such that ⁇ the number of Si—H groups of the component (D) ⁇ / ⁇ the number of alkenyl groups of the component (A) ⁇ is 0.5 to 1.5, and 0.
  • the range of 7 to 1.3 is more preferable. If the blending amount of the component (D) is less than the above lower limit, the composition cannot be sufficiently reticulated, so that the grease does not cure sufficiently, and if it exceeds the above upper limit, the crosslink density becomes too high and the elongation may decrease. ..
  • Component (E) is a hydrolyzable organopolysiloxane represented by the following general formula (1), and treats the surface of the component (B) and the component (C) which are thermally conductive fillers. This is possible, and even if the component (B) or the component (C) is highly filled in the silicone component, the fluidity of the silicone composition can be maintained and good handleability can be imparted to the composition.
  • R 1 represents a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and each R 1 may be the same or different, and m is 5. Indicates an integer of ⁇ 100.
  • R 1 in the above formula (1) represents a monovalent hydrocarbon group having 1 to 10 carbon atoms which may have a substituent, and each R 1 may be the same or different.
  • R 1 include a methyl group.
  • m is an integer of 5 to 100, preferably an integer of 10 to 60. If the value of m is less than 5, the oil bleeding derived from the silicone composition may become severe and the reliability may deteriorate. Further, if the value of m is larger than 100, the wettability of the filler may not be sufficient.
  • the amount of the component (E) is in the range of 0.1 to 10% by mass, preferably 1 to 6% by mass with respect to the entire composition. If the amount of the component (E) is less than the above lower limit, sufficient wettability may not be exhibited, and if it exceeds the above upper limit, bleeding from the composition may be severe.
  • Component (F) is a platinum group metal catalyst, and is a component that promotes the addition reaction between the aliphatic unsaturated hydrocarbon group in the component (A) and the Si—H group of the component (D). be.
  • the platinum group metal catalyst conventionally known ones used for the addition reaction can be used. Examples thereof include platinum-based, palladium-based, and rhodium-based catalysts, and among them, platinum or a platinum compound, which is relatively easily available, is preferable. For example, elemental platinum, platinum black, platinum chloride acid, platinum-olefin complex, platinum-alcohol complex, platinum coordination compound and the like can be mentioned.
  • the platinum-based catalyst may be used alone or in combination of two or more.
  • the blending amount of the component (F) may be an effective amount as a catalyst, that is, an effective amount necessary for promoting the addition reaction and curing the composition of the present invention.
  • the mass of the component (A) is preferably 0.1 to 500 ppm, more preferably 1 to 200 ppm, based on the mass converted to the platinum group metal atom. When the amount of the catalyst is within the above range, the effect as a catalyst can be obtained and it is economical, which is preferable.
  • the highly thermally conductive silicone composition of the present invention suppresses the progress of the hydrosilylation reaction at room temperature (that is, suppresses the catalytic activity of the component (F)), and extends the shelf life and pot life.
  • the component (G) can be contained as a control agent for the above.
  • the control agent conventionally known ones can be used, and acetylene compounds, nitrogen compounds, organic phosphorus compounds, oxime compounds, and organic chloro compounds are preferable.
  • the blending amount of the component (G) is 0.1% by mass or more with respect to the component (A), sufficient shelf life and pot life can be obtained, and if it is 5% by mass or less, the curing rate can be maintained.
  • the range of 1 to 5% by mass is preferable, the range of 0.1 to 1% by mass is more preferable, and the range of 0.1 to 0.5% by mass is further preferable. These may be diluted with toluene or the like and used in order to improve the dispersibility in the highly thermally conductive silicone composition.
  • the highly thermally conductive silicone composition of the present invention contains 2,6-di-t-butyl-4 in order to prevent deterioration of the addition-curable silicone composition.
  • -A conventionally known antioxidant such as methylphenol may be contained, if necessary.
  • a heat resistance improver, an adhesive aid, a mold release agent, a dye, a pigment, a flame retardant, a sedimentation inhibitor, a thixo property improver and the like can be blended as needed.
  • the components (A) to (G) and other components are, for example, Trimix, Twinmix, Planetary Mixer (all registered trademarks of Inoue Seisakusho Co., Ltd. mixer), Ultra Mixer. Mix with a mixer such as (registered trademark of Mizuho Kogyo Co., Ltd. mixer), Hibis Dispermix (registered trademark of Tokushu Kagaku Kogyo Co., Ltd. mixer).
  • the highly thermally conductive silicone composition of the present invention may be mixed while heating, and the heating conditions are not particularly limited, but the temperature is usually 25 to 220 ° C, preferably 40 to 200 ° C, and more. The temperature is preferably 50 to 200 ° C., and the time is usually 3 minutes to 24 hours, preferably 5 minutes to 12 hours, and more preferably 10 minutes to 6 hours. Further, deaeration may be performed at the time of heating.
  • the highly thermally conductive silicone composition of the present invention has an absolute viscosity measured at 25 ° C. using a Malcolm viscometer (type PC-1TL) in the range of 50 to 1,000 Pa ⁇ s, preferably 100 to 100. It is 800 Pa ⁇ s, more preferably 150 to 600 Pa ⁇ s. If the absolute viscosity is less than the lower limit of the above range, the heat conductive filler may settle over time during storage, resulting in poor workability. Further, if the upper limit of the above range is exceeded, the extensibility becomes poor and the workability may deteriorate.
  • a Malcolm viscometer type PC-1TL
  • the high thermal conductivity silicone composition of the present invention has a thermal conductivity of 7 W / m ⁇ K or more in the ISO 22007-2 compliant hot disk method.
