WO2020173459A1 - 医用黏合剂及其制备方法和用途 - Google Patents
医用黏合剂及其制备方法和用途 Download PDFInfo
- Publication number
- WO2020173459A1 WO2020173459A1 PCT/CN2020/076763 CN2020076763W WO2020173459A1 WO 2020173459 A1 WO2020173459 A1 WO 2020173459A1 CN 2020076763 W CN2020076763 W CN 2020076763W WO 2020173459 A1 WO2020173459 A1 WO 2020173459A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- medical adhesive
- powder
- skin mucus
- skin
- adhesive according
- Prior art date
Links
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 206
- 239000000853 adhesive Substances 0.000 title claims abstract description 205
- 238000004519 manufacturing process Methods 0.000 title abstract description 3
- 239000000843 powder Substances 0.000 claims abstract description 129
- 239000007864 aqueous solution Substances 0.000 claims abstract description 62
- 230000035876 healing Effects 0.000 claims abstract description 19
- 230000008439 repair process Effects 0.000 claims abstract description 5
- 210000003097 mucus Anatomy 0.000 claims description 162
- 210000003491 skin Anatomy 0.000 claims description 141
- 208000027418 Wounds and injury Diseases 0.000 claims description 114
- 206010052428 Wound Diseases 0.000 claims description 112
- 238000000034 method Methods 0.000 claims description 63
- 206010013786 Dry skin Diseases 0.000 claims description 51
- 230000037336 dry skin Effects 0.000 claims description 51
- 238000004659 sterilization and disinfection Methods 0.000 claims description 48
- 210000002435 tendon Anatomy 0.000 claims description 45
- 230000001954 sterilising effect Effects 0.000 claims description 42
- 239000002245 particle Substances 0.000 claims description 31
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 claims description 27
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 27
- 238000002360 preparation method Methods 0.000 claims description 26
- 239000008280 blood Substances 0.000 claims description 22
- 210000004369 blood Anatomy 0.000 claims description 21
- 210000004623 platelet-rich plasma Anatomy 0.000 claims description 18
- 210000002808 connective tissue Anatomy 0.000 claims description 17
- 239000000872 buffer Substances 0.000 claims description 14
- 239000011148 porous material Substances 0.000 claims description 14
- 210000003041 ligament Anatomy 0.000 claims description 11
- 108010073385 Fibrin Proteins 0.000 claims description 10
- 102000009123 Fibrin Human genes 0.000 claims description 10
- BWGVNKXGVNDBDI-UHFFFAOYSA-N Fibrin monomer Chemical compound CNC(=O)CNC(=O)CN BWGVNKXGVNDBDI-UHFFFAOYSA-N 0.000 claims description 10
- 229950003499 fibrin Drugs 0.000 claims description 10
- 210000000988 bone and bone Anatomy 0.000 claims description 9
- GHXZTYHSJHQHIJ-UHFFFAOYSA-N Chlorhexidine Chemical compound C=1C=C(Cl)C=CC=1NC(N)=NC(N)=NCCCCCCN=C(N)N=C(N)NC1=CC=C(Cl)C=C1 GHXZTYHSJHQHIJ-UHFFFAOYSA-N 0.000 claims description 8
- 229960003260 chlorhexidine Drugs 0.000 claims description 8
- 210000002381 plasma Anatomy 0.000 claims description 8
- 239000012153 distilled water Substances 0.000 claims description 7
- 239000008363 phosphate buffer Substances 0.000 claims description 7
- 239000007983 Tris buffer Substances 0.000 claims description 6
- 210000002615 epidermis Anatomy 0.000 claims description 6
- 239000002504 physiological saline solution Substances 0.000 claims description 6
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 6
- 239000007979 citrate buffer Substances 0.000 claims description 5
- 210000004207 dermis Anatomy 0.000 claims description 4
- 238000004108 freeze drying Methods 0.000 claims description 4
- 210000002027 skeletal muscle Anatomy 0.000 claims description 4
- 238000007920 subcutaneous administration Methods 0.000 claims description 4
- 238000000227 grinding Methods 0.000 claims description 3
- 238000010298 pulverizing process Methods 0.000 claims description 2
- 241000157862 Dicamptodontidae Species 0.000 abstract 3
- 238000011282 treatment Methods 0.000 description 98
- 241000700159 Rattus Species 0.000 description 52
- 230000000694 effects Effects 0.000 description 46
- 210000004027 cell Anatomy 0.000 description 45
- 238000012360 testing method Methods 0.000 description 41
- 210000001519 tissue Anatomy 0.000 description 38
- 239000002609 medium Substances 0.000 description 27
- 239000000499 gel Substances 0.000 description 25
- 238000002474 experimental method Methods 0.000 description 20
- 238000000605 extraction Methods 0.000 description 20
- 210000001361 achilles tendon Anatomy 0.000 description 16
- 239000000284 extract Substances 0.000 description 15
- 230000029663 wound healing Effects 0.000 description 15
- 230000007547 defect Effects 0.000 description 14
- 210000002683 foot Anatomy 0.000 description 14
- 238000001356 surgical procedure Methods 0.000 description 13
- 229920001651 Cyanoacrylate Polymers 0.000 description 12
- 241001465754 Metazoa Species 0.000 description 12
- 230000006378 damage Effects 0.000 description 12
- 239000000243 solution Substances 0.000 description 12
- 238000012453 sprague-dawley rat model Methods 0.000 description 12
- 108010080379 Fibrin Tissue Adhesive Proteins 0.000 description 11
- 238000011156 evaluation Methods 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- 208000021945 Tendon injury Diseases 0.000 description 10
- 238000004458 analytical method Methods 0.000 description 10
- 239000003292 glue Substances 0.000 description 10
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 9
- 238000001727 in vivo Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 8
- 238000000338 in vitro Methods 0.000 description 8
- 239000007788 liquid Substances 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 102000008186 Collagen Human genes 0.000 description 7
- 108010035532 Collagen Proteins 0.000 description 7
- 239000003364 biologic glue Substances 0.000 description 7
- 210000004204 blood vessel Anatomy 0.000 description 7
- 229920001436 collagen Polymers 0.000 description 7
- 238000001879 gelation Methods 0.000 description 7
- 239000000017 hydrogel Substances 0.000 description 7
- 238000002513 implantation Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 230000008569 process Effects 0.000 description 7
- 238000010186 staining Methods 0.000 description 7
- 210000004003 subcutaneous fat Anatomy 0.000 description 7
- 102100036475 Alanine aminotransferase 1 Human genes 0.000 description 6
- 108010082126 Alanine transaminase Proteins 0.000 description 6
- 108010003415 Aspartate Aminotransferases Proteins 0.000 description 6
- 102000004625 Aspartate Aminotransferases Human genes 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 6
- 102000003855 L-lactate dehydrogenase Human genes 0.000 description 6
- 108700023483 L-lactate dehydrogenases Proteins 0.000 description 6
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 230000005021 gait Effects 0.000 description 6
- 239000003102 growth factor Substances 0.000 description 6
- 210000003734 kidney Anatomy 0.000 description 6
- 210000002414 leg Anatomy 0.000 description 6
- 210000004185 liver Anatomy 0.000 description 6
- 239000011159 matrix material Substances 0.000 description 6
- 238000013508 migration Methods 0.000 description 6
- 238000004806 packaging method and process Methods 0.000 description 6
- 230000001737 promoting effect Effects 0.000 description 6
- 238000007873 sieving Methods 0.000 description 6
- 108010027529 Bio-glue Proteins 0.000 description 5
- 208000032843 Hemorrhage Diseases 0.000 description 5
- 238000002835 absorbance Methods 0.000 description 5
- 241001148470 aerobic bacillus Species 0.000 description 5
- 230000000740 bleeding effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 206010012601 diabetes mellitus Diseases 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 210000003780 hair follicle Anatomy 0.000 description 5
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 5
- 230000005012 migration Effects 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 230000037311 normal skin Effects 0.000 description 5
- 102000004196 processed proteins & peptides Human genes 0.000 description 5
- 108090000765 processed proteins & peptides Proteins 0.000 description 5
- 238000011084 recovery Methods 0.000 description 5
- 231100000241 scar Toxicity 0.000 description 5
- 210000001732 sebaceous gland Anatomy 0.000 description 5
- 238000007619 statistical method Methods 0.000 description 5
- 241001148471 unidentified anaerobic bacterium Species 0.000 description 5
- 206010063560 Excessive granulation tissue Diseases 0.000 description 4
- 239000004830 Super Glue Substances 0.000 description 4
- 208000002847 Surgical Wound Diseases 0.000 description 4
- PNNCWTXUWKENPE-UHFFFAOYSA-N [N].NC(N)=O Chemical compound [N].NC(N)=O PNNCWTXUWKENPE-UHFFFAOYSA-N 0.000 description 4
- 230000001154 acute effect Effects 0.000 description 4
- 238000010171 animal model Methods 0.000 description 4
- 230000000844 anti-bacterial effect Effects 0.000 description 4
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 239000006285 cell suspension Substances 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- FGBJXOREULPLGL-UHFFFAOYSA-N ethyl cyanoacrylate Chemical compound CCOC(=O)C(=C)C#N FGBJXOREULPLGL-UHFFFAOYSA-N 0.000 description 4
- 210000002950 fibroblast Anatomy 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 210000001126 granulation tissue Anatomy 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 210000002216 heart Anatomy 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 210000004072 lung Anatomy 0.000 description 4
- 210000002540 macrophage Anatomy 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 230000008929 regeneration Effects 0.000 description 4
- 238000011069 regeneration method Methods 0.000 description 4
- 210000000952 spleen Anatomy 0.000 description 4
- OCZVHBZNPVABKX-UHFFFAOYSA-N 1,1-diphenyl-2-(2,4,6-trinitrophenyl)hydrazine;ethanol Chemical compound CCO.[O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1NN(C=1C=CC=CC=1)C1=CC=CC=C1 OCZVHBZNPVABKX-UHFFFAOYSA-N 0.000 description 3
- 208000032544 Cicatrix Diseases 0.000 description 3
- 241000588724 Escherichia coli Species 0.000 description 3
- 206010061218 Inflammation Diseases 0.000 description 3
- 206010061223 Ligament injury Diseases 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- 241000605862 Porphyromonas gingivalis Species 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 230000012292 cell migration Effects 0.000 description 3
- 239000010941 cobalt Substances 0.000 description 3
- 229910017052 cobalt Inorganic materials 0.000 description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 3
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 3
- 231100000135 cytotoxicity Toxicity 0.000 description 3
- 230000003013 cytotoxicity Effects 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 210000000416 exudates and transudate Anatomy 0.000 description 3
- 230000007760 free radical scavenging Effects 0.000 description 3
- 210000004209 hair Anatomy 0.000 description 3
- 230000002439 hemostatic effect Effects 0.000 description 3
- 230000036571 hydration Effects 0.000 description 3
- 238000006703 hydration reaction Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 230000008595 infiltration Effects 0.000 description 3
- 238000001764 infiltration Methods 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 239000004615 ingredient Substances 0.000 description 3
- 208000014674 injury Diseases 0.000 description 3
- 210000003141 lower extremity Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 210000000056 organ Anatomy 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 235000018102 proteins Nutrition 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 230000037387 scars Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 238000010998 test method Methods 0.000 description 3
- 239000003106 tissue adhesive Substances 0.000 description 3
- 230000017423 tissue regeneration Effects 0.000 description 3
- VVJYUAYZJAKGRQ-UHFFFAOYSA-N 1-[4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]-5-methylpyrimidine-2,4-dione Chemical compound O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C(O)C1 VVJYUAYZJAKGRQ-UHFFFAOYSA-N 0.000 description 2
- 241001253208 Andrias davidianus Species 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 240000001624 Espostoa lanata Species 0.000 description 2
- 235000009161 Espostoa lanata Nutrition 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 206010039509 Scab Diseases 0.000 description 2
- 206010043255 Tendonitis Diseases 0.000 description 2
- 208000031737 Tissue Adhesions Diseases 0.000 description 2
- 208000025865 Ulcer Diseases 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 206010048038 Wound infection Diseases 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 210000001789 adipocyte Anatomy 0.000 description 2
- 235000001014 amino acid Nutrition 0.000 description 2
- 229940024606 amino acid Drugs 0.000 description 2
- 150000001413 amino acids Chemical class 0.000 description 2
- 230000003698 anagen phase Effects 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 230000003064 anti-oxidating effect Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 244000052616 bacterial pathogen Species 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000012742 biochemical analysis Methods 0.000 description 2
- 238000012925 biological evaluation Methods 0.000 description 2
- 239000012620 biological material Substances 0.000 description 2
- 238000001574 biopsy Methods 0.000 description 2
- 230000037396 body weight Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000000875 corresponding effect Effects 0.000 description 2
- 238000012136 culture method Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 230000036541 health Effects 0.000 description 2
- 230000023597 hemostasis Effects 0.000 description 2
- 238000010562 histological examination Methods 0.000 description 2
- 210000004969 inflammatory cell Anatomy 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000007928 intraperitoneal injection Substances 0.000 description 2
- 239000010410 layer Substances 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 210000002901 mesenchymal stem cell Anatomy 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 210000003205 muscle Anatomy 0.000 description 2
- 230000003387 muscular Effects 0.000 description 2
- 210000000440 neutrophil Anatomy 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 210000000426 patellar ligament Anatomy 0.000 description 2
- 229960001412 pentobarbital Drugs 0.000 description 2
- WEXRUCMBJFQVBZ-UHFFFAOYSA-N pentobarbital Chemical compound CCCC(C)C1(CC)C(=O)NC(=O)NC1=O WEXRUCMBJFQVBZ-UHFFFAOYSA-N 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 230000035755 proliferation Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 239000012192 staining solution Substances 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 210000004304 subcutaneous tissue Anatomy 0.000 description 2
- 230000009885 systemic effect Effects 0.000 description 2
- 230000001225 therapeutic effect Effects 0.000 description 2
- 231100000331 toxic Toxicity 0.000 description 2
- 230000002588 toxic effect Effects 0.000 description 2
- 231100000397 ulcer Toxicity 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 241000251468 Actinopterygii Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100008048 Caenorhabditis elegans cut-4 gene Proteins 0.000 description 1
- 241000269333 Caudata Species 0.000 description 1
- 235000005979 Citrus limon Nutrition 0.000 description 1
- 244000131522 Citrus pyriformis Species 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 238000000116 DAPI staining Methods 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 1
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 1
- 101710145505 Fiber protein Proteins 0.000 description 1
- 208000005422 Foreign-Body reaction Diseases 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 229920002683 Glycosaminoglycan Polymers 0.000 description 1
- 101000599951 Homo sapiens Insulin-like growth factor I Proteins 0.000 description 1
- 101150088952 IGF1 gene Proteins 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 1
- 102000004218 Insulin-Like Growth Factor I Human genes 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- PIWKPBJCKXDKJR-UHFFFAOYSA-N Isoflurane Chemical compound FC(F)OC(Cl)C(F)(F)F PIWKPBJCKXDKJR-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 1
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229920000715 Mucilage Polymers 0.000 description 1
- 206010062575 Muscle contracture Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102100024616 Platelet endothelial cell adhesion molecule Human genes 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 241000283984 Rodentia Species 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- 208000010040 Sprains and Strains Diseases 0.000 description 1
- 208000023835 Tendon disease Diseases 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 1
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 1
- 102000009618 Transforming Growth Factors Human genes 0.000 description 1
- 108010009583 Transforming Growth Factors Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 238000005411 Van der Waals force Methods 0.000 description 1
- 206010051373 Wound haemorrhage Diseases 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 230000009692 acute damage Effects 0.000 description 1
- 230000010398 acute inflammatory response Effects 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 230000003110 anti-inflammatory effect Effects 0.000 description 1