  • the thermal conductivity can be measured with Model QTM-500 manufactured by Kyoto Denshi Kogyo Co., Ltd.
  • the highly thermally conductive silicone composition of the present invention is heat-cured at 150 ° C. for 60 minutes to prepare a 2 mm thick sheet, and then the shape of the No. 2 dumbbell described in JIS K6251 is prepared and the elongation measured is 30% or more. It is preferably 35% or more, more preferably 40% or more. The higher the elongation, the more preferable it is, so the upper limit cannot be determined, but it can be, for example, 200% or less. If the elongation (elongation at the time of cutting) is 30% or more, peeling is unlikely to occur during high-temperature storage, and there is no risk of deterioration of thermal resistance.
  • Each high thermal conductivity silicone composition is poured into a mold having a thickness of 3 cm, covered with a kitchen wrap, and the thermal conductivity at 25 ° C. is measured by the ISO 22007-2 compliant hot disk method. Measured at 500.
  • a high thermal conductive silicone composition is sandwiched between a 15 mm ⁇ 15 mm ⁇ 1 mmt Si chip and a 15 mm ⁇ 15 mm ⁇ 1 mmt Ni plate, and the high thermal conductive silicone composition is heat-cured in an oven at 150 ° C. for 60 minutes to achieve thermal resistance.
  • a test piece for measurement was prepared. After that, the test piece was left at 150 ° C. for 1000 hours, and the change in thermal resistance was observed. This thermal resistance measurement was performed by nanoflash (manufactured by Nitsche, LFA447).
  • the high thermal conductivity silicone composition was heat-cured in an oven at 150 ° C. for 60 minutes to prepare a test piece for measuring the hardness of the cured product.
  • the hardness of the cured product was measured by Asker C specified in JIS S 6050: 2008.
  • composition The following components for forming the highly thermally conductive silicone composition of the present invention were prepared.
  • the kinematic viscosity shows the value at 25 ° C. by the Ubbelohde type Ostwald viscometer.
  • the average particle size is a volume-based volume average diameter, and was measured by Nikkiso Co., Ltd. Microtrack MT3300EX.
  • Component B-1 Aluminum powder having an average particle size of 60 ⁇ m
  • B-2 Aluminum powder having an average particle size of 45 ⁇ m (comparative example)
  • Component C-1 Aluminum powder with an average particle size of 10 ⁇ m
  • C-2 Aluminum powder with an average particle size of 1.5 ⁇ m
  • C-3 Zinc oxide powder with an average particle size of 1.0 ⁇ m
  • Component F-1 Platinum atom, a solution of a platinum-divinyltetramethyldisiloxane complex in which both ends are sealed with a dimethylvinylsilyl group and dissolved in dimethylpolysiloxane having a kinematic viscosity of 600 mm 2 / s at 25 ° C. Contains 1% by mass
  • Heat resistance improver A compound represented by the following formula
  • the components (A) to (G) and the heat resistance improver were blended as follows to obtain silicone compositions of Examples 1 to 6 and Comparative Examples 1 to 6. That is, the components (A), (B), (C) and (E) were added to a 5 liter planetary mixer (manufactured by Inoue Seisakusho Co., Ltd.) and mixed at 170 ° C. for 1 hour. After cooling to room temperature, the components (F), (G) and (D) and a heat resistance improver were added and mixed so as to be uniform to prepare a silicone composition.
  • the high thermal conductivity silicone compositions of Examples 1 to 6 satisfying the requirements of the present invention have a thermal conductivity of 7 W / m ⁇ K or more, and the thermal resistance after high-temperature storage is almost changed. do not.
  • Comparative Example 1 in which the total amount of the components (B) and (C), which are the heat conductive fillers, is small, the thermal conductivity is not sufficient, and in Comparative Example 2, the content of the heat conductive filler is too large. Does not become grease-like.
  • Comparative Example 3 since the component (B) contains aluminum powder having an average particle size of less than 50 ⁇ m and the material thickness is thin, the thermal resistance at the time of high temperature storage deteriorates.
  • Comparative Examples 4 and 5 if the ratio of ⁇ number of Si—H groups of component (D) ⁇ / ⁇ number of Si—Vi groups of component (A) ⁇ is too low, the composition is not sufficiently cured. On the other hand, if it is too high, it becomes too hard and the elongation becomes low, so that the thermal resistance after high temperature storage deteriorates. In Comparative Example 6, when only the component (B) was used as the heat conductive filler, the filler was deteriorated, the silicone oil was separated, and the material became non-uniform. Therefore, the highly thermally conductive silicone composition of the present invention has a high thermal conductivity, and it is possible to maintain the heat dissipation performance without deteriorating the thermal resistance after high temperature storage.
  • the high thermal conductivity silicone composition of the present invention has a thick material, it can follow the warp of a large base material, and further, since it has high thermal conductivity, it has high thermal performance even when the material thickness is thick. Can be guaranteed. Further, since the elongation is high, the thermal resistance after high temperature storage does not deteriorate, and it can be particularly preferably used as a highly reliable thermal paste used for removing heat from electronic components that generate heat during use.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an example, and any of the above-described embodiments having substantially the same configuration as the technical idea described in the claims of the present invention and having the same effect and effect is the present invention. Is included in the technical scope of.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は高熱伝導性シリコーン組成物であって、(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が100~100,000mm2/sのオルガノポリシロキサン、(B)平均粒径が50μm以上であるアルミニウム粉末、(C)平均粒径が0.1~50μm未満である熱伝導性充填材、(D)1分子中に2個以上のケイ素原子に結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサン、(E)下記一般式(1)で表される加水分解性オルガノポリシロキサン、(F)白金族金属触媒:有効量を含有する高熱伝導性シリコーン組成物である。これにより材料厚みが厚いことで基材の反りに追従することが可能となり、さらに高熱伝導率を有するため放熱性能を維持することができる高熱伝導性シリコーン組成物が提供される。