- 229940030225 antihemorrhagics Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 239000003125 aqueous solvent Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000003385 bacteriostatic effect Effects 0.000 description 1
- 210000000270 basal cell Anatomy 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000000227 bioadhesive Substances 0.000 description 1
- 230000007227 biological adhesion Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 239000003918 blood extract Substances 0.000 description 1
- 230000036770 blood supply Effects 0.000 description 1
- 210000000459 calcaneus Anatomy 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000009693 chronic damage Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 208000006111 contracture Diseases 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000003235 crystal violet staining Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 229960003067 cystine Drugs 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 230000029087 digestion Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- HHEAADYXPMHMCT-UHFFFAOYSA-N dpph Chemical compound [O-][N+](=O)C1=CC([N+](=O)[O-])=CC([N+]([O-])=O)=C1[N]N(C=1C=CC=CC=1)C1=CC=CC=C1 HHEAADYXPMHMCT-UHFFFAOYSA-N 0.000 description 1
- 230000002500 effect on skin Effects 0.000 description 1
- 230000005672 electromagnetic field Effects 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 210000003722 extracellular fluid Anatomy 0.000 description 1
- 210000002744 extracellular matrix Anatomy 0.000 description 1
- 238000009213 extracorporeal shockwave therapy Methods 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000001415 gene therapy Methods 0.000 description 1
- 238000002695 general anesthesia Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 210000000224 granular leucocyte Anatomy 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 230000003660 hair regeneration Effects 0.000 description 1
- 230000003659 hair regrowth Effects 0.000 description 1
- 239000002874 hemostatic agent Substances 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 206010020718 hyperplasia Diseases 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000010832 independent-sample T-test Methods 0.000 description 1
- 230000002757 inflammatory effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 229960002725 isoflurane Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- 230000002147 killing effect Effects 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000009630 liquid culture Methods 0.000 description 1
- 231100001252 long-term toxicity Toxicity 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000008176 lyophilized powder Substances 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 230000001338 necrotic effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000000399 orthopedic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000036407 pain Effects 0.000 description 1
- 206010033675 panniculitis Diseases 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 210000004417 patella Anatomy 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 230000002980 postoperative effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000000275 quality assurance Methods 0.000 description 1
- 238000013441 quality evaluation Methods 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 238000011552 rat model Methods 0.000 description 1
- 238000006479 redox reaction Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000007634 remodeling Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000006748 scratching Methods 0.000 description 1
- 230000002393 scratching effect Effects 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000037380 skin damage Effects 0.000 description 1
- 230000036560 skin regeneration Effects 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 235000000891 standard diet Nutrition 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 210000000106 sweat gland Anatomy 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 1
- 230000035924 thermogenesis Effects 0.000 description 1
- 210000002303 tibia Anatomy 0.000 description 1
- 229940075469 tissue adhesives Drugs 0.000 description 1
- 230000008467 tissue growth Effects 0.000 description 1
- 238000011200 topical administration Methods 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 210000003606 umbilical vein Anatomy 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 210000003934 vacuole Anatomy 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- ACWBQPMHZXGDFX-QFIPXVFZSA-N valsartan Chemical class C1=CC(CN(C(=O)CCCC)[C@@H](C(C)C)C(O)=O)=CC=C1C1=CC=CC=C1C1=NN=NN1 ACWBQPMHZXGDFX-QFIPXVFZSA-N 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/0005—Ingredients of undetermined constitution or reaction products thereof
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J193/00—Adhesives based on natural resins; Adhesives based on derivatives thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K35/00—Medicinal preparations containing materials or reaction products thereof with undetermined constitution
- A61K35/56—Materials from animals other than mammals
- A61K35/65—Amphibians, e.g. toads, frogs, salamanders or newts
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0031—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L24/00—Surgical adhesives or cements; Adhesives for colostomy devices
- A61L24/001—Use of materials characterised by their function or physical properties
- A61L24/0036—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0057—Ingredients of undetermined constitution or reaction products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/008—Hydrogels or hydrocolloids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L26/00—Chemical aspects of, or use of materials for, wound dressings or bandages in liquid, gel or powder form
- A61L26/0061—Use of materials characterised by their function or physical properties
- A61L26/0085—Porous materials, e.g. foams or sponges
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P17/00—Drugs for dermatological disorders
- A61P17/02—Drugs for dermatological disorders for treating wounds, ulcers, burns, scars, keloids, or the like
Definitions
- the invention belongs to the field of biological materials, relates to wound treatment, and specifically relates to a medical adhesive prepared from natural ingredients as raw materials, and a preparation method and application thereof.
- Closure of surgical wounds is an essential part of surgical treatment. Clinically, more than 60% of wounds are closed with sutures and skin staples.
- the second visits due to stitch removal not only increase the number of medical visits for patients, but also may cause scar proliferation, contracture, and foreign body infection due to tension.
- the use of seamless methods such as biomedical glue can simplify the operation steps, shorten the recovery time, and improve the quality of patient care.
- Dense connective tissue refers to a tissue composed of a small amount of matrix and cells, and many dense fibers. The fibers are thick and densely arranged. The main function of support and connection is the tissue, including the dermis, tendons, and ligaments. Tendons include the Achilles tendon, which connects the calf muscles to the calcaneus, and the patellar tendon, which connects the kneecap to the tibia. Ligaments include extracapsular ligaments located around the joint cavity and intracapsular ligaments located in the joint cavity.
- Damage to dense connective tissue is a common orthopedic disease. Many reasons can cause damage to dense connective tissue, including overuse, sprains, disease, and general aging. With the extension of human life span and more and more middle-aged people participating in sports or strenuous exercise, the incidence of tendon injury and ligament injury is increasing year by year. Tendon injuries can be divided into acute and chronic injuries. The causes include internal or external factors. Both internal factors or a combination of internal and external factors can cause tendon injuries. Tendon injuries mainly occur in sports and workplaces. This usually leads to pain, stiffness and tendon strength damage in the affected area. Achilles and patellar tendon injuries are the two most common sports tendon injuries.
- Tendon injury or ligament injury is still a serious and unresolved problem clinically.
- ruptures or tears of tendons or ligaments are usually treated with surgical methods such as sutures.
- tendon or ligament injury is prone to complicated infection and slow healing.
- tendon injuries can lead to long-term insufficiency, and the disability caused by it may last for several months regardless of the nursing method.
- Only a few clinical controlled trials have been completed for the existing treatment and management methods for tendon disorders. Most of the methods are still pre-clinical research, and the results of some treatments are controversial.
- TGF-0 Transforming growth factor-beta, transforming growth factor and IGF-1 (Ins v Lin-like growth factor 1, Ins v Lin-like growth factor 1, Insulin-like growth factor 1) expression promotes the healing of tendons; in the rat Achilles tendinitis model, 17 Hz pulsed magnetic fields and electromagnetic fields can improve the arrangement of collagen fibers; in addition, certain cytokines and growth factors such as TGF-P and IGF- 1.
- MSC Mesenchymal stem cells
- fibrin can be used with sutures in cosmetic sutures to reduce the number of stitches and scarring, it is difficult to use alone because of its slow curing and poor mechanical strength. It can be seen that the application range of the above two medical adhesives is narrow, and they are completely unsuitable for dense connective tissue adhesives.
- Andrias davidianus Blanchard is a large-scale amphibian, caudata, and cryptosaccharidae. It is also commonly known as "baby fish" and is a second-level national protected animal. When Da Rui encounters an external stimulus, the surface layer of the body will secrete a kind of mucus. At present, research results show that it is possible to prepare adhesives or hemostatic agents using dry skin mucus powder. Regarding the preparation of adhesives from dry skin mucus powder, the Chinese Invention Patent (CN104815349B) discloses a method for preparing adhesives from Darui mucus, which only initially discloses the adhesive properties of Darui mucus after Y-ray disinfection.
- Another Chinese Invention Patent Publication No. CN106581736A only briefly discloses a method for manufacturing Darui slime dry powder, and lacks scientific evidence to support the effect of this method.
- Another Chinese Invention Patent Publication No. CN108421080A discloses a preparation method of Darui secretion hydrogel, which requires external pressure to be applied in the process of preparing the gel. The solvent system is only water and can only be formed into a film, which is inconvenient to use, and There is a lack of scientific evidence to support the experimental effects of this method in animals.
- the present invention provides a medical adhesive containing Darui skin mucus and its preparation method and application to solve the aforementioned technical problems.
- the medical adhesive proposed in the present invention utilizes the strong adhesive properties of Darui skin mucus. After it is prepared into a freeze-dried powder and sterilized, it is applied to the healing treatment of surgical wounds or other wounds. Its uses include skin system and bones. Various tissues of system and muscular system, especially for dense connective tissue, bring significant effects.
- the medical adhesive provided by the present invention has better safety, better biocompatibility, degradability, regeneration promoting effect, antibacterial and hemostatic effects, and is suitable as a tissue adhesive or dressing on surgical wounds or wounds. It is a material that meets the aforementioned requirements for medical adhesives.
- the present invention provides a medical adhesive, which contains dry skin mucus powder and aqueous solution; the weight ratio of dry skin mucus powder and aqueous solution is between 1:1 and 1:6.
- the aforementioned medical adhesive is gel-like.
- the weight percentage of the aforementioned dry powder of Dasha skin mucus in the medical adhesive ranges from 14.2% to 50%.
- the components of the aqueous solution of the aforementioned medical adhesive are selected from distilled water, physiological buffer, chlorhexidine, blood, plasma, blood cell preparations, platelet-rich plasma , PRP for short), platelet-rich fibrin (PRF for short), or any combination of the above.
- the components of the physiological buffer contained in the aforementioned aqueous solution are selected from physiological saline, phosphate buffer, Tris buffer, citrate buffer or any combination of the foregoing.
- the aforementioned gel-like medical adhesive has a porous structure.
- the average diameter of the pores of the porous structure is less than 116 y m.
- the average diameter of the pores of the aforementioned porous structure is between 6 ⁇ m and 37 ⁇ m.
- the particle size of the dry powder of large acute skin mucus contained in the aforementioned medical adhesive is -20 mesh.
- the particle size of the dry powder of Dasha skin mucus contained in the aforementioned medical adhesive is -60 mesh to +300 mesh.
- the present invention provides a use of a medical adhesive to apply the medical adhesive to the adhesion, repair and healing of wounds.
- the wound surface applicable to the aforementioned use includes the wound surface located in the epidermis, the real skin and the subcutaneous connective tissue.
- the wound surface suitable for the aforementioned use includes a wound surface located in skeletal muscle, tendon, ligament, bone and/or connective tissue around the bone.
- the dry powder of Dasha skin mucus and an aqueous solution are directly applied to the wound surface, thereby directly forming the medical adhesive on the wound surface.
- the dry powder of Da Rui skin mucus and an aqueous solution are used in advance to prepare the medical adhesive, which is then used for wound application or for sealing Wound.
- the present invention provides a preparation method for preparing the aforementioned medical adhesive, which is obtained through the following steps: providing a dry skin mucus powder; sterilizing the dry skin mucus powder; and
- the sterilized dry skin mucus powder and the aqueous solution are mixed to form a gel to form a gel-like medical adhesive, wherein the medical adhesive contains the dry skin mucus powder and the aqueous solution in parts by weight
- the ratio is 1:1 to 1:6.
- the weight percentage of the dry powder of Darui skin mucus in the medical adhesive ranges from 14. 2% to 50%.
- the step of providing the dry powder of the acute skin mucus further comprises: obtaining the acute skin mucus from the living body; freezing the acute skin mucus Drying; and grinding and crushing the freeze-dried Darui skin mucus to form Darui skin mucus dry powder.
- the particle size of the dry powder of Dasha skin mucus is -20 mesh.
- the particle size of the dry powder of Dasha skin mucus is -60 mesh to +300 mesh.
- sterilization is achieved by using ethylene oxide.
- the components of the aqueous solution are selected from distilled water, physiological buffer, chlorhexidine, blood, plasma, blood cell preparations, platelet-rich plasma, platelet-rich Plasma fibrin or any combination of the above.
- the components of the physiological buffer are selected from distilled water, physiological buffer, chlorhexidine, blood, plasma, platelet-rich plasma, platelet-rich plasma fiber Protein or any combination of the above.
- Figure 1 shows a flow chart of the steps in the preparation method of the medical adhesive of the present invention.
- FIG 2 shows the Darui described in Example 1 of the present invention (a); the mechanical scraping method is used to obtain Darui skin mucus (b); the dry powder of Darui skin mucus (c); the sticky drawing of the medical adhesive on the tissue The form (d); the gel form of dry powder of Darui skin mucus (e).
- Fig. 3A shows the scanning electron microscope (SEM) of Da Rui skin mucus dry powder (SSAD powder) with different particle sizes obtained through different sieving in Example 2 of the present invention and after gelation, hydration into a hydrogel state image. From this image, we can see the size of the pore size after gelling.
- SEM scanning electron microscope
- Figure 3B shows the pore size distribution of the porous structure in the medical adhesive with different gel forming times (2h and 12h) in Example 2 of the present invention.
- Fig. 3C shows the sterilization effect data graph (a) and the adhesion strength data graph (b) achieved by the various sterilization schemes of Example 2 of the present invention.
- Figure 4B shows the in vitro adhesion performance comparison between the medical adhesive of Example 3 of the present invention and two common commercial commercial medical adhesives, where pig skin is used as the biological matrix to test the shear strength after adhesion of the subcutaneous fat surface of the pig: modified Shear test standard method (ASTM F2255-05) Schematic diagram (i); representative strain-stress curve (ii); quantitative comparison of adhesive strength of different medical adhesives (iii) (statistical difference: ** P á 0. 01, *** P á 0. 001).