Description

高熱伝導性シリコーン組成物
 本発明は、高い放熱性能を維持できる高熱伝導性シリコーン組成物に関する。
 LSIやICチップ等の電子部品は使用中の発熱及びそれに伴う性能の低下が広く知られており、これを解決するための手段として様々な放熱技術が用いられている。例えば、発熱部の付近にヒートシンクなどの冷却用途の部材を配置し、両者を密接させることで冷却部材へと効率的な伝熱を促して冷却部材を冷却することにより発熱部の放熱を効率的に行うことが知られている。その際、発熱部材と冷却部材との間に隙間があると、熱伝導性の低い空気が介在することにより伝熱が効率的でなくなり、発熱部材の温度が十分に下がらなくなってしまう。
 このような現象を防止するために発熱部材と冷却部材の間の空気の介在を防ぐ目的として、熱伝導率が良く、部材の表面に追従性のある放熱材料として放熱シートや放熱グリースが用いられる(特許文献1~3)。その中でも放熱グリースは実装時の厚みを薄くして使用することができるために熱抵抗の観点から高い性能を発揮する。放熱グリースの中には部材間に挟まれたのちに、加熱硬化して使用するタイプもある。
 放熱グリースは熱伝導性を向上させるために多量のフィラーを配合しているが、その結果として加熱硬化後の伸びが低下してしまう。伸びが低下することにより材料に柔軟性がなくなってしまい、稼働時の反りに追従できなくなってしまう点が懸念される。追従できなくなると、部材と放熱グリースの間に空隙が発生し、放熱性能が悪化する。その問題を解決するため、分子鎖末端にアルケニル基を含有する成分と、分子鎖側鎖及び/又は末端にアルケニル基を含有する成分を配合することで、硬化後の伸びが高く稼働時の反りに追従可能な熱伝導性シリコーン組成物が提案されている。しかし、近年パッケージサイズの拡大に伴い、基材の反りが大きくなる傾向にあり、従来材料では材料厚みが薄く、反りへの追従が困難になることがあった。一方で、大きい粒径の熱伝導性充填剤を使用した場合には充填性が悪く、また材料厚みが厚くなるため高熱抵抗となり、十分な放熱性能を発揮できない問題があった。
特許第2938428号公報 特許第2938429号公報 特許第3952184号公報
 本発明は上記事情に鑑みなされたもので、材料厚みが厚いことで基材の反りに追従することが可能となり、さらに高熱伝導率を有するため放熱性能を維持することができる高熱伝導性シリコーン組成物を提供することを目的とする。
 上記課題を解決するために、本発明では、高熱伝導性シリコーン組成物であって、
(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が100~100,000mm/sのオルガノポリシロキサン、
(B)平均粒径が50μm以上であるアルミニウム粉末、
(C)平均粒径が0.1~50μm未満である熱伝導性充填材、
(D)1分子中に2個以上のケイ素原子に結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサン:{前記(D)成分のSi-H基の個数}/{前記(A)成分中のアルケニル基の個数}が0.5~1.5となる量、
(E)下記一般式(1)で表される加水分解性オルガノポリシロキサン:組成物全体に対し0.1~10質量%、
Figure JPOXMLDOC01-appb-C000002
(式中、Rは置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのRは同一であっても異なっていてもよい。またmは5~100の整数を示す。)
(F)白金族金属触媒:有効量
を含有する前記(B)成分と前記(C)成分の合計が組成物全体に対して90~95質量%であり、前記高熱伝導性シリコーン組成物の25℃における熱伝導率がISO 22007-2準拠のホットディスク法において、7W/m・K以上であり、25℃における絶対粘度が50~1,000Pa・sである高熱伝導性シリコーン組成物を提供する。
 このような高熱伝導性シリコーン組成物であれば、材料厚みが厚いことで基材の反りに追従することが可能となり、さらに高熱伝導率を有するため放熱性能を維持することができるものとなる。
 また、本発明では、さらに、(G)前記(F)成分の触媒活性を抑制するアセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物より選択される制御剤:前記(A)成分の合計に対して0.1質量%~5質量%となる量
を含む高熱伝導性シリコーン組成物であることが好ましい。
 このような高熱伝導性シリコーン組成物であれば、十分なシェルフライフやポットライフが得られ、硬化速度が向上するものとすることができる。
 また、本発明では、前記高熱伝導性シリコーン組成物を150℃にて60分間加熱硬化して2mm厚シートを作製した後、JIS K6251に記載の2号ダンベルの形状を作製して測定した伸びが30%以上である高熱伝導性シリコーン組成物であることが好ましい。
 このような高熱伝導性シリコーン組成物であれば、高温保存時に剥離が発生しづらく、熱抵抗が悪化するおそれがないものとすることができる。
 以上のように、本発明において、平均粒径50μm以上であるアルミニウム粉末を配合することにより、材料厚みを厚くすることができ、さらに高熱伝導率を付与することが可能となり熱性能を維持することができる。
 上述のように、基材の反りに追従することが可能となり、さらに放熱性能を維持することができる高熱伝導性シリコーン組成物の開発が求められていた。
 本発明者は、上記目標を達成するため鋭意検討した結果、材料厚みが厚く、基材の反りに追従可能であり、さらに高熱伝導率を有することで放熱性能を維持することができる高熱伝導性シリコーン組成物を開発した。
 即ち、本発明は、高熱伝導性シリコーン組成物であって、
(A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が100~100,000mm/sのオルガノポリシロキサン、
(B)平均粒径が50μm以上であるアルミニウム粉末、
(C)平均粒径が0.1~50μm未満である熱伝導性充填材、