- Figure 4C shows the comparison of the in vitro adhesion performance of the medical adhesive of Example 3 of the present invention and two common commercial commercial medical adhesives, where pig skin is used as the biological matrix, and the modified three-point bend test method is used to determine the pig skin after the medical adhesive is bonded.
- Elasticity and ductility A schematic diagram of the improved three-point bending test method for testing the elasticity and ductility of pig skin after bonding (i); a representative strain-displacement curve (ii); different medical adhesives are in fixed deformation (11. 5%)
- Quantitative comparison iii) of the required load force (statistical difference: * P á 0. 05, ** P á 0. 01, *# P á 0. 001).
- Fig. 5A shows the results of the cell scratch test of the medical adhesive of Experimental Example 3 of the present invention.
- Fig. 5B shows the statistical analysis results of the cell scratch test of the medical adhesive in Experimental Example 3 of the present invention.
- Figure 5C shows the results of the transwel l cell experiment of the medical adhesive of Experimental Example 3 of the present invention.
- Fig. 6 shows a comparison diagram of in vivo effects of wound closure methods between the SSAD treatment group and the other 4 groups in Example 4 of the present invention.
- Fig. 6a shows the images of rat skin incisions on days 0, 1, 3, and 5
- Fig. 6b shows the H&E stained images of the wound tissues, and the epidermis (E), dermis (D), and scab (SC) are indicated by labels.
- Incision position ( ⁇ ) wound area (marked with a frame), undegraded cyanoacrylate adhesive (CA) and fibrin glue (FG).
- CA undegraded cyanoacrylate adhesive
- FG fibrin glue
- FIG. 7 shows the healing rate and quality evaluation of the full-thickness skin gap in the diabetic SD rats in Example 5 of the present invention.
- Figure 7a shows the visual observation of wound healing on days 3, 7, 14, and 21);
- Figure 7b shows the results of statistical analysis of wound healing on days 3, 7, 14, and 21;
- Figure 7d shows the statistical results of quantitative detection of skin thickness of each group of wounds;
- Figure 7e shows the results of Masson staining of skin defects on the 21st day , And correspondingly mark hair follicles (HF), sebaceous glands (SG), blood vessels (BV);
- Figure 7g shows angiogenesis-related markers (3) 31 and a -SMAi3 staining
- Figure 8 shows the histological analysis of the degradation of the medical adhesive in the body of Example 6 of the present invention.
- Fig. 9 shows the operation diagram of the rat Achilles tendon dissected defect model for evaluating the therapeutic effect of the medical adhesive on the tendon in Example 9 of the present invention.
- Figure 10 shows a comparison picture of the maximum footprint length (the maximum length of the sole of the foot) of SD rats in Example 9 of the present invention.
- the upper side (right leg) is the experimental leg. (Compared with the normal control group, it can be seen that the shorter the footprint length is The better the healing).
- Figure 11 shows the step length (Stride length, the distance between the midpoints of two consecutive footprints on the same foot) in Example 9 of the present invention. (Compared with the normal control group, it can be seen that the larger the step length, the better the healing ).
- Figure 12 shows Example 9 of the present invention, the standing time of the experimental side in the walking cycle (refers to the time that the sole of the foot touches the ground in one walking cycle).
- the wider the horizontal frame the longer the contact time (compared to the normal control group, we can see that, The shorter the contact time, the better the healing).
- Figure 13 shows the HE stained photograph of the Achilles tendon section of the right hind leg (experimental side) of the SD rat in Example 9 of the present invention 28 days after the operation.
- the collagen arrangement in the tendon was disordered, and the cells did not show obvious orientation
- the SSAD treatment group the collagen arrangement in the tendon was seen to be consistent, and the cells showed obvious orientation.
- the technical solution adopted by the present invention is to provide a medical adhesive formed by mixing dry powder of Darui skin mucus with an aqueous solution after quality confirmation and sufficient sterilization.
- the weight ratio of medical adhesives containing dry skin mucus powder and aqueous solution is between 1:1 and 1:6, that is, 1 part dry skin mucus powder and 1 to 6 parts aqueous solution are combined (in the following description, The weight ratio of Darui's dry skin mucus powder and aqueous solution, referred to as "powder to water ratio").
- the aqueous solution can be pure water or an aqueous solution containing biocompatible substances, and the term “biocompatible substances” mainly means that the aqueous solution prepared by adding biocompatible substances does not cause the inactivation of the active ingredients in the skin mucus of Da Rui.
- the aqueous solution can be selected from any one or more of the following: distilled water, deionized water, physiological saline (0.9% NaCl buffer), phosphate buffer (PBS), Tris buffer (TBS), lemon Salt buffer, chlorhexidine aqueous solution (preferably 2%) can be accepted clinically.
- the aqueous solution also contains human whole blood and human blood extracts containing water, including plasma, serum, plasma, blood cell preparations, platelet-rich plasma (PRP), platelet-rich plasma fibrin (PRF), etc. are also applicable.
- blood or body fluid exuded from the wound surface or wound can also be used as a part of the aqueous solution.
- the formulation of the medical adhesive provided by the present invention may also contain other ingredients that have hemostasis, anti-inflammatory or promote tissue growth, and the present invention does not limit this.
- the ratio of the dry skin mucus powder and the aqueous solution, as well as the components and concentrations contained in the aqueous solution are designed so that the medical adhesive has an ideal porous structure, and has good biocompatibility, and is suitable for application to the human body Adhesion to other animal tissues, especially dense connective tissue, skin tissue, subcutaneous fat tissue, skeletal system or the adhesion between the aforementioned different types of tissues.
- the preparation method of the medical adhesive includes the following steps: Obtain mucus from Darui skin, freeze-dry the mucus; Grind and pulverize the freeze-dried Darui skin mucus, and sieve it to obtain Da Rui skin mucus dry powder with a particle size that meets the requirements is one of the conditions for quality assurance; Da Rui skin mucus dry powder is sterilized and stored for future use.
- the present invention provides a method for preparing a medical adhesive, which includes the following steps.
- Step 1 Obtain mucus from the skin of Darui, and freeze-dry the mucus;
- Step 2 Crush the freeze-dried mucus in a frozen state, and then sieve to obtain powder with a specific particle size range;
- Step 3 Sterilize the powder, That is, the dry skin mucus powder of Darui is obtained;
- step 4 the sterilized dry skin mucus powder and the aqueous solution are mixed in a weight ratio of 1:1 to 1:6 to form a gel-like medical adhesive.
- the mixing ratio of the dry skin mucus powder and the aqueous solution used in the preparation of the medical adhesive is 1:2 to 1:6.
- the method of collecting mucus in the aforementioned step 1 should be carried out strictly in accordance with China's animal protection law, which can avoid the permanent disability of Da Rui without killing Da Rui. Either scratching or electrical stimulation can be used. You can also collect mucus after putting to death a commercial farmed Da Rui. The present invention does not limit this.
- the collected Darui skin mucus was freeze-dried, pulverized by a ball mill at a low temperature, and then ground into a fine powder.
- sieves with different mesh sizes can be used for sieving.
- the present invention preferably adopts the Taylor standard sieve system commonly used in China to define the number of sieving meshes.
- the division is based on the 200-mesh sieve size of 0.074mm as the benchmark.
- the detailed calculation method This is the conventional knowledge of those skilled in the art and will not be repeated here.
- the plus or minus sign before the mesh indicates whether the powder can leak through the mesh of the mesh after grinding or crushing, and the negative number indicates that the powder can leak through.
- the mesh of this mesh means that the particle size of the powder obtained after sieving is smaller than the mesh size; while a positive number means that the powder cannot leak through the mesh of this mesh, that is, the particle size of the powder obtained after sieving is larger than the mesh size.
- the particle size of the freeze-dried dry powder of Darui skin mucus of the present invention is -20 mesh, which means that the sieve number is greater than 20 meshes (the corresponding actual particle size is approximately Less than 850 ⁇ m) ;
- the particle size of the lyophilized powder of Darui skin mucus is -60 mesh to 300 mesh (the actual particle size obtained through experiments is roughly 50-250 ⁇ m;).
- a sieve with a mesh size greater than 20 is used to sieve.
- a dry powder of large sharp skin mucus with a particle size of not more than 850 ⁇ m can be obtained.
- the powder can be stored in a refrigerator below -20 ° C for later use.
- step 3 the powder obtained in step 2 is sterilized and disinfected.
- This step is an important step in applying the product to clinical use, and is critical to the performance of clinical use.
- non-sterilized Darui skin mucus-related products cannot be directly used in clinical practice.
- the mucus secreted on the surface of the large sharp body of the living body may contain viruses or germs that are potentially harmful to the human body when collected in step 1.
- the virus or germs cannot be completely inactivated by freeze-drying in step 2. If it is directly used in wounds Surface, will increase the possibility of wound infection.
- the main components of Darui skin mucus are active ingredients such as proteins, peptides, mucopolysaccharides and antibacterial peptides.
- the best sterilization method will neither destroy or change the structure of biological macromolecules nor cause dry powder of Darui skin mucus. Adhesion performance and biological activity are reduced.
- the disinfection and sterilization methods of Da Rui skin mucus-related products include low temperature, ultraviolet rays, cobalt radiation, and disinfectant sterilization methods.
- the sterilization and disinfection in step 3 of the present invention is an ethylene oxide sterilization method.
- the dry powder of Darui skin mucus is mixed with an aqueous solution to form a gel to form a gel-like medical adhesive.
- Aqueous solutions including but not limited to distilled water, deionized water and/or physiological buffers, such as physiological saline (NaCl buffer), phosphate buffer (PBS), Tris buffer (TBS), citrate buffer; May contain 2% chlorhexidine, human whole blood, platelet rich plasma (PRP), platelet rich plasma fibrin (PRF), plasma and
- the present invention further provides a use of a medical adhesive, which specifically refers to use in the adhesion, repair and healing of wounds.
- a medical adhesive which specifically refers to use in the adhesion, repair and healing of wounds.
- the properties of the medical adhesive according to the present invention are particularly suitable for wounds of dense connective tissue.
- the wounds include but are not limited to wounds located in the epidermis, dermis and subcutaneous connective tissue; it must be particularly emphasized that the medical adhesive More particularly, it can meet the needs of wound adhesion in the skeletal system and the muscular system. Therefore, the wound surface includes but is not limited to the wound surface located in the connective tissue around the skeletal muscle, tendon, ligament, bone and/or skeletal muscle.
- Method 1 According to the bleeding and body fluid exudate from the wound or wound, directly apply an appropriate amount of dry skin mucus powder and an appropriate amount of aqueous solution to gel directly on the wound surface to form a gel to achieve better wound adhesion. .
- the preferred method is to include the volume of wound or wound bleeding and body fluid exudate into the estimation, then apply an appropriate amount of the aqueous solution, and select an appropriate powder-to-water ratio to apply again to maintain a better The wound adhesion effect. If the volume of bleeding and body fluid exudate from the wound surface or wound and the applied dry powder of Dasha skin mucus can be smoothly gelled and achieve a better wound adhesion effect, no additional aqueous solution is required.
- Method 2 According to 1 part of Dasha skin mucus dry powder, mixed with 1 ⁇ 6 parts by weight of aqueous solution to form a gel of any shape, which can meet the special needs of the wound or wound (three-dimensional shape, surface area, Thickness, etc.) to meet the treatment needs.
- aqueous solution for wounds with heavier bleeding or more tissue fluid exudation, choose an appropriate ratio of powder to water so that after the gel is applied to the wound, the tissue fluid from the wound can be absorbed and swelled to form a gel to stop bleeding, maintain wet adhesion and maintain the wound The effect of drying.
- Step 3 Use ethylene oxide to sterilize the aforementioned dry powder.
- the dry powder obtained above is packaged into a special sterilization packaging bag for ethylene oxide, or into an open container and a cotton ball is loosely inserted into the mouth of the container and then packaged in a special sterilization packaging bag for ethylene oxide.
- E0 ethylene oxide
- the sterilization time and temperature are based on the principle of not destroying the performance of the dry powder, and there is no special restriction.
- the sterilized dry powder is then placed, waiting for the remaining ethylene oxide to evaporate.
- the evaluation and effect of different sterilization methods are evaluated as follows.
- the sterilization effect of using low temperature and ultraviolet light is suspected of incomplete sterilization.
- the sterilization treatment time is long, and the dry skin mucus powder that has been sterilized by low temperature or ultraviolet light is prone to hydrolysis.
- Shorter; the Y-ray method involves radiation and is more complicated to operate, and it will reduce the adhesion performance of Da Rui skin mucus related products.
- ethylene oxide sterilization method it is preferable to refer to the national standard GB 18279-2000 "Ethylene Oxide Sterilization and Routine Control of Medical Devices" to perform specific sterilization steps: freeze the crushed Da Rui skin mucus
- the dry powder is packaged in a special sterilization packaging bag for ethylene oxide, or after being put into an open container, the mouth of the container is loosely stuffed with cotton balls, and packaged in a special sterilization packaging bag for ethylene oxide.
- E0 ethylene oxide
- sterilization parameters 100% ethylene oxide, 54 degrees Celsius, sterilization for 60 minutes, analysis for 15 hours.
- Ethylene oxide sterilization residue evaluation The residue of ethylene oxide (residual rate should be less than 10ppm) After passing the inspection, That completes the overall sterilization step.
- the sterilization performance of the above-mentioned ethylene oxide sterilization method is compared with other current sterilization schemes as shown in Figure 3C.
- the results show that the sterilization effect of ethylene oxide disinfection method and cobalt radiation disinfection method is better than low temperature sterilization (including -20 ° C, -50 ° C, -80 ° C and liquid nitrogen) and ultraviolet light (as shown in Figure 3C).
- low temperature sterilization including -20 ° C, -50 ° C, -80 ° C and liquid nitrogen
- ultraviolet light as shown in Figure 3C.
- the dry powder (usually abbreviated or labeled as "SSAD") used in the following embodiments is obtained through the above steps.
- the above-mentioned qualified dry powder of Darui mucilage is mixed with the selected aqueous solution to obtain a gel-like medical adhesive.
- the weight ratio of the dry skin mucus powder and the aqueous solution for the medical adhesive of the present invention is 1:1 to 1:6, and the preferred weight ratio is 1:2 to 1:6, that is, 1 part of dry skin mucus powder and 2 parts It is obtained after mixing up to 6 parts by weight of the aqueous solution.
- the preferred weight content of the dry powder of Da Rui skin mucus is 14. 2% to 50%.
- the present invention designs the weight ratio of the dry powder of Darui mucus and the aqueous solution to give the medical adhesive of the present invention special, practical and excellent gel properties. Specifically, when the dry skin mucus powder of Darui is mixed with an aqueous solution, the polypeptide cross-linking network swells rather than dissolves. After mixing, it will change the entangled protein network driven by hydrogen bonds, disulfide bonds, and conjugate bonds of the dry skin mucus powder of Darui. , A gel is formed (as shown in Figures 2d and 2e). This process is called "gelation". During the gel forming process, the amino acid residues of the polypeptide chain undergo a conformational transformation to form a gel-like medical adhesive.
- the phenolic hydroxyl and amino groups are used as hydrogen bond donors to transform to a high surface energy or hydrophilic interface through hydrogen bonds and van der Vals force promotes biological adhesion.
- the benzene ring contacts a low surface energy or hydrophobic interface, it will form a strong interaction with the substrate through Jr-Jr electrons or cation-Jr interactions.
- the wound interface of human or animal is rich in extracellular matrix such as protein
- it is necessary to select an appropriate ratio of powder to water when preparing the gel, so that the active substance and aqueous solution in the medical adhesive It has a synergistic effect with the intercellular fluid in the wound tissue, so that the medical adhesive and the wound form the best adhesion through hydrogen bonds and van der Waals forces.
- the aqueous solution can be either pure water or a clinically acceptable aqueous solution, which may contain biocompatible substances appropriately, and the selection of biocompatible substances will not cause the active and effective ingredients in the skin mucus to be inactivated The sum does not affect the gel formation. Therefore, in addition to using artificially prepared aqueous solutions, blood and tissue fluid exuded from wounds or wounds can also be used as aqueous solutions or mixed with the aforementioned aqueous solutions to form an aqueous solution.
- the gelation of the medical adhesive is evaluated at 4 ° C or 37 ° C. After mixing 100 mg of dry skin mucus powder and 200 y L PBS (aqueous solution), slowly pour it into the mold and let it stand at 4 ° C or 37 ° C for more than 3 minutes, until it condenses into a gel As a medical adhesive.
- aqueous solution aqueous solution
- the medical adhesive provided by the present invention has a porous structure after being gelled, so that it can facilitate the exchange of nutrients and metabolites in the tissue fluid during clinical application.
- the average diameter of the holes of the three-dimensional honeycomb structure decreased with the decrease of the particle size of the dry skin mucus powder used; the correlation between the average diameter of the holes and the proportion of water powder was not statistically significant. Significantly affect the average diameter of holes. Among them, the average diameter of the pores formed by the hydration of the dry powder of the large sharp skin mucus with a particle size of -14 mesh is 116 microns, the average diameter of the pores with a particle size of -60 mesh is 37 microns, and the average pore size of the pores with a particle size of -300 mesh is 6 microns. In addition, as the gel forming time increases, the porous structure becomes more obvious and the pore size becomes more uniform.
- Example 3 In vitro determination of the adhesive strength of medical adhesives to tissues
- a universal testing machine (MTS Criterion, Model 43, USA) was used for laboratory shear test.
- the specific method is to use pig skin as a tissue matrix, and cut the pig skin into 1 X 8 square cm rectangles.
- cyanoacrylate (Baiyun Medical Adhensive® Guangzhou, China) (labeled “Commercial Adhesive” in the photo), fibrin glue (FIBINGLURAAS® Shanghai, China) (labeled "Bio Glue” in the photo) and Da Rui skin mucus dry powder
- the prepared medical adhesive (labeled "SAAD treatment group” in the picture) is bonded in two ways: one is incision aligning adhesion (incision edge is cut ⁇ edge), the other is subcutaneous fat and subcutaneous fat adhesion
- FIGS Criterion Model 43, USA
- the specific method of the test is to weigh 30 mg of dry skin mucus powder on pigskin, and add 60-180 ⁇ L of PBS with a pipette (approximately 1: 2 to 1: 6 by weight) , Form a medical adhesive.
- the biological glue group and the commercial glue group of the control test used fibrin glue and cyanoacrylate respectively according to the manufacturer's instructions to bond pig skin in the two ways mentioned above. After bonding for two hours, test the bonding ability of the bonding parts on a universal testing machine.
- the lap shear test is used to determine the shear strength of the three groups of materials according to ASTM F2255-05.
- the shear adhesion resistance can reach 40. 71 soil 3.71 kPa in the commercial glue group, and the adhesion strength of the bio glue group is only 3. 76 ⁇ 0 16 kPa, while in the SSAD treatment group it was 26. 66 ⁇ 8. 22 kPa (as shown in Figure 4A-ii and Figure 4A-iii).
- This result shows that, compared with the biological glue group, the difference in the adhesive strength of the SSAD treatment group (P á 0. 05) and the effect of the commercial glue group (P á 0.
- the adhesion ability of the SSAD treatment group was significantly better than that of the commercial glue group and the biological glue group.
- the SSAD treatment group has significant anti-shear adhesion ability in the adhesion of subcutaneous fat, the shear adhesion is about 26. 11 soil 7.72 kPa, and the other two adhesions The shear adhesion force of the agent is less than 7kPa.
- the three-point bonding test is to make a 2 cm incision in the middle of the pigskin (as shown in Figure 4C-i), and load the bonded sample with a 100N load cell at a speed of 1mm/min until it is completely separated to detect the stress that needs to be loaded to cause the same displacement (Load), and then get a representative strain_displacement curve (as shown in Figure 4C-ii) and the quantitative load force required for fixed deformation (as shown in Figure 4C-iii).
- a universal testing machine (MTS Criterion, Model 43, USA) was used in this embodiment to perform a laboratory shear test.
- the specific method is to use bone as the tissue matrix, cut the rabbit femur at the middle 1/2 with bone scissors, and use a medical adhesive made of dry skin mucus powder to perform counter-bonding. After bonding for 10 minutes, perform a shear test , The final bond strength result is 38.5 ⁇ 11. 2KPa.
- the aerobic bacteria are Escherichia coli and Staphylococcus aureus.
- the culture method is as follows: Configure the extract for the aerobic bacteria experiment. After 24 hours of extraction, centrifuge the extract at 3000r/min for 3 minutes to obtain the final extraction. liquid. Add 10 mL of Da Rui skin mucus extract to a 50 mL centrifuge tube, inoculate 500 ⁇ L of bacterial solution, mix well, and immediately put it into the incubator.
- Porphyromonas gingivalis is selected as the anaerobic bacteria, and the culture method is as follows: configure the extract used in the anaerobic bacteria experiment, after 24 hours of extraction, centrifuge the extract at 3000r/min for 3 minutes to obtain the final extract . Add 10 mL of Da Rui skin mucus extract to a 50 mL centrifuge tube, add 500 ⁇ L sheep blood to each tube according to a 5% concentration, and then inoculate 500 ⁇ L bacterial solution with the same concentration, mix well, and immediately put it into the Oxygen incubator.
- the configuration method of the blank control group is as follows. Aerobic bacteria: Add 10 mL of LB medium to the centrifuge tube, and inoculate the same concentration of bacteria as the experimental group as a blank control group. Anaerobic bacteria: Add 10 mL of TSB medium and 500 ⁇ L of sheep blood into the centrifuge tube, and inoculate the same concentration of bacterial solution as the experimental group as a blank control group.
- the skin mucus extract of Da Rui has a significant inhibitory effect on the growth of Porphyromonas gingivalis (anaerobic bacteria), and the inhibitory time can reach more than 5 days.
- Darui skin mucus extract prepared Darui skin mucus extract.
- the method is as follows: Put 200 mg of Darui skin mucus dry powder into 2 mL of deionized water (weight ratio is about 1:10) and soak for 7 days to make the dry powder of Darui skin mucous The soluble substance is fully dissolved, and the supernatant is taken from the liquid to obtain the Darui skin mucus extract. Prepare 1 mg/mL DPPH ethanol solution on site.
- the experimental group used 1 mL of Da Rui skin mucus extract + 1 mL of DPPH ethanol solution; the control group used 1 mL of pure water + 1 mL of DPPH ethanol solution. Adjust the spectrophotometer to zero with ethanol, and measure at 0.5 hour, 1 hour, and 2 hours respectively With a wavelength of 517 nm, the absorbance value of the control group is A 2 for the experimental group.
- the calculation formula of free radical scavenging rate is formula I, and the measurement results are shown in the table
- a complete medium Take 88 parts of DMEM, 10 parts of fetal bovine serum, 1 part of penicillin and 1 part of streptomycin, and mix them evenly to obtain a complete medium. Then, according to the ratio of 1 mg Da Rui skin mucus dry powder to 1 mL of complete medium, soak the Da Rui skin mucus in the complete medium for 7 days to fully dissolve the soluble substances in the Da Rui skin mucus to obtain a concentration of 1 mg /mL Darui skin mucus extraction medium, and further prepared 5 different concentration ratios containing Darui skin mucus extraction medium, the concentrations were 0.5 mg/mL, 0.1 mg/mL, 0. 05 mg/mL, 0.01 mg/mL, 0.005 mg/mL.
- HUVES and L929 cells were used for testing.
- the cell preparation process was as follows: Umbilical vein endothelial cells (HUVES) and fibroblasts (L929) in the logarithmic growth phase were obtained by trypsin digestion.
- HUVES and L929 cells were used for testing.
- the cell preparation process is: take HUVES and L929 in logarithmic growth phase, trypsinize to obtain a single cell suspension, cell count HUVES 2 X 10 5 cells/mL, L929 count 3 X 10 5 cells/mL, place the transwel l chamber in a 24-well plate, and then inoculate 100 y L cell suspension into the upper transwel l chamber, respectively add 800 y L large sharp skin mucus to the lower chamber for extraction Culture medium, incubate in a 37 ° C incubator for 24 hours, carefully take out the chamber with tweezers, suck up the upper chamber liquid, move it to the wells pre-added with about 800 ⁇ L methanol, fix at room temperature for 30 minutes, take out the chamber, and blot the upper chamber Transfer the cell to a 24-well plate pre-added with about 800 ⁇ L 0.1% crystal violet staining solution, stain for 15-30 minutes at room temperature, after staining
- the difference between 0.01 mg/mL Darui skin mucus extraction medium group and blank control group was statistically significant.
- the 0.1mg/mL Darui skin mucus extraction medium has the most significant promotion effect on the two kinds of cells.
- the experimental results of this experimental example show that different concentrations of Da Rui skin mucus extraction medium have varying degrees of influence on the migration rate of the two types of cells, and the promotion effect of 0.1 mg/mL Da Rui skin mucus is particularly significant .
- SD rats For wound attachment and biocompatibility evaluation in vivo, 30 male Sprague-Dawley (SD) rats (6-8 week old rats, weighing 200 g ⁇ 20 g) were used in this experiment. SD rats were anesthetized by intraperitoneal injection of sodium pentobarbital (30 mg/kg). Shave the back hair and disinfect with iodine and ethanol. Cut 4 2 cm incisions on the back of each SD rat, and use 4-0 non-absorbable sutures to suture the wounds (sutures) and the medical adhesive (SSAD) of the present invention. , Cyanoacrylate (commercial glue), fibrin glue (biological glue) or hemostasis (blank control).
- SSAD medical adhesive
- the SSAD treatment group For the SSAD treatment group, apply 5 mg of dry skin mucus powder to the incision, and then apply 15 y L -20 y L PBS to the incision, gently press the two wound edges to contact for about 30 seconds, and let Da Rui The dry skin mucus powder interacts with PBS to form a gel and fully realize the bonding effect.
- the results show that the cyanoacrylate used in the commercial adhesive group has rigid binding properties compared to the medical adhesive used in the SSAD treatment group, while the medical adhesive is as flexible as normal skin.
- the fibrin glue of the biological glue group also has a certain degree of flexibility, because of its low bonding ability, the bonding incision is easily broken during the movement, and its performance is still inferior to medical adhesives.
- the incision of the bio-glue group showed obvious ulcer surface and undegraded fibrin glue residue at the bottom.
- the incision was filled with a large amount of granulation tissue, and a certain number of polymorphonuclear leukocytes, macrophages, fibroblasts and blood capillaries were seen in the wound site.
- the cyanoacrylates in the commercial adhesive group have the highest adhesion strength in vivo and in vitro, even higher than the strength of natural skin tissue.
- the adhesion of cyanoacrylate to fat is weak, and the bonding interface is harder, and its cytotoxicity cannot be ignored.
- the fibrin-based adhesives in the bioglue group have similar properties to soft tissues, but have low adhesion and cannot be used alone.
- the effect of the SSAD treatment group it showed that the incisions treated by it had better recovery than the incisions treated with conventional sutures, did not cause obvious wound infection or inflammation, and had the effect of promoting cell regeneration.
- the blank control group was covered with gauze; in the SSAD treatment group, the amount of dry skin mucus powder was calculated based on 30 mg/cm 2 defect area, and the dry skin mucus powder was evenly sprinkled on the wound surface to keep the experimental animals In a static state for more than 2 minutes, the dry powder of Darui skin mucus absorbs the blood of the wound (that is, the function of an aqueous solution) and then becomes a gel to form a medical adhesive and cover the wound.
- tissue section analysis was performed on the wound, including skin thickness ratio (STR), average normal skin thickness and skin appendages (such as: hair follicles, sebaceous glands, sweat glands) for statistical analysis.
- STR skin thickness ratio
- average normal skin thickness e.g., average normal skin thickness
- skin appendages e.g., hair follicles, sebaceous glands, sweat glands
- the wound closure rate is calculated using Image J software (National Institute of Heath) according to the following formula (Formula II):
- s Initlal is the initial wound size
- s eum ... t is the current wound size. At least three tests should be performed for each condition.
- the skin thickness ratio (STR) is calculated using Image J software according to the formula (I I I):
- T s is the average skin thickness of the scar group
- T NOTml is the average normal skin thickness.
- the wound closure rate of the treatment group (30.9 ⁇ 8. 2%) was significantly higher than that of the control group (10. 4 ⁇ 1. 5%); On the 7th day, the control group showed that the wound closure rate was 24. 4 ⁇ 5. 5%, while the wound closure rate of the treatment group was 54. 5 ⁇ 12. 4%; on the 14th day, the treatment group The wound closure rate was 80.9 ⁇ 7.5%, while the wound closure rate of the control group was 58.2 ⁇ 11. 4%; on day 21, the wound in the treatment group was almost completely healed (98.1% ⁇ 2. 6 %), and regenerated hair was observed to cover the inner wound, while the wound closure rate in the control group was 71.9% ⁇ 6.4%. Overall, the appearance of the wound in the treated group was significantly improved, while the untreated control group had obvious large and long scars.
- the angiogenesis-related markers CD31 and a-SMA were analyzed, and the result is shown in Figure 7g, where the position of the cell nucleus in the tissue is marked by DAPI staining for comparison. It can be seen from Figure 7g that in the SSAD treatment group 7 days after the operation, the content of CD 31 positive cells was 4.42 ⁇ 0.55%, and the content of CD 31 positive cells in the blank control group was 1.48 ⁇ 0.39%; 14 days after surgery Day, the content of CD 31 positive cells in the Darui skin mucus hydrogel treatment group was 13.03 ⁇ 1.03%, and the content of CD 31 positive cells in the blank control group was 8.