(D)1分子中に2個以上のケイ素原子に結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサン:{前記(D)成分のSi-H基の個数}/{前記(A)成分中のアルケニル基の個数}が0.5~1.5となる量、
(E)下記一般式(1)で表される加水分解性オルガノポリシロキサン:組成物全体に対し0.1~10質量%、
Figure JPOXMLDOC01-appb-C000003
(式中、Rは置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのRは同一であっても異なっていてもよい。またmは5~100の整数を示す。)
(F)白金族金属触媒:有効量
を含有する前記(B)成分と前記(C)成分の合計が組成物全体に対して90~95質量%であり、前記高熱伝導性シリコーン組成物の25℃における熱伝導率がISO 22007-2準拠のホットディスク法において、7W/m・K以上であり、25℃における絶対粘度が50~1,000Pa・sである高熱伝導性シリコーン組成物である。
 以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
(A)成分
 (A)成分は、1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が100~100,000mm/sのオルガノポリシロキサンである。(A)成分のオルガノポリシロキサンは、ケイ素原子に直結したアルケニル基を1分子中に2個含有するもので、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。アルケニル基としては、ビニル基、アリル基、1-ブテニル基、1-ヘキセニル基等が例示されるが、合成の容易さ、コストの面からビニル基が好ましい。ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基が例示され、さらにクロロメチル基、3,3,3-トリフルオロプロピル基等の置換炭化水素基も例として挙げられる。これらのうち、合成の容易さ、コストの面からメチル基が好ましい。ケイ素原子に結合するアルケニル基は、オルガノポリシロキサンの分子鎖の末端に存在することが好ましい。上記オルガノポリシロキサンのウベローデ型オストワルド粘度計により測定した25℃での動粘度は100~100,000mm/sの範囲であり、好ましくは500~100,000mm/sがよい。
(B)成分
 (B)成分は、平均粒径が50μm以上のアルミニウム粉末であり、本発明の高熱伝導性シリコーン組成物の熱伝導性充填材として機能する。(B)成分は、1種単独で使用しても、2種以上を併用してもよい。
 (B)成分の形状には特に制限はなく、その例としては、球状、樹枝状、りん片状、針状、不規則形状等が挙げられる。(B)成分を前記高熱伝導性シリコーン組成物中に高充填するためには、(B)成分の粒子形状が、樹枝状、りん片状、針状、不規則形状等のかさ密度の大きい形状であるよりも、球状であることが好ましい。
 (B)成分の平均粒径は、50μm以上、好ましくは55~100μm、さらに好ましくは55~80μmの範囲内である。該平均粒子径が50μm未満であると、前記高熱伝導性シリコーングリースの材料厚みが薄くなり、基材の反りに追従できない恐れがある。なお、本発明において、平均粒径は、体積基準の体積平均径であり、日機装(株)製マイクロトラックMT3300EXにより測定できる。
 (B)成分の充填量は、組成物全体に対し20~60質量%の範囲が好ましい。充填量が下限以上であれば組成物の熱伝導率が高くなり、上限以下であれば組成物が均一となり、オイル分離が発生する恐れがない。
(C)成分
 (C)成分は、平均粒径が0.1~50μm未満の熱伝導性充填材であり、本発明の高熱伝導性シリコーン組成物の熱伝導率を向上させるために機能する。(C)成分が(B)成分の隙間に入り込むことで、該組成物における熱伝導性充填材{(B)成分および(C)成分}全体の充填性を向上させることができる。係る熱伝導性充填材としてはアルミニウム粉末、銅粉末、ニッケル粉末、金粉末、金属ケイ素粉末、窒化アルミニウム粉末、窒化ホウ素粉末、アルミナ粉末、ダイヤモンド粉末、カーボン粉末、インジウム粉末、ガリウム粉末、酸化亜鉛粉末などがあげられる。(C)成分は1種単独で使用しても、2種以上を併用してもよい。
 (C)成分は熱伝導率、調達性の観点からアルミニウム粉末、アルミナ粉末、酸化亜鉛粉末が好ましく、アルミニウム粉末と酸化亜鉛粉末がより好ましい。
 (C)成分の平均粒径は0.1~50μm未満、好ましくは0.2~45μm、さらに好ましくは0.2~40μmの範囲内である。前記平均粒子径が0.1μm未満であると、(C)成分のかさ密度が大きくなりやすいので、組成物の粘度が高くなり、作業性が低下する恐れがある。一方、前記平均粒子径が50μm以上だと、(B)成分と(C)成分との組み合わせによる最密充填が難しくなる。
 (C)成分の充填量は、組成物全体に対し30~70質量%の範囲が好ましく、より好ましくは30~65質量%の範囲がよい。充填量が下限以上であれば(C)成分の添加による効果を得やすくなる。一方、上限以下であれば得られる組成物の粘度が低くなり、作業性が向上する。
 該高熱伝導性シリコーン組成物中、(B)成分と(C)成分の合計が、組成物全体に対して90~95質量%であり、好ましくは91~95質量%、さらに好ましくは92~95質量%の範囲がよい。上記合計量が下限未満であると、組成物の熱伝導率が7W/m・Kを達成することが困難となるおそれがある。一方、上限を超えると組成物が高粘度となり、作業性が低下してしまう。
(D)成分