- H&E and Masson staining showed mild inflammation (as shown in Figure 8a and Figure 8b, respectively).
- Three days after implantation a moderate acute inflammatory response was observed in the outermost layer of the implanted medical adhesive, with typical inflammatory cells stained dark blue (ie, relatively dark cells in Figure 8).
- Seven days after implantation the structure of the medical adhesive began to lose its integrity and was almost filled with invading inflammatory cells. There were almost no fibrous capsules observed, indicating that the host had a weak response to the medical adhesive.
- 14 days after implantation there was almost no medical adhesive residue at the implantation site, and the skin structure was as normal as the blank control, indicating that the medical water-based gel can be completely degraded in the body.
- FIG. 8c Use lymphocytes (CD 3) and macrophages (CD 68) markers to stain to evaluate the cell characteristics of the wound healing area.
- i, v, and ix are partial enlarged images of the same field of view 3 days after surgery; in the same way, ii, vi, x represent images of 7 days after surgery; iii, vi i, xi represent 14 days after surgery The images of; iv, vi ii, xi i represent the images of 21 days after surgery.
- aqueous solutions used physiological saline (NaCl buffer), phosphate buffer (PBS), Tris buffer (TBS), citrate buffer, 2% chlorhexidine, blood and platelet rich plasma (PRP), platelet rich Plasma fibrin (PRF) and concentrated growth factor (CGF) were prepared according to the method described in Example 1 of the present invention. See Table 7 for the weight ratio of Da Rui dry skin mucus powder to the above aqueous solution.
- Table 7 Weight ratio of Darui skin mucus dry powder and aqueous solution in this example
- a number of rats were treated with the above-mentioned different aqueous solutions with different powder-to-water ratios of medical adhesives.
- the treatment method was to adhere the medical adhesives to cover the wounds, all of which could adhere to and cover the wounds, showing good adhesion performance.
- the rat heart, liver, spleen, lung, and kidney were taken for histological analysis to evaluate the biocompatibility of the medical adhesive.
- Collect blood samples for blood biochemical analysis including: lactate dehydrogenase (LDH), blood urea nitrogen (BUN), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to evaluate the physiological value of the medical adhesive influences.
- LDH lactate dehydrogenase
- BUN blood urea nitrogen
- ALT alanine aminotransferase
- AST aspartate aminotransferase
- a plurality of different aqueous solutions and medical adhesives with different powder-to-water ratios of the present invention are used to treat multiple cases of rats, and the treatment method is to suture an appropriate amount of medical adhesives under the skin of the rats.
- the rat heart, liver, spleen, lung, and kidney were taken for histological analysis to evaluate the biocompatibility of the medical adhesive.
- Collect blood samples for blood biochemical analysis including: lactate dehydrogenase (LDH), blood urea nitrogen (BUN), alanine aminotransferase (ALT) and aspartate aminotransferase (AST) to evaluate the physiological value of the medical adhesive influences.
- LDH lactate dehydrogenase
- BUN blood urea nitrogen
- ALT alanine aminotransferase
- AST aspartate aminotransferase
- Medical adhesives can adhere to skin incisions and promote wound healing in diabetic models.
- SD rats were used as experimental animals, among which normal rats were used without any operation in the normal group; the SSAD treatment group was treated with the medical adhesive of the present invention after the Achilles tendon was cut; the blank control group was treated with phosphate buffer after the Achilles tendon was cut Saline solution (PBS) treatment, let it heal naturally.
- the specific method is to select 20 3-month-old SPF male SD rats (provided by the Experimental Animal Center of Chongqing Medical University), weigh (280 ⁇ 30 g), and feed them adaptively for 7 days.
- the rats were randomly divided into SSAD treatment group and blank control group, each with 10 rats, and the Achilles tendon was cut by the above-mentioned surgical method.
- the SSAD treatment group was treated with the medical adhesive obtained in Example 1: Take 10 mg of the dry powder of Darui mucus and place it on the stump of the tendon (as shown in Figure 9d), and mix with 30 microliters of PBS to form a hydrogel surrounding the stump of the Achilles tendon (as shown in Figure 9e), close the wound ( Figure 9f)
- the blank control group was instilled with 30 ⁇ l PBS into the stump of the Achilles tendon and the wound was closed.
- the method of the mechanical test is carried out according to the following method. First, separate the complete tendon tissue, and use two scalpel blades to be placed along the tendon tissue up and down by 5 mm. Cut off the surrounding original muscle tissue at all distances while retaining all tendon tissue. Fix both ends with 5-muscles on a universal testing machine (MTS Criterion, Model 43, USA). The parameter used in the mechanical test is 15 mm/min. When the maximum force that the new tendon tissue can withstand is reached, the tendon will rupture, and the machine will record the curve of force and displacement. The maximum rupture strength (in N/mm 2 ) is calculated according to the maximum tensile force and the cross-sectional area of the new tendon tissue measured in advance; the Young's modulus can be calculated according to the slope of the curve.
- the mechanical test showed that the maximum load tension of the tendon in the SSAD treatment group (25.6N ⁇ 8.2N) was significantly higher than the control group (13.8 ⁇ 3.9N) (P á 0.05) 21 days after the operation.
- the cross-sectional area of the tendon in the SSAD treatment group (10.5 ⁇ 4.7 mm2) was still smaller than that of the control group (16.1 ⁇ 5.8 mm2).
- the tendon strength of the SSAD treatment group (2.8 ⁇ 1.1 MPa) was higher than that of the control group (0.9 ⁇ 0.2MPa) (P á 0.05).
- the stiffness of the tendon in the SSAD treatment group (17.7 ⁇ 7.5N/mm) was higher than that of the control group (6.9 ⁇ 1.2N/mm) (P á0.05).
- the elastic modulus (14.6 ⁇ 6.9Mpa) of the SSAD treatment group was higher than that of the control group (3.0 ⁇ 0.6Mpa).
- the maximum load tension of the tendon in the SSAD treatment group was higher than that in the control group (33.3 ⁇ 8.3N) (P á 0.05).
- the cross-sectional area of the tendon in the SSAD treatment group (7.7 ⁇ 1.1mm2) was still smaller than that of the control group (9.3 ⁇ 1.6mm2).
- the tendon strength (7.1 ⁇ 1.9Mpa) of the SSAD treatment group was higher than that of the control group (3.6 ⁇ 0.9MPa) (P á 0.05).
- the stiffness of the SSAD treatment group (28.6 ⁇ 7.8N/mm) was significantly higher than that of the control group (15.3 ⁇ 3. ON/mm) (P á0.05).
- the elastic modulus of the SSAD treatment group (36.3 ⁇ 11.2Mpa) was higher than that of the control group (15.0 ⁇ 3.5Mpa) (P á 0.05) 0
- the maximum load tension of the tendon was 42.3 ⁇ 2.9N
- the strength was 14.0 ⁇ 5.8Mpa
- the stiffness was 29.8 ⁇ 7.3N/mm
- the elastic modulus was 44.4 ⁇ 12.9Mpa.
- the maximum load tension of the tendon in the SSAD treatment group was even higher than that of the normal group, but the area of the SSAD treatment group was larger than that in the normal group (7.7 ⁇ 1.1mm2 VS 3.5 ⁇ 1.2mm2).
- the tendon strength (14.0 ⁇ 5.8Mpa) of the normal group was still much higher than that of the SSAD treatment group (7.1 ⁇ 1.9Mpa), indicating that the quality of the tendon in the normal group was higher than that of the SSAD treatment group.
- the reason why the tendon load in the SSAD treatment group even exceeded that of the normal tendon should be due to early tendon healing with hyperplasia. It shows that the medical adhesive of the present invention can improve the strength of the healed Achilles tendon and reduce the risk of re-fracture.
- the footprint area of rats in the SSAD treatment group (1.68 ⁇ 0.55 cm2) was smaller than that of the control group (2.15 ⁇ 0.33 cm2) (P á0.05).
- the duty cycle of rats in the SSAD treatment group (foot contact time/walking cycle) (71.7 ⁇ 3.8%) was lower than that of the control group (77.1 ⁇ 4.8%) (P ⁇ 0.05) ( Figure 10).
- the maximum contact area of the rats in the SSAD treatment group has the maximum intensity (176.3 ⁇ 32.3), the average intensity of the maximum contact area (90.6 ⁇ 13.1), the maximum intensity (186.0 ⁇ 25.0), the average intensity (96.8 ⁇ 13.9), the top 15 largest sole pressure
- the average strength (168.8 ⁇ 32.4) is smaller than the maximum contact area maximum strength of the control group (199.3 ⁇ 9.7%), the maximum contact area average strength (103.0 ⁇ 6.5), the maximum strength (205.2 ⁇ 8.1) ( Figure 11), the average strength ( 109.7 ⁇ 6.9), the average intensity of the top 15 largest sole pressures (196.2 ⁇ 13.1).
- the proportion of the time that the sole of the foot reaches the maximum intensity (63.8 ⁇ 12.7%) is greater than the proportion of time in the control group (47.7 ⁇ 13.9%).
- the body weight of rats in the SSAD treatment group and the control group was similar, and the interference of body weight on foot strength was excluded.
- the data of the normal group is the footprint area (0.45cm2 ⁇ 0.14cm2), the maximum contact area (0.32cm2 ⁇ 0.11cm2), the duty cycle (the time when the sole touches the ground/walking period) (62.1 ⁇ 2.9%), and the sole touches the ground to the maximum Intensity time ratio (70.7 ⁇ 12.8%), maximum contact area maximum strength (83.4 ⁇ 20.2), maximum contact area average strength (47.1 ⁇ 7.4), maximum strength (93.1 ⁇ 21.3), average strength (51.8 ⁇ 7.1), front 15
- the average intensity of the maximum sole pressure (74.1 ⁇ 16.2), whether it is 21 days or 28 days, the data of the SSAD treatment group is closer to the normal group on the above indicators, indicating that the medical adhesive provided by the present invention can improve damaged tendons Sports function.
- the walking duty cycle of the right foot of the rat at 21 days is the walking duty cycle of the right foot of the rat 21 days after the operation (foot contact time/walking cycle).
- the walking cycle of the three groups of rats can be elongated to the same length. It can be seen that the sole touch time is the blank control group-the SSAD treatment group-the normal group, that is, the duty cycle is the blank control group-the SSAD treatment group-the normal group.
- the maximum pressure map of the rat's right foot footprint at 21 and 28 days is shown in Figure 11, which is a 3D map of the pressure of the rat's right foot footprint at 21 and 28 days after surgery.
- the X axis represents the length of the footprint
- the Y axis represents the width of the footprint
- the Z axis represents the maximum pressure of the footprint.
- the results show that the maximum pressure is the blank control group-SSAD treatment group-normal group.
- the maximum area of the rat's right foot footprint on day 21 and day 28 is shown in Figure 12.
- the footprint area of the rat's right foot on day 21 and day 28 after the operation is shown as the blank control group-SSAD treatment group-normal group.
- the specific data of all gait indicators are shown in Table 8.
- the present invention provides a medical adhesive prepared based on unmodified Darui skin mucus and its use. It can be applied to tissue adhesion on wounds through diversified usage methods, and promote wound healing. The performance is better than existing medical adhesives.
- the hydrogel can quickly (60 seconds) seal the open wound of the back bleeding of the rat, and effectively treat the full-thickness skin defect of the diabetic SD rat.
- the medical adhesive can be completely degraded within 2 weeks in the body, and the inflammatory foreign body reaction is low. Therefore, the medical adhesive provided by the present invention has the advantages of convenient operation, easy modification, good biocompatibility, etc., as well as the comprehensive effects of promoting tissue regeneration, promoting wound healing, anti-oxidation, antibacterial, etc., and is effective for skin, dense connective tissue, and fragile tissue.
- the wounds of organs and inaccessible internal tissues provide a promising and practical option for seamless integration.
- the medical adhesive proposed in the present invention can be used as an elastic and malleable medical adhesive product to overcome the defects and limitations of existing products , And is widely used.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Dispersion Chemistry (AREA)
- Surgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Dermatology (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Materials For Medical Uses (AREA)
- Medicinal Preparation (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
一种医用黏合剂及其制备方法和用途。医用黏合剂的形态为凝胶状,其中含有大鲵皮肤黏液干粉和水性溶液;大鲵皮肤黏液干粉和水性溶液的重量份数比例介于1:1至1:6;大鲵皮肤黏液干粉在医用黏合剂中的重量含量比例介于14.2%至50%。该医用黏合剂用在创面的黏合、修复和愈合中。
Description
医用黏合剂及其制备方法和用途 技术领域
本发明属于生物材料领域, 涉及创面处置, 具体涉及一种利用天然成分为原料制备 的医用黏合剂及其制备方法和用途。
背景技术
闭合外科伤口是手术治疗中必不可少的环节, 临床上超过 60%的伤口会利用缝线和 皮肤订书钉进行缝合。然而, 因为拆线导致二次就诊不仅增加了患者的就医次数, 还可 能因为张力导致疤痕增生、 挛缩, 异物感染等风险。 而采用生物医学胶等无缝合方法, 可以简化手术步骤, 缩短恢复时间, 提高患者护理质量。
对于难愈合创口、 穿刺造成的深度创口以及湿性环境不易包扎的创口, 是否能采用 医用黏合剂以封堵创伤面、 促进组织再生以及加速愈合, 目前未见研究成果。
致密结缔组织是指由少量基质和细胞, 多且致密的纤维组成的, 纤维粗大, 排列致 密, 以支持和连接为主要功能的组织, 包括真皮、 肌腱和韧带等。 肌腱包括将小腿肌肉 与跟骨相连的跟腱, 以及将膝盖骨与胫骨相连的髌腱。韧带包括位于关节腔周围的囊外 韧带, 和位于关节腔内的囊内韧带。
致密结缔组织的损伤是常见的骨科疾病。 许多原因会导致致密结缔组织受到损伤, 包括过度使用、 扭伤、 疾病和一般老化, 等。 随着人类寿命的延长与越来越多的中年人 参与运动或者剧烈运动, 肌腱损伤和韧带损伤的发病率正逐年增高。肌腱损伤可以分为 急性和慢性损伤, 其原因包括内在或外在的因素, 无论是内在因素或内外因素组合都会 引起肌腱损伤。肌腱损伤主要发生在运动和工作场所, 这通常会导致患处疼痛、 僵硬和 肌腱强度损伤。 跟腱和髌腱损伤是最常见的两种运动肌腱损伤。
肌腱损伤或韧带损伤在临床上仍是一个严重的并且悬而未决的问题。目前对于肌腱 或韧带的断裂或撕裂, 通常使用缝合等外科方法治疗。 因为缺少血供等原因导致肌腱或 韧带损伤后易并发感染且愈合缓慢。而且目前没有一种手术方案能使受损的肌腱或韧带 恢复到正常的组织结构和机械强度。 同时, 肌腱损伤会导致长期的不健全状态, 且无论 采用什么样的护理方法, 其造成的残疾可能会持续数月。现有的用于肌腱病症的治疗管 理手段, 只有少数临床对照试验已经完成。大多数手段仍然属于临床前的研究, 并且有 些治疗手段的结果具有争议。在大鼠的由胶原酶诱导的跟腱炎模型中, 体外冲击波治疗 已被证明通过诱导 TGF- 0 (Transforming growth factor-beta, 转化生长因子 和 IGF-1 ( Ins v Lin-like growth factor 1, 胰岛素样生长因子 1 ) 的表达促进肌腱的 愈合; 在大鼠跟腱炎模型, 17赫兹脉冲磁场和电磁场可以提高胶原纤维的排列; 此外, 某些细胞因子和生长因子例如 TGF- P和 IGF-1,以及基因治疗和组织工程用的间充质干 细胞 (mesenchymal stem cell, MSC) 被用于肌腱损伤的治疗, 并表现出较好的前景。 但生长因子的价格昂贵并且容易降解, 给患者带来很大的经济负担。
利用医用黏合剂对致密结缔组织进行黏合治疗以替代缝合治疗方法, 目前未见报道。 由于肌腱或韧带组织会随着人体活动而不断受力,用于黏合肌腱或韧带组织的医用黏合 剂除了需要具备较强的黏合性以外, 还必须具备抵抗张力的效果。 同时, 基于术后恢复 的角度考虑,所使用的黏合剂必须具有良好的生物兼容性, 易于被组织吸收和较高的生 物安全性。
对于致密结缔组织创面或伤口的临床处置合修复,现有技术中缺乏供应充足, 生物 兼容性好, 黏结强度高, 且易于生物降解的医用黏合剂。 现有的医用黏合剂技术中, 在
临床替代缝合被广泛应用的主要是氰基丙烯酸酯和血纤维蛋白。氰基丙烯酸酯有明显的 细胞毒性,黏合过程中因为剧烈的氧化还原反应产热, 黏合后则出现显着的刚性和难降 解等缺陷, 使其难以应用于大面积、 位置显着的张力区伤口, 同时, 产热、 细胞毒性和 动物实验中的致瘤性限制了其进一步应用。而血纤维蛋白虽在美容缝合中可与缝线搭配 使用, 以减少缝针的次数和瘢痕增生,但因为其固化缓慢,机械强度差,很难单独使用。 可见, 上述两种医用黏合剂的应用范围狭窄, 完全不适合用于致密结缔组织的黏合剂。
大銳 (Andrias davidianus Blanchard) 为大型两栖纲、 有尾目、 隐觸銳科, 俗名 “娃娃鱼”, 属国家二级保护动物。 大銳在遇到外部刺激时, 身体表层会分泌出一种黏 液。 目前有研究成果显示可以利用大銳皮肤黏液干粉制备黏合剂或止血剂。关于利用大 銳皮肤黏液干粉制备黏合剂, 中国发明专利 (CN104815349B)有公开一种大銳黏液制备 黏合剂的方法, 其仅初步披露大銳黏液经过 Y射线消毒后用于制造黏合剂的黏合性能, 未对这种方法产制出的大銳黏液有任何材料学描述及检测。另一件中国发明专利公开第 CN106581736A号仅简单披露一种制造大銳黏液干粉末的方法, 缺乏科学实证支持该方 法带来的效果。 另一件中国发明专利公开第 CN108421080A号披露了大銳分泌物水凝胶 制备方法,在制备成胶的过程中需要施加外部压力,溶剂体系仅为水,且仅能成薄膜状, 使用不便, 且缺乏科学实证支持该方法带来的动物体内实验效果。
以上显示大銳皮肤黏液制备的医用黏合剂仍有缺陷亟待解决。 发明内容
综合上述现有技术的缺陷,本发明提供一种含有大銳皮肤黏液成分的医用黏合剂及 其制备方法和用途, 以解决前述的技术问题。本发明提出的医用黏合剂, 利用大銳皮肤 黏液具有强力黏合性能的特点, 将其制备成冻干粉末并灭菌后, 应用于手术创面或其他 伤口的愈合治疗, 其用途包括皮肤系统、骨骼系统和肌肉系统的各式组织, 尤其对致密 结缔组织带来显着的效果。
本^明提供的医用黏合剂具备较好的安全性、较好的生物兼容性、 可降解、 促再生 效果, 同时具有抗菌、 止血效果, 适合作为手术创面或伤口处的组织黏合剂或敷料, 是 一种满足前述医用黏合剂需求的材料。
根据上述目的, 本发明提供一种医用黏合剂, 其中含有大銳皮肤黏液干粉和水性溶 液; 大銳皮肤黏液干粉和水性溶液的重量份数比例介于 1 : 1至 1 : 6。
根据本发明的目的, 在优选实施方式中, 前述医用黏合剂为凝胶状。
根据本发明的目的, 在优选实施方式中, 前述大銳皮肤黏液干粉在医用黏合剂中的 重量含量百分比介于 14. 2%至 50%。
根据本发明的目的, 在优选实施方式中, 前述医用黏合剂所含水性溶液的组份选自 蒸馏水、生理缓冲液、氯己定、血液、血浆、血细胞制剂、富血小板血浆 (platelet-rich plasma, 简称 PRP) 、 富血小板血浆纤维蛋白 (platelet-rich fibrin, 简称 PRF) 或 上述任意组合。
根据本发明的目的, 在优选实施方式中, 前述水性溶液所含生理缓冲液的组份选自 生理盐水、 磷酸盐缓冲液、 Tris缓冲液、 柠檬酸盐缓冲液或上述任意组合。
根据本发明的目的, 在优选实施方式中, 前述凝胶状的医用黏合剂具有多孔结构。 根据本发明的目的,在优选实施方式中,前述多孔结构的孔洞平均直径小于 116 y m。 根据本发明的目的, 在优选实施方式中, 前述多孔结构的孔洞平均直径在 6 y m-37 y m之间。
根据本发明的目的, 在优选实施方式中, 前述医用黏合剂所含的大銳皮肤黏液干粉 的颗粒尺寸为 -20目。
根据本发明的目的, 在优选实施方式中, 前述医用黏合剂所含的大銳皮肤黏液干粉 的颗粒尺寸为 -60目至 +300目。
根据上述目的, 在另一方面, 本发明提供一种医用黏合剂的用途, 将医用黏合剂应 用在创面的黏合、 修复和愈合。
根据本发明的目的, 在优选实施方式中, 前述用途所适用的创面包含位于表皮、 真 皮及皮下结缔组织的创面。
根据本发明的目的, 在优选实施方式中, 前述用途所适用的创面包含位于骨骼肌、 肌腱、 韧带、 骨骼及 /或骨骼周围结缔组织的创面。
根据本发明的目的, 在优选实施方式中, 使用本发明医用黏合剂的用途时, 是在创 面直接施用大銳皮肤黏液干粉以及水性溶液, 从而在创面直接形成医用黏合剂。
根据本发明的目的, 在优选实施方式中, 使用本发明医用黏合剂的用途时, 是预先 使用大銳皮肤黏液干粉以及水性溶液制备成医用黏合剂,再用于敷贴创面或用于封堵创 面。
根据上述目的, 在另一方面, 本发提供一种制备前述医用黏合剂的制备方法, 通过 以下步骤得到: 提供大銳皮肤黏液干粉; 对所述大銳皮肤黏液干粉进行灭菌; 以及
将灭菌后的所述大銳皮肤黏液干粉和水性溶液混合, 进行成胶作用, 以形成凝胶状 的医用黏合剂, 其中医用黏合剂所含大銳皮肤黏液干粉和水性溶液的重量份数比例为 1 : 1至 1 : 6, 大銳皮肤黏液干粉在医用黏合剂中的重量含量百分比介于 14. 2%至 50%。
根据本发明的目的, 在优选实施方式中, 前述医用黏合剂的制备方法中, 提供大銳 皮肤黏液干粉的步骤更包含: 从活体大銳皮肤取得大銳皮肤黏液; 将大銳皮肤黏液进行 冷冻干燥;以及对冷冻干燥后的大銳皮肤黏液进行研磨及粉碎,形成大銳皮肤黏液干粉。
根据本发明的目的, 根据优选实施方式, 前述医用黏合剂的制备方法中, 大銳皮肤 黏液干粉的颗粒尺寸为 -20目。
根据本发明的目的, 根据优选实施方式, 前述医用黏合剂的制备方法中, 大銳皮肤 黏液干粉的颗粒尺寸为 -60目至 +300目。
根据本发明的目的, 根据优选实施方式, 前述医用黏合剂的制备方法中, 灭菌是利 用环氧乙烷达成。
根据本发明的目的, 根据优选实施方式, 前述医用黏合剂的制备方法中, 水性溶液 的组份选自蒸馏水、 生理缓冲液、 氯己定、 血液、 血浆、 血细胞制剂、 富血小板血浆、 富血小板血浆纤维蛋白或上述任意组合。
根据本发明的目的, 根据优选实施方式, 前述医用黏合剂的制备方法中, 生理缓冲 液的组份选自蒸馏水、 生理缓冲液、 氯己定、 血液、 血浆、 富血小板血浆、 富血小板血 浆纤维蛋白或上述任意组合。 附图说明
图 1表示本发明医用黏合剂的制备方法步骤流程图。
图 2表不本发明实施例 1描述的大銳(a) ;米用机械刮擦法获取大銳皮肤黏液(b); 大銳皮肤黏液干粉(c) ; 医用黏合剂对组织的黏性拉丝的型态(d) ; 大銳皮肤黏液干 粉成胶的形态 (e) 。
图 3A表示本发明实施例 2通过不同过筛取得不同颗粒尺寸的大銳皮肤黏液干粉 (SSAD粉) 以及大銳皮肤黏液干粉经过成胶后, 水化成水凝胶状态的扫描电镜 (SEM)
图像。 从该图像中可以看出成胶后孔径的大小。
图 3B表示本发明实施例 2不同成胶时间 (2h和 12h) 医用黏合剂中多孔结构的孔 径分布。
图 3C表示本发明实施例 2之多种灭菌方案所达成的灭菌效果数据图(a)果及黏附 强度数据图 (b) 。
图 4A表示本发明实施例 3的医用黏合剂和两种常见商用市售医用黏合剂的体外黏 附性能比较,其中以猪皮为生物基质,做标准伤口闭合检测医用黏合剂的黏附强度(n=4): 改良的黏附强度标准试验方法 (ASTM F2458-05) 示意图 (i) ; 有代表性的应变 -应力 曲线(i i) ; 不同医用黏合剂黏附强度的定量比较(i i i) (统计上的差异: ** P á 0. 01, *** P < 0. 001) o
图 4B表示本发明实施例 3医用黏合剂和两种常见商用市售医用黏合剂的体外黏附 性能比较, 其中以猪皮为生物基质, 进行猪皮下脂肪面黏附后的剪切强度测试: 改良的 剪切试验标准方法 (ASTM F2255-05) 示意图 (i) ; 有代表性的应变-应力曲线 (i i) ; 不同医用黏合剂黏附强度的定量比较(i i i)(统计上的差异: ** P á 0. 01,*** P á 0. 001)。
图 4C表示本发明实施例 3医用黏合剂和两种常见商用市售医用黏合剂体外黏附性 能比较, 其中以猪皮为生物基质,采用改良三点弯试验法测定猪皮肤经过医用黏合剂黏 结后的弹性和延展性: 改良三点弯曲实验法检测猪皮肤黏接后弹性和延展性的示意图 (i) ; 具有代表性的应变-位移曲线 (i i) ; 不同医用黏合剂在固定形变 (11. 5%) 需 要荷载力的定量比较(i i i) (统计上的差异: * P á 0. 05, ** P á 0. 01, *# P á 0. 001)。