 (D)成分のオルガノハイドロジェンポリシロキサンは、架橋により組成を網状化するためにケイ素原子に直結した水素原子(Si-H基)を1分子中に2個以上有することが必要であり、直鎖状でも分岐状でもよく、またこれら2種以上の異なる粘度の混合物でもよい。ケイ素原子に結合する残余の有機基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、ドデシル基等のアルキル基、フェニル基等のアリール基、2-フェニルエチル基、2-フェニルプロピル基等のアラルキル基が例示され、さらにクロロメチル基、3,3,3-トリフルオロプロピル基等の置換炭化水素基も例として挙げられる。これらのうち、合成の容易さ、コストの面からメチル基が好ましい。
 (D)成分の配合量は、{(D)成分のSi-H基の個数}/{(A)成分のアルケニル基の個数}が0.5~1.5となる量であり、0.7~1.3の範囲がより好ましい。(D)成分の配合量が上記下限未満であると組成を十分に網状化できないためグリースが十分に硬化しないし、上記上限を超えると架橋密度が高くなりすぎてしまい伸びが低下するおそれがある。
(E)成分
 (E)成分は、下記一般式(1)で表される加水分解性オルガノポリシロキサンであり、熱伝導性充填材である(B)成分や(C)成分の表面を処理することが可能で、(B)成分や(C)成分をシリコーン成分中に高充填しても、シリコーン組成物の流動性を保ち、組成物に良好な取扱い性を付与することができる。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのRは同一であっても異なっていてもよい。またmは5~100の整数を示す。)
 上記式(1)中のRは置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのRは同一であっても異なっていてもよい。Rとしては、例えばメチル基が挙げられる。mは5~100の整数、好ましくは10~60の整数である。mの値が5より小さいと、シリコーン組成物由来のオイルブリードがひどくなり信頼性が悪くなるおそれがある。また、mの値が100より大きいと、充填材の濡れ性が十分でなくなるおそれがある。
 (E)成分の量は、組成物全体に対し0.1~10質量%、好ましくは1~6質量%の範囲である。(E)成分の量が上記下限未満であると十分な濡れ性を発揮できない恐れがあり、上記上限を超えると組成物からのブリードがひどくなるおそれがある。
(F)成分
 (F)成分は、白金族金属触媒であり、(A)成分中の脂肪族不飽和炭化水素基と(D)成分のSi-H基との間の付加反応の促進成分である。白金族金属触媒は、付加反応に用いられる従来公知のものを使用することができる。例えば白金系、パラジウム系、ロジウム系の触媒が挙げられるが、中でも比較的入手しやすい白金または白金化合物が好ましい。例えば、白金の単体、白金黒、塩化白金酸、白金-オレフィン錯体、白金-アルコール錯体、白金配位化合物等が挙げられる。白金系触媒は1種類単独でも2種類以上を組み合わせて使用してもよい。
 (F)成分の配合量は触媒としての有効量、即ち、付加反応を促進して本発明の組成物を硬化させるために必要な有効量であればよい。(A)成分の質量に対し、白金族金属原子に換算した質量基準で0.1~500ppmが好ましく、より好ましくは1~200ppmである。触媒の量が上記範囲内であれば、触媒としての効果が得られ、経済的であるため好ましい。
(G)成分
 本発明の高熱伝導性シリコーン組成物には、室温でのヒドロシリル化反応の進行を抑え(即ち、(F)成分の触媒活性を抑制する)、シェルフライフ、ポットライフを延長させるための制御剤として、さらに(G)成分を含有することができる。制御剤としては、従来公知のものを使用することができ、アセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物が好ましい。
 (G)成分の配合量は(A)成分に対して0.1質量%以上であれば十分なシェルフライフやポットライフが得られ、5質量%以下であれば硬化速度が維持できるため、0.1~5質量%の範囲が好ましく、0.1~1質量%の範囲がより好ましく、0.1~0.5質量%の範囲がさらに好ましい。これらは高熱伝導性シリコーン組成物への分散性を良くするためにトルエン等で希釈して使用してもよい。
その他の成分
 本発明の高熱伝導性シリコーン組成物には上記した(A)~(G)成分以外に、付加硬化型シリコーン組成物の劣化を防ぐために、2,6-ジ-t-ブチル-4-メチルフェノール等の、従来公知の酸化防止剤を必要に応じて含有してもよい。さらに、耐熱向上剤、接着助剤、離型剤、染料、顔料、難燃剤、沈降防止剤、又はチクソ性向上剤等を必要に応じて配合することができる。
 本発明のグリースを製造するには(A)~(G)成分とその他の成分を、例えばトリミックス、ツウィンミックス、プラネタリミキサー(何れも井上製作所(株)製混合機の登録商標)、ウルトラミキサー(みずほ工業(株)製混合機の登録商標)、ハイビスディスパーミックス(特殊機化工業(株)製混合機の登録商標)等の混合機にて混合する。
 また、本発明の高熱伝導性シリコーン組成物は、加熱しながら混合してもよく、加熱条件は特に制限されるものではないが、温度は通常25~220℃、好ましくは40~200℃、より好ましくは50~200℃であり、時間は通常3分~24時間、好ましくは5分~12時間、より好ましくは10分~6時間である。また加熱時に脱気を行ってもよい。
 本発明の高熱伝導性シリコーン組成物は、25℃にてマルコム粘度計(タイプPC-1TL)を用いて測定される絶対粘度が、50~1,000Pa・sの範囲であり、好ましくは100~800Pa・s、より好ましくは150~600Pa・sである。絶対粘度が上記範囲の下限未満であると、保存時に経時で熱伝導性充填材が沈降するなど、作業性が悪くなるおそれがある。また上記範囲の上限を超えると、伸展性が乏しくなり、作業性が悪化するおそれがある。
 本発明の高熱伝導性シリコーン組成物は、ISO 22007-2準拠のホットディスク法において、7W/m・K以上の熱伝導率を有する。熱伝導率は高ければ高いほど好ましいので上限値は決められないが、例えば30W/m・K以下とすることができる。熱伝導率は、京都電子工業(株)製のModel QTM-500で測定できる。