图 5A表示本发明实验例 3医用黏合剂的细胞划痕实验结果。
图 5B表示本发明实验例 3医用黏合剂的细胞划痕实验的统计分析结果。
图 5C表示本发明实验例 3医用黏合剂的 transwel l小室实验结果。
图 6表示本发明实施例 4中 SSAD治疗组与其他 4组伤口闭合方法的体内效果比较 图。 其中, 图 6a表示第 0、 1、 3、 5天大鼠皮肤切口图像; 图 6b表示切口损伤组织的 H&E染色图像, 并分别以标号指出表皮 (E) 、 真皮 (D) 、 痂 (SC) 、 切口位置(★) 、 伤口面积 (以框线标出) 、 未降解的氰基丙烯酸酯黏合剂 (CA) 和纤维蛋白胶 (FG) 。
图 7表示本发明实施例 5的糖尿病 SD大鼠体内全层皮肤缺损伤口愈合率及质量评 价。 图 7a表示肉眼观察第 3、 7、 14、 21天的伤口愈合情况) ; 图 7b表示第 3、 7、 14、 21天的伤口愈合统计分析结果; 图 7c表示各组缺损组织表皮愈合的组织学观察, 黑色 线条为皮肤厚度的测试线 (标尺 = 3 mm) ; 图 7d表示各组伤口的皮肤厚度定量检测统 计结果; 图 7e表示第 21天对皮肤缺损行马松(Masson)染色的结果, 并对应标记毛囊 (HF) 、 皮脂腺(SG) 、 血管(BV) ; 图 7f表示各视野内血管、 毛囊、 皮脂腺数量(标 尺 =50 y m) ;图 7g表示血管生成相关标记物⑶ 31和 a -SMAi3的染色结果, 以判断伤 口部位的血管新形情况。 (* p á 0. 05, ** p á 0. 01) 。
图 8表示本发明实施例 6体内医用黏合剂降解的组织学分析。
图 9表示本发明实施例 9医用黏合剂对肌腱治疗效果评估的大鼠跟腱离断缺损模型 手术操作图。
图 10表示本发明实施例 9 , SD大鼠的最大脚印长度 (脚掌触地的最大长度) 对比 图片, 上侧 (右腿)为实验腿, (对比正常对照组可知, 脚印长度越短, 表示愈合越良 好) 。
图 11表示本发明实施例 9, SD大鼠实验侧的步长 (Stride length, 同一脚掌连续 两个脚印中点之间的距离) 图片 (对比正常对照组可知, 步长越大表示愈合越好) 。
图 12表示本发明实施例 9, 步行周期中的实验侧的站立时间 (是指脚掌在一个步 行周期中脚掌接触地面的时间) , 横框越宽表示接触时间越长 (对比正常对照组可知,
接触时间越短愈合越好) 。
图 13表示本发明实施例 9, SD大鼠手术 28天后的大鼠右后腿(实验侧)跟腱切片 HE染色照片。 其中, 空白对照组 (a) 可见肌腱内胶原排列混乱, 细胞未见明显取向; SSAD治疗组 (b) , 可见肌腱内胶原排列一致, 细胞可见明显取向。
具体实施方式
为了使本发明的目的、 技术特征及优点, 能更为相关技术领域人员所了解, 并得以 实施本发明, 在此配合所附的附图、 具体阐明本发明的技术特征与实施方式, 并列举较 佳实施例进一步说明。 以下文中所对照的附图, 为表达与本发明特征有关的示意, 并未 亦无需依据实际情形完整绘制。而关于本案实施方式的说明中涉及本领域技术人员所熟 知的技术内容, 亦不再加以陈述。
原始采集到的大銳皮肤黏液为胶冻状, 难于彻底杀菌, 且不便于保存, 临床使用存 在一定的难度。为解决上述缺陷,本发明采用的技术方案是提供含有大銳皮肤黏液干粉, 经过质量确认并充分灭菌后, 与水性溶液混合形成的医用黏合剂。医用黏合剂含大銳皮 肤黏液干粉与水性溶液的重量比例介于 1 : 1至 1 : 6之间, 即 1份大銳皮肤黏液干粉与 1至 6份水性溶液相配合(下文说明中,将大銳皮肤黏液干粉以及水性溶液的重量比例, 简称为“粉水比例”) 。 经由上述配制, 大銳皮肤黏液干粉在医用黏合剂中的重量含量 介于 14. 2%至 50%。 水性溶液可以选用纯水或含有生物兼容性物质的水溶液, 且此谓生 物兼容性物质主要是指,加入生物兼容性物质配制后的水性溶液不导致大銳皮肤黏液中 的活性有效成分失活。 优选的, 水性溶液可选自以下任意一种或多种: 蒸馏水、 去离子 水、 生理盐水 (0. 9 % NaCl缓冲液) 、 磷酸盐缓冲液 (PBS) 、 Tris缓冲液 (TBS) 、 柠檬酸盐缓冲液、氯己定水溶液(优选浓度为 2 %)可被临床使用接受的水溶液。此外, 水性溶液亦包含人类全血, 以及含有水分的人类血液提取物, 包括血浆、 血清、 血浆、 血细胞制剂、 富血小板血浆(PRP) 、 富血小板血浆纤维蛋白 (PRF)等亦适用。 基于本 发明的目的, 创面或伤口处渗出的血液或体液亦可作为水性溶液的一部分。
除了大銳皮肤黏液干粉以及水性溶液为必要组份之外, 为制作易于保存、运送和临 床应用的产品,对于将进一步搭配其他组分或原料制成适合使用的医用黏合剂产品,在 此不做限制。具体举例, 根据本发明优选实施方式, 本发明所提供的医用黏合剂的配方 中还可包含具有止血、 消炎或促进组织生长的其他成分, 本发明对此不加限制。
本发明中, 大銳皮肤黏液干粉及水性溶液的配比, 以及水性溶液所含有的成分和浓 度经设计, 使得医用黏合剂具备理想的多孔结构, 并且具备良好的生物兼容性, 适合应 用于人体及其他动物组织的黏合, 尤其是致密结缔组织、 皮肤组织、 皮下的脂肪组织、 骨骼系统或前述不同类型组织之间的黏合。
根据本发明的优选实施例之一, 医用黏合剂的制备方法包含如下步骤: 从大銳皮肤 取得黏液, 将黏液冷冻干燥; 将冷冻干燥后的大銳皮肤黏液进行研磨及粉碎, 过筛后得 到粒径符合要求的大銳皮肤黏液干粉, 作为品质确保的条件之一; 对大銳皮肤黏液干粉 进行灭菌, 保存备用。
以下依据附图说明优选技术方案。如图 1所示, 本发明提供一种医用黏合剂的制备 方法, 包括以下步骤。 步骤 1 : 从大銳皮肤取得黏液, 将黏液冷冻干燥; 步骤 2: 将冷 冻干燥后的黏液在冷冻状态下粉碎, 随后过筛得到特定粒径范围的粉末; 步骤 3: 对粉 末进行灭菌, 即得到大銳皮肤黏液干粉; 以及步骤 4: 将灭菌后的大銳皮肤黏液干粉及 水性溶液依 1 : 1至 1 : 6的重量配比混合形成凝胶状的医用黏合剂。 优选的, 制备医用 黏合剂所使用大銳皮肤黏液干粉与水性溶液的混合比例为 1 : 2至 1 : 6。
前述步骤 1之收集黏液方法, 应严格按照中国的动物保护法进行, 可以无须杀害大 銳亦可避免大銳的永久残疾。可以采用刮擦法或电刺激法。亦可将商业养殖的大銳处死 之后采集黏液。 本发明对此不做限制。
前述步骤 2, 将收集到的大銳皮肤黏液冻干, 在低温状态下经球磨机粉碎后研磨成 细粉。 为得到特定粒径(颗粒尺寸不超过特定规格) 的粉末, 可采用不同目数的筛子过 筛。
由于国际上对过筛目数的标准略有差异,本发明优选采用中国常用的泰勒标准筛制 定义过筛目数, 其分度是以 200目筛孔尺寸 0. 074mm为基准, 详细计算方式为本领域技 术人员的常规知识, 不再赘述。然而, 利用此标准描述本发明大銳皮肤黏液冻干粉的颗 粒尺寸时, 目数前加正负号表示研磨或粉碎后粉末能否漏过该目数的网孔, 负数表示粉 末能漏过该目数的网孔, 表示过筛后取得的粉末颗粒尺寸小于网孔尺寸; 而正数表示粉 末不能漏过该目数的网孔, 即过筛后取得粉末的颗粒尺寸大于网孔尺寸。
其中, 为获得较好的大銳皮肤黏液干粉性能, 本发明大銳皮肤黏液冻干粉的颗粒尺 寸为 -20 目, 表示过筛目数大于 20目 (通过实验取得对应的实际粒径大致上小于 850 y m) ; 根据优选实施方式, 大銳皮肤黏液冻干粉的颗粒尺寸为 -60目至 300目 (通过 实验取得对应的实际粒径大致上介于 50〜 250 y m; ) 。 在具体作法上, 要取得颗粒尺 寸为 -20目的粉末, 是采用目数大于 20目的筛子过筛, 通常可得到粒径不超过 850 y m 的大銳皮肤黏液干粉。
完成步骤 2之后, 可将粉末储存在低于 -20°C冰箱中备用。
前述步骤 3, 对步骤 2所得到的粉末进行灭菌与消毒。 此步骤是将制品应用至临床 使用的重要步骤, 攸关临床使用的性能。依据相关法规, 未经灭菌消毒的大銳皮肤黏液 相关产品无法直接应用于临床。 而且, 分泌于活体大銳体表的黏液, 经步骤 1所采集时 有可能含有对人体有潜在危害的病毒或病菌,病毒或病菌无法经由步骤 2的冻干彻底灭 活, 若直接用于创口表面, 将增加伤口感染可能。 大銳皮肤黏液的主要成分是蛋白、 多 肽、黏多糖和抗菌肽等活性成分, 最优的灭菌方法是既不会破坏和改变生物大分子的结 构, 也不会导致大銳皮肤黏液干粉的黏附性能和生物活性降低。根据当前的技术, 大銳 皮肤黏液相关产品的消毒灭菌方法包括低温、紫外线、钴射线、消毒剂灭菌法。优选的, 本发明步骤 3的灭菌与消毒选用环氧乙烷灭菌法。
前述步骤 4, 将大銳皮肤黏液干粉与水性溶液混合后成胶, 形成凝胶状的医用黏合 剂。水性溶液, 包含但不限于蒸馏水、 去离子水及 /或生理缓冲液, 例如生理盐水(NaCl 缓冲液) 、 磷酸盐缓冲液 (PBS) 、 Tris缓冲液 (TBS) 、 柠檬酸盐缓冲液; 还可包含 2%氯己定、 人类全血、 富血小板血浆(PRP) 、 富血小板血浆纤维蛋白 (PRF) 、 血浆及
/或血细胞制剂等, 并可视需求组合使用这些组份。
根据本发明之优选实施方式, 本发明进一步提供一种医用黏合剂的用途, 具体是指 在创面的黏合、 修复和愈合中的用途。 优选的, 根据本发明的医用黏合剂性能, 特别适 用于致密结缔组织的创面, 具体而言, 创面包含但不限于位于表皮、 真皮及皮下结缔组 织的创面; 必须特别强调的是, 医用黏合剂更尤其能够满足骨骼系统和肌肉系统中的创 口黏合需求, 因此创面更包含但不限于位于骨骼肌、 肌腱、 韧带、 骨骼及 /或骨骼肌周 围结缔组织的创面。
基于上述用途, 进一步根据本发明的优选实施方式, 以两项方法作为范例, 说明使 用医用黏合剂的使用方法, 其包括但不限于:
方法一,根据创面或创口的出血及体液渗出液, 直接施用适量的大銳皮肤黏液干粉 以及适量水性溶液,以在创伤面直接成胶从而形成凝胶状,以达到较好的伤口黏合效果。 其中,在施用水性溶液时,较优选的作法是将创面或创口的出血和体液渗出液的体积一 并纳入估算后再施用适量水性溶液, 选择合适的粉水比例再施用, 以保持较理想的伤口 黏合效果。若创面或创口的出血和体液渗出液的体积与所施用的大銳皮肤黏液干粉可以 顺利成胶并达到较好的伤口粘合效果, 则可不另外加施用水性溶液。
方法二, 按照 1份大銳皮肤黏液干粉, 与 1〜 6份重量比例的水性溶液相混合之后, 形成任意形状的凝胶, 其形状可符合创面或创口的特殊需形态(立体形状、 表面积、 厚 度等) 以满足治疗需要。对于出血量较大或组织液渗出较多的创口, 选择合适的粉水比 例, 使凝胶施用于创口后可以吸收创口的组织液进一步溶胀形成凝胶状, 以起到止血, 湿性黏结和保持创口干燥的效果。
以下列举实施例具体说明本发明之技术方案与对应达成之效果。
实施例 1 : 医用黏合剂制备
请参考图 2, 如前述步骤 1, 取出活体大銳 (如图 2a) , 采用机械刺激法获取大銳 黏液(如图 2b) , 并采集大銳黏液备用。 步骤 2, 将收集到的大銳黏液制成干粉(如图 2c) (白色粉末) 。 在此过程中, 在采集之后尽快将大銳黏液冻干, 从完成采集到开始 冻干的时间不超过 1小时 (以下简称并标示为“h” ) 。 冻干的速度设定为每小时下降 10〜 15°C, 在 4 h内温度降到 -20°C。 随后粉碎得到细粉, 去除粒径不符合要求的细粉, 得到粉末粒径不超过一定范围的干粉。 在本实施例中, 使用目数分别为 14、 20、 60、 100、 200、 300目的筛子过筛, 得到粒径小于筛孔直径的干粉, 将干粉置于密闭容器内 冷臧保存备用。
步骤 3, 采用环氧乙烷对前述干粉进行灭菌处理。 将前述得到的干粉封装入环氧乙 烷专用灭菌包装袋中,或装入开口容器并在容器口疏松塞入棉球后封装入环氧乙烷专用 灭菌包装袋中。将该灭菌包装袋放入环氧乙烷(E0)灭菌容器,使用环氧乙烷进行灭菌, 灭菌时间和温度以不破坏干粉性能为原则,不特地加限制。随后将完成灭菌的干粉放置, 待残留的环氧乙烷挥发。 最后, 参考 《GB/T 16886. 7 -2001“医疗器械生物学评价” 》 第七部分: “环氧乙烷灭菌残留量评价环氧乙烷的残留”检验环氧乙烷残留率。 检验合 格后, 即完成整体灭菌步骤。
此外,为说明本发明优选采用环氧乙烷的效果,针对不同灭菌方法进行评估和效果, 说明如下。 首先, 总体针对可能的灭菌方法评估, 采用低温、 紫外线的灭菌效果有消毒 不完全的疑虑, 杀菌处理时间较长,且经低温或紫外线消毒的大銳皮肤黏液干粉易于发 生水解, 保存期限较短; 而 Y射线方法由于涉及放射线, 操作较为复杂, 且会降低大銳 皮肤黏液相关产品的黏附性能。
针对本发明提出之环氧乙烷灭菌方法, 优选参考 GB 18279-2000“医疗器械环氧乙 烷灭菌确认和常规控制” 国家标准执行具体灭菌步骤:将粉碎后的大銳皮肤黏液冻干粉 封装入环氧乙烷专用灭菌包装袋中, 或装入开口容器后, 容器口疏松塞入棉球, 封装入 环氧乙烷专用灭菌包装袋中。 将该灭菌包装袋放入环氧乙烷(E0)灭菌容器, 使用环氧 乙烷, 灭菌参数为 100%环氧乙烷, 54摄氏度, 灭菌 60分钟, 解析 15小时。 灭菌后参 考 GB/T 16886. 7-2001“医疗器械生物学评价”第七部分: 环氧乙烷灭菌残留量评价环 氧乙焼的残留 (残留率应<10ppm) 完成检验合格后, 即完成整体灭菌步骤。