 本発明の高熱伝導性シリコーン組成物は、150℃にて60分間加熱硬化して2mm厚シートを作製した後、JIS K6251に記載の2号ダンベルの形状を作製して測定した伸びが30%以上であることが好ましく、35%以上がより好ましく、さらに好ましくは40%以上である。伸びは高ければ高いほど好ましいので上限値は決められないが、例えば200%以下とすることができる。伸び(切断時伸び)が30%以上であれば、高温保存時に剥離が発生しづらく、熱抵抗が悪化するおそれがない。
 以下、実施例及び比較例を用いて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。
<組成物の試験>
 本発明に関わる効果に関する試験は次のように行った。
[粘度]
 高熱伝導性シリコーン組成物の絶対粘度は、マルコム粘度計(タイプPC-1TL)を用いて25℃で測定した。
[熱伝導率]
 各高熱伝導性シリコーン組成物を3cm厚の型に流し込みキッチン用ラップをかぶせて、25℃における熱伝導率をISO 22007-2準拠のホットディスク法において、京都電子工業(株)製のModel QTM-500で測定した。
[熱抵抗測定]
 15mm×15mm×1mmtのSiチップと15mm×15mm×1mmtのNiプレートの間に、高熱伝導性シリコーン組成物を挟み込み、高熱伝導性シリコーン組成物を150℃のオーブンで60分間加熱硬化させ、熱抵抗測定用の試験片を作製した。さらにその後、試験片を150℃で1000時間放置して熱抵抗の変化を観察した。なお、この熱抵抗測定はナノフラッシュ(ニッチェ社製、LFA447)によって行った。
[切断時伸び]
各高熱伝導性シリコーン組成物を150℃にて60分間加熱硬化して2mm厚シートを作製した後、JIS K6251に記載の2号ダンベルの形状を作製して切断時伸びを測定した。なお、この切断時伸びの測定はAGS-X(島津製作所(株)社製)によって行った。
[硬化物硬度]
 高熱伝導性シリコーン組成物を150℃のオーブンで60分間加熱硬化させ、硬化物硬度測定用の試験片を作製した。硬化物硬度の測定はJIS S 6050:2008規定のAsker Cによって行った。
<組成物の調製>
 本発明の高熱伝導性シリコーン組成物を形成する以下の各成分を用意した。なお、動粘度はウベローデ型オストワルド粘度計による25℃の値を示す。平均粒径は、体積基準の体積平均径であり、日機装(株)製マイクロトラックMT3300EXにより測定した。
(A)成分
A-1:両末端がトリビニルシリル基で封鎖され、25℃における動粘度が1,500mm/sのジメチルポリシロキサン
A-2:両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が30,000mm/sのジメチルポリシロキサン
(B)成分
B-1:平均粒径60μmのアルミニウム粉末
B-2:平均粒径45μmのアルミニウム粉末(比較例)
(C)成分
C-1:平均粒径10μmのアルミニウム粉末
C-2:平均粒径1.5μmのアルミニウム粉末
C-3:平均粒径1.0μmの酸化亜鉛粉末
(D)成分
 下記式(D-1)~(D-3)で表されるオルガノハイドロジェンポリシロキサン
Figure JPOXMLDOC01-appb-C000005
(E)成分
下記式(E-1)で表される加水分解性オルガノポリシロキサン
Figure JPOXMLDOC01-appb-C000006
(F)成分
F-1:白金―ジビニルテトラメチルジシロキサン錯体が両末端がジメチルビニルシリル基で封鎖され、25℃における動粘度が600mm/sのジメチルポリシロキサンに溶解された溶液、白金原子として1質量%含有
(G)成分
G-1:1-エチニルー1-シクロヘキサノール
耐熱向上剤:下記式で表される化合物
Figure JPOXMLDOC01-appb-C000007
 (A)成分~(G)成分及び耐熱向上剤を以下のように配合して実施例1~6及び比較例1~6のシリコーン組成物を得た。
 即ち、5リットルプラネタリーミキサー(井上製作所(株)社製)に(A)、(B)、(C)及び(E)成分を加え、170℃で1時間混合した。常温になるまで冷却し、次に(F)、(G)及び(D)成分と耐熱向上剤を加え均一になるように混合し、シリコーン組成物を調製した。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
*1;グリース状にならないため測定不可
*2;硬化しないため測定不可
*3;シリコーンオイルが分離し、不均一となるため測定不可
 表1及び表2の結果より、本発明の要件を満たす実施例1~6の高熱伝導性シリコーン組成物では、熱伝導率7W/m・K以上であり、高温保存後の熱抵抗がほとんど変化しない。熱伝導性充填材である(B)成分および(C)成分の合計量が少ない比較例1では十分な熱伝導率とならず、比較例2では熱伝導性充填材の含有量が多すぎるためグリース状にならない。また、比較例3に関しては、(B)成分として平均粒径50μm未満のアルミニウム粉を含有しており、材料厚みが薄いため、高温保存時の熱抵抗が悪化した。さらに比較例4および5では、{(D)成分のSi-H基の個数}/{(A)成分のSi-Vi基の個数}の比が低すぎると組成物が十分に硬化せず、一方、高すぎると硬くなりすぎてしまい伸びが低くなってしまうため、高温保存後の熱抵抗が悪化した。比較例6では熱伝導性充填材として(B)成分のみを使用したところ、充填性が悪くなり、シリコーンオイルが分離し、不均一となった。従って、本発明の高熱伝導性シリコーン組成物では、高熱伝導率を有し、高温保存後に熱抵抗が悪化せず放熱性能を維持することが可能である。
[産業上の利用可能性]
 本発明の高熱伝導性シリコーン組成物は、材料厚みが厚いため、大きい基材の反りにも追従することが可能であり、さらに、高熱伝導率を有することから材料厚みが厚い場合でも高い熱性能を担保することができる。また、伸びが高いため、高温保存後の熱抵抗が悪化せず、使用中に熱が発生する電子部品からの除熱に使用する高信頼性の放熱グリースとして特に好適に利用することができる。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (3)

  1.  高熱伝導性シリコーン組成物であって、
    (A)1分子中に少なくとも2個の脂肪族不飽和炭化水素基を有し、25℃での動粘度が100~100,000mm/sのオルガノポリシロキサン、
    (B)平均粒径が50μm以上であるアルミニウム粉末、
    (C)平均粒径が0.1~50μm未満である熱伝導性充填材、
    (D)1分子中に2個以上のケイ素原子に結合した水素原子(Si-H基)を有するオルガノハイドロジェンポリシロキサン:{前記(D)成分のSi-H基の個数}/{前記(A)成分中のアルケニル基の個数}が0.5~1.5となる量、
    (E)下記一般式(1)で表される加水分解性オルガノポリシロキサン:組成物全体に対し0.1~10質量%、
    Figure JPOXMLDOC01-appb-C000001
    (式中、Rは置換基を有していてもよい炭素数1~10の1価炭化水素基を表し、それぞれのRは同一であっても異なっていてもよい。またmは5~100の整数を示す。)
    (F)白金族金属触媒:有効量
    を含有する前記(B)成分と前記(C)成分の合計が組成物全体に対して90~95質量%であり、前記高熱伝導性シリコーン組成物の25℃における熱伝導率がISO 22007-2準拠のホットディスク法において、7W/m・K以上であり、25℃における絶対粘度が50~1,000Pa・sである高熱伝導性シリコーン組成物。
  2.  さらに、(G)前記(F)成分の触媒活性を抑制するアセチレン化合物、窒素化合物、有機りん化合物、オキシム化合物、有機クロロ化合物より選択される制御剤:前記(A)成分の合計に対して0.1質量%~5質量%となる量
    を含む請求項1に記載の高熱伝導性シリコーン組成物。
  3.  前記高熱伝導性シリコーン組成物を150℃にて60分間加熱硬化して2mm厚シートを作製した後、JIS K6251に記載の2号ダンベルの形状を作製して測定した伸びが30%以上である請求項1又は請求項2に記載の高熱伝導性シリコーン組成物。
PCT/JP2021/017129 2020-05-22 2021-04-29 高熱伝導性シリコーン組成物 WO2021235214A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP21809031.4A EP4155347A4 (en) 2020-05-22 2021-04-29 HIGHLY THERMALLY CONDUCTIVE SILICONE COMPOSITION
JP2022524364A JP7371249B2 (ja) 2020-05-22 2021-04-29 高熱伝導性シリコーン組成物
US17/922,895 US20230167301A1 (en) 2020-05-22 2021-04-29 High thermal conductive silicone composition
KR1020227040004A KR20230015340A (ko) 2020-05-22 2021-04-29 고열전도성 실리콘 조성물
CN202180036987.0A CN115667407B (zh) 2020-05-22 2021-04-29 高导热性有机硅组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020089709 2020-05-22
JP2020-089709 2020-05-22