依据临床安全性需求, 针对上述环氧乙烷的灭菌方法, 其灭菌性能与目前其他灭菌 方案的比较结果如图 3C所示。 结果显示, 环氧乙烷消毒方法和钴射线消毒方法, 其灭 菌效果优于低温灭菌 (包括 -20°C、 -50°C、 -80°C和液氮) 和紫外线 (如图 3C-a) , 而 钴射线消毒方法对于黏附性能有较大影响, 环氧乙烷消毒方法能兼顾良好的黏附性能
(如图 3C-b) , 是对于大銳皮肤黏液干粉最佳的消毒灭菌方法。
若无特别说明, 以下各实施例所使用的干粉(通常简称或标示为“SSAD”)均为通 过上述步骤所得到。
如前述步骤 4, 将上述检验合格的大銳黏液干粉与选定的水性溶液混合, 即可得到 凝胶状的医用黏合剂。本发明医用黏合剂适用的大銳皮肤黏液干粉与水性溶液的重量比 例为 1 : 1至 1 : 6, 优选的重量比例为 1 : 2至 1 : 6, 即 1份大銳皮肤黏液干粉与 2至 6份重量份数的水性溶液混合后得到。 本实施例的凝胶状的医用黏合剂中, 大銳皮肤黏 液干粉的优选重量含量为 14. 2%至 50%。
本发明设计大銳黏液干粉和水性溶液的重量比例, 赋予本发明医用黏合剂特殊、实 用且优良的凝胶性能。具体而言, 当大銳皮肤黏液干粉与水性溶液混合时, 多肽交联网 络膨胀而不是溶解, 混合后会改变大銳皮肤黏液干粉由氢键、 二硫键, 共辄键驱 动的纠缠蛋白网络, 形成凝胶体(如图 2d和 2e所示) , 此过程称为“成胶”。 在成胶 过程中, 多肽链的氨基酸残基发生构象转变, 形成凝胶状的医用黏合剂, 酚醛羟基和氨 基作为氢键供体向高表面能或亲水界面转变, 通过氢键和范德瓦尔斯力促进生物黏附。 另外, 苯环在接触低表面能或疏水界面时,会通过 Jr - Jr电子或阳离子 - Jr相互作用与基 底形成强烈的相互作用。
基于上述本发明医用黏合剂之特性,鉴于人体或动物的伤口界面富含蛋白质等细胞 外基质, 因此在制备凝胶时需要选择合适的粉水比例, 使医用黏合剂中的活性物质、 水 性溶液和伤口组织中细胞间质液, 发生协同作用, 使得医用黏合剂与伤口之间通过氢键 和范德华力形成最佳的黏附力。
由上可知, 水性溶液可以选择纯水亦可选择临床上可接受的水溶液, 其中可适度包 含生物兼容性物质,生物兼容性物质的选择以不会导致大銳皮肤黏液中的活性有效成分 失活和并不影响成胶为限。 因此, 除了使用人工制备的水性溶液之外, 创面或伤口中所 渗出的血液、 组织液亦可作为水性溶液或混合前述水溶液共同形成水性溶液。
此外, 由于手术创面和伤口通常处于体表和外部接触的接口位置, 同时面临外界温 度变化和人体组织恒温约 37°C的环境, 在成胶上须要求良好性能。 因此, 于本实施例 中, 在 4°C或 37 °C条件下分别评估医用黏合剂的成胶情况。 将 100 mg大銳皮肤黏液干 粉和 200 y L PBS (水性溶液) 均匀混合后, 缓缓倒入模具内, 在 4°C或 37°C温度下静 置 3分钟以上, 直到其凝结成凝胶状作为医用黏合剂。实验表明, 大銳皮肤黏液干粉与 水性溶液可以迅速形成具有粘性的凝胶。
实施例 2: 医用黏合剂结构分析
本发明提供的医用黏合剂在成胶后具有多孔结构,使其在临床应用时, 可以利于组 织液中营养物质和代谢产物的交换。
以扫描电子显微镜 (Hitachi, S-3400N I I, Japan) 分析本发明实施例 1所得到的 不同颗粒尺寸 (粒径) 的大銳皮肤黏液干粉 (SSAD粉) 的多孔结构, 通过扫描电镜分 析显示为不均匀的块状, 如图 3A所示。然而, 当大銳皮肤黏液干粉与水性溶液混合时, 团块中的多肽链会膨胀, 并相互渗透形成具有三维蜂窝结构的, 凝胶状的医用黏合剂 (SSAD水凝胶) 。
扫描电镜分析显示,三维蜂窝结构的孔洞平均直径随着使用的大銳皮肤黏液干粉粒 径的减小而相应减小; 孔洞平均直径与水粉比例的关联性没有统计学意义, 未发现水分 比例会显著影响孔洞平均直径。其中粒径为 -14目的大銳皮肤黏液干粉水化形成凝胶的 孔洞平均直径为 116微米, 粒径 -60目的孔洞平均孔径为 37微米, 粒径 -300目的孔洞 平均孔径为 6微米。 此外, 随着成胶时间的增加, 多孔结构更加明显, 孔洞尺寸更加均 匀。 在凝胶化 12小时后的孔洞结构中, 空穴侧壁密度增大 (成胶 12h) , 明显大于凝
胶化 2小时后的侧壁 (成胶 2h) , 表明随着水化时间的延长, 多孔网络的结构趋于稳 定。 分析多孔结构的孔径和孔隙尺寸的一例结果如图 3B所示。
实施例 3: 医用黏合剂对于组织黏附强度的体外测定
本实施例主要依据 ASTM (美国测试与材料协会) 标准进行测试, 以市售商用的医 用黏合剂氰基丙烯酸酯(cyanacrylate)和纤维蛋白胶做为对照, 以评估黏附效果。 其 中因应材料和操作环境不同做出的改良, 应为本领域技术人员可理解且可接受, 不再赘 述。
本实施例使用万能试验机(MTS Criterion, Model 43, USA)进行实验室剪切试验。 具体做法是以猪皮用作组织基质, 将猪皮切成 1 X 8平方厘米的长方形。 分别利用氰基 丙稀酸酯 (Baiyun Medical Adhensive® 中国广州) (附图标示“商用胶” ) 、 纤维蛋 白胶 (FIBINGLURAAS® 中国上海) (附图标示“生物胶”)和大銳皮肤黏液干粉制成的 医用黏合剂(附图标示“SAAD治疗组”) , 用二种方式黏接: 其一为切口对位黏附(切 口边缘对切 _^边缘) , 另一为皮下脂肪与皮下脂肪黏附, 其作法与结果分别示意如图 4A及 4B所示。
针对 SSAD治疗组, 试验的具体作法是称量 30 mg大銳皮肤黏液干粉涂在猪皮上, 用移液枪加入 60-180 y L的 PBS (重量比例约为 1 : 2至 1 : 6) , 形成医用黏合剂。 另 一方面对照试验的生物胶组及商用胶组则根据制造商的说明,分别使用纤维蛋白胶和氰 基丙烯酸酯, 按照前述的两种方式黏接猪皮。黏接两小时后, 在万能试验机上分别测试 黏接部位的黏接能力。
采用搭接剪切试验, 根据 ASTM F2255-05标准确定三组材料的抗剪强度。 针对切口 对位黏附方式(如图 4A-i图所示)的抗剪切黏附能力,在商用胶组可达到 40. 71 土 3. 71 kPa, 生物胶组的黏附强度只有 3. 76 ± 0. 16 kPa, 而在 SSAD治疗组则是 26. 66 土 8. 22 kPa (如图 4A-i i及图 4A-i i i所示) 。 此结果显示, 与生物胶组相比, SSAD治疗组的 黏合强度 (P á 0. 05) 和商用胶组的效果差异 (p á 0. 01) 有显着统计意义。 其中, 生 物胶组试验结果显示纤维蛋白胶的低黏接性能符合其使用说明:纤维蛋白胶不是单独使 用而是需要配合使用缝合线。 需特别说明的是, 搭接剪切试验的结果显示, 商用胶组的 断裂应变远高于 SSAD治疗组, 在试验过程中有部分表皮被破坏, 显示氰基丙烯酸酯黏 结剂对皮肤胶黏剂的黏附能力可能过高, 反而造成表皮受损的负面效应。此外, 虽然商 用胶组黏接能力在三组中最强, 但只有表皮层能够黏合, 皮下脂肪层不能黏合(图未示 出) 。
相比之下, 在使用皮下脂肪与皮下脂肪黏附(如图 4B-i所示)的方式黏接猪皮时, SSAD治疗组的黏附能力明显优于商用胶组和生物胶组。根据如图 4B-i i及图 所 示, SSAD治疗组在皮下脂肪的黏附能力有显着的抗剪切黏附能力, 剪切黏附力约为 26. 11 土 7. 72 kPa, 而其余两种黏合剂的剪切黏附力则小于 7kPa。
生物胶黏剂除了具有良好的黏结性能外, 还要求具有良好的弹性和延展性, 因此, 除了黏附力之外, 本实施例进一步针对前述三种材料进行黏接后弹性和延展性的试验, 结果如图 4C所示。 具体的试验方式是以猪皮为生物基质, 采用改良自三点弯曲法的三 点黏合测试, 测定猪皮肤经过黏结后的弹性和延展性。 三点黏合测试是在猪皮中间做 2 厘米切口 (如图 4C-i所示意), 用 100N测力传感器以 lmm/min的速度将黏结样品加载 至完全分离, 检测造成相同位移需加载的应力 (载荷) , 进而得到具有代表性的应变 _ 位移曲线 (如图 4C-i i所示) 以及固定形变所需的载荷力定量 (如图 4C-i i i) 。 比较 前述三种材料的测试结果显示, 在达到相同形变时, SSAD治疗组只需要 7. 84 ± 1. 17 N, 类似于生物胶组 (7 ± 0. 99N) , 但显著低于商用胶组 (12. 33 ± 1. 53N) (图 4A、 4B、 4C所示统计上的差异: * P á 0. 05, ** P á 0. 01 , *** P á 0. 001) 。
试验结果表明氰基丙烯酸酯黏合剂提供刚性黏接,而本发明的医用黏合剂可以为皮 肤提供一个柔韧的黏结,显示本发明医用黏合剂的黏接性能更适合用作皮肤和组织胶黏 剂。
以上利用猪皮进行的黏附能力、 抗剪切能力、 弹性、 延展性测试, 比较本发明医用 黏合剂与目前临床上常用的二种医用黏合剂(氰基丙烯酸酯合成胶和纤维蛋白胶), 整 体结果显示本发明提供的医用黏合剂在不同的基质上表现出优越的黏合性能。
为测试本发明医用黏合剂对骨骼的粘合性能, 本实施例使用万能试验机 (MTS Criterion, Model 43, USA) 进行实验室剪切试验。 具体做法是以骨头作组织基质, 将 兔子股骨使用骨剪在中 1/2处剪断, 利用大銳皮肤黏液干粉制成的医用黏合剂,进行对 位粘合, 粘合 lOmin后进行剪切试验, 最终得到的粘结强度结果为 38. 5 ± 11. 2KPa。
针对本发明医用黏合剂用于创面或伤口黏合的性能(抑菌效果、抗氧化效果、 细胞 迀移效果) 进行了体外试验与比较, 分别以下列实验例说明。
实验例 1 : 抑菌效果实验
配置需氧菌实验所用的大銳皮肤黏液浸提液: 称取 lg无菌大銳皮肤黏液干粉, 加 入适量 LB (营养肉汤培养基) 培养基使銳皮肤黏液干粉充分吸水溶胀后, 再继续加入 培养基, 最终使液体培养基的量达到 10mL, 在 4°C冰箱中放置 24小时完成浸提。
配置厌氧菌实验所用的大銳皮肤黏液浸提液: 称取 lg无菌大銳皮肤黏液干粉, 加 入适量 TSB (胰蛋白胨大豆肉汤培养基)培养基使其充分吸水溶胀后, 再继续加入培养 基, 最终使液体培养基的量达到 10mL,在 4°C冰箱中放置 24小时完成浸提。
需氧菌选用大肠杆菌和金黄色葡萄球菌, 培养方法如下: 配置需氧菌实验所用的浸 提液, 浸提 24小时之后, 将浸提液以 3000r/min离心 3分钟, 以获得最终浸提液。 在 50mL离心管中加入大銳皮肤黏液浸提液 10mL, 接种 500 y L菌液, 混合均匀, 立刻放入 培养箱中。
厌氧菌选用牙龈卟啉单胞菌, 培养方法如下: 配置厌氧菌实验所用的浸提液, 浸提 24小时之后, 将浸提液以 3000r/min离心 3分钟, 以获得最终浸提液。 在 50mL离心管 中加入大銳皮肤黏液浸提液 10mL, 按照 5%浓度羊血, 每管中加入 500 y L羊血, 再分别 接种同浓度 500 y L菌液, 混合均匀, 立刻放入厌氧培养箱中。
空白对照组的配置方法如下。 需氧菌: 离心管中加入 LB培养基 10mL, 接种与实验 组同浓度的菌液, 作为空白对照组。 厌氧菌: 离心管中加入 TSB培养基 10mL, 500 y L 羊血, 接种与实验组同浓度的菌液, 作为空白对照组。
细菌检测方法如下。大肠杆菌和金黄色葡萄球菌的检测: 吸亮度的测定采用酶标仪 (EnSpire, PerkinElmer, 新加坡) , 操作方法为从第 0小时起, 每隔 2小时吸取各组 混合均匀的液体以 100 y L每孔加入 96孔板中, 设置三个副孔。 在 0D=600的条件下, 测定各组的吸亮度。 数据如表 1和表 2。
牙龈卟啉单胞菌的检测: 吸亮度的测定采用酶标仪, 操作方法为从第 0天起, 每天 吸取各组混合均匀的液体以 100 y L每孔加入 96孔板中, 设置五个副孔。 在 0D=600的 条件下, 测定各组的吸亮度。 数据如表 3。
上述实验证明, 大銳皮肤黏液浸提液对于常见的两种需氧菌(大肠杆菌、 金黄色葡 萄球菌) 具有较为明显的抑制作用, 抑菌时间可达到 16h。 大銳皮肤黏液浸提液对于牙 龈卟啉单胞菌 (厌氧菌) 的生长具有明显的抑制作用, 抑菌时间可达到 5天以上。
实验例 2 : 抗氧化实验
首先制备大銳皮肤黏液浸提液, 方法如下: 将 200 mg大銳皮肤黏液干粉放入 2 mL 的去离子水 (重量比例约为 1 : 10) 浸泡 7天, 使大銳皮肤黏液干粉中的可溶性物质充 分溶解,将液体取上清液得到大銳皮肤黏液浸提液。现场配制 lmg/mL的 DPPH乙醇溶液。
实验组采用大銳皮肤黏液浸提液 lmL+DPPH乙醇溶液 lmL;对照组采用纯水 lmL+DPPH 乙醇溶液 lmL。 用乙醇将分光亮度计调零, 并于 0. 5小时, 1小时, 2小时分别测量在
517nm波长, 对照组的吸亮度值为 实验组的吸亮度值为 A2。 自由基清除率的计算公 式为式 I, 测定结果如表
表 4 自由基清除率计算表
本实验表明, 大銳皮肤黏液浸提液可以清除 DPPH溶液中大部分自由基, 具有抗氧 化的功能。 实验例 3: 细胞迀移实验
为模拟体外伤口愈合过程, 进行细胞划痕实验和 transwel l小室实验。
针对前述两种实验, 首先准备完全培养基: 取 88份 DMEM, 10份胎牛血清、 1份青 霉素和 1份链霉素, 均匀混合, 得到完全培养基。 接着, 按照 1 mg大銳皮肤黏液干粉 添加 1 mL完全培养基的比例, 将大銳皮肤黏液在完全培养基中浸泡 7天, 使大銳皮肤 黏液中的可溶性物质充分溶解, 得到浓度为 l mg/mL的大銳皮肤黏液浸提培养基, 并