Publications (1)

Publication Number Publication Date
WO2021235214A1 true WO2021235214A1 (ja) 2021-11-25

Family

ID=78708545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/017129 WO2021235214A1 (ja) 2020-05-22 2021-04-29 高熱伝導性シリコーン組成物

Country Status (6)

Country Link
US (1) US20230167301A1 (ja)
EP (1) EP4155347A4 (ja)
JP (1) JP7371249B2 (ja)
KR (1) KR20230015340A (ja)
CN (1) CN115667407B (ja)
WO (1) WO2021235214A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147698A1 (en) * 2022-02-07 2023-08-10 Dow Silicones Corporation Curable thermally conductive composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102545636B1 (ko) * 2023-02-17 2023-06-21 주식회사 파인테크닉스 열전도성 복합신소재용 조성물, 이를 포함하는 등기구의 방열장치 및 등기구의 방열장치로 제작된 led 등기구
CN118931189B (zh) * 2024-08-27 2025-03-25 山东高等技术研究院 一种低成本高性能导热硅脂及其制备方法与应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2000256558A (ja) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
WO2014181657A1 (ja) * 2013-05-07 2014-11-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2014188667A1 (ja) * 2013-05-24 2014-11-27 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2016011322A (ja) * 2014-06-27 2016-01-21 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
JP2016098337A (ja) * 2014-11-25 2016-05-30 信越化学工業株式会社 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法
WO2017159252A1 (ja) * 2016-03-18 2017-09-21 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
WO2018230189A1 (ja) * 2017-06-15 2018-12-20 信越化学工業株式会社 熱伝導性シリコーン組成物

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3803058B2 (ja) * 2001-12-11 2006-08-02 信越化学工業株式会社 熱伝導性シリコーン組成物、その硬化物及び敷設方法並びにそれを用いた半導体装置の放熱構造体
JP3922367B2 (ja) * 2002-12-27 2007-05-30 信越化学工業株式会社 熱伝導性シリコーングリース組成物
CN101265362A (zh) * 2008-05-07 2008-09-17 曲阜师范大学 一种功能稳定金属有机复合材料的加工方法
CN101294067B (zh) * 2008-06-20 2011-09-14 清华大学 一种导热硅脂组合物
JP2010013521A (ja) * 2008-07-02 2010-01-21 Shin-Etsu Chemical Co Ltd 熱伝導性シリコーン組成物
JP6014299B2 (ja) * 2008-09-01 2016-10-25 東レ・ダウコーニング株式会社 熱伝導性シリコーン組成物及び半導体装置
JP5843364B2 (ja) * 2012-08-13 2016-01-13 信越化学工業株式会社 熱伝導性組成物
JP5832983B2 (ja) * 2012-10-18 2015-12-16 信越化学工業株式会社 シリコーン組成物
CN107406678B (zh) * 2015-03-02 2020-08-04 信越化学工业株式会社 热传导性硅酮组合物

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2938429B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2938428B1 (ja) 1998-02-27 1999-08-23 信越化学工業株式会社 熱伝導性グリース組成物
JP2000256558A (ja) * 1999-03-11 2000-09-19 Shin Etsu Chem Co Ltd 熱伝導性シリコーンゴム組成物及びその製造方法
JP3952184B2 (ja) 2002-10-10 2007-08-01 信越化学工業株式会社 熱伝導性シート
WO2014181657A1 (ja) * 2013-05-07 2014-11-13 信越化学工業株式会社 熱伝導性シリコーン組成物及びその硬化物
WO2014188667A1 (ja) * 2013-05-24 2014-11-27 信越化学工業株式会社 熱伝導性シリコーン組成物
JP2016011322A (ja) * 2014-06-27 2016-01-21 信越化学工業株式会社 熱伝導性複合シリコーンゴムシート
JP2016098337A (ja) * 2014-11-25 2016-05-30 信越化学工業株式会社 一液付加硬化型シリコーン組成物、その保存方法及び硬化方法
WO2017159252A1 (ja) * 2016-03-18 2017-09-21 信越化学工業株式会社 熱伝導性シリコーン組成物及び半導体装置
WO2018230189A1 (ja) * 2017-06-15 2018-12-20 信越化学工業株式会社 熱伝導性シリコーン組成物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4155347A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023147698A1 (en) * 2022-02-07 2023-08-10 Dow Silicones Corporation Curable thermally conductive composition

Also Published As

Publication number Publication date
JP7371249B2 (ja) 2023-10-30
EP4155347A4 (en) 2024-06-05
EP4155347A1 (en) 2023-03-29
KR20230015340A (ko) 2023-01-31
JPWO2021235214A1 (ja) 2021-11-25
US20230167301A1 (en) 2023-06-01
TW202146579A (zh) 2021-12-16
CN115667407B (zh) 2024-08-09
CN115667407A (zh) 2023-01-31

Similar Documents

Publication Publication Date Title
JP6079792B2 (ja) 熱伝導性シリコーン組成物、熱伝導性層及び半導体装置
JP5898139B2 (ja) 熱伝導性シリコーン組成物
JP5648619B2 (ja) 熱伝導性シリコーン組成物
JP6614362B2 (ja) 熱伝導性シリコーン組成物
JP5843364B2 (ja) 熱伝導性組成物
WO2016140020A1 (ja) 熱伝導性シリコーン組成物
JP7070320B2 (ja) 熱伝導性シリコーン組成物
JP6915599B2 (ja) 熱伝導性シリコーン組成物
JP7371249B2 (ja) 高熱伝導性シリコーン組成物
JP5947267B2 (ja) シリコーン組成物及び熱伝導性シリコーン組成物の製造方法
JP2014080546A (ja) シリコーン組成物
TWI787188B (zh) 熱傳導性聚矽氧組成物
JP6314710B2 (ja) 熱伝導性シリコーン組成物
JP6943028B2 (ja) 熱伝導性シリコーン組成物
WO2021241097A1 (ja) 熱伝導性付加硬化型シリコーン組成物
WO2023132192A1 (ja) 高熱伝導性シリコーン組成物
TWI874648B (zh) 高導熱性矽氧組成物
JP7219728B2 (ja) 熱伝導性シリコーン組成物
WO2025053195A1 (ja) 熱伝導性シリコーン組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21809031

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524364

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021809031

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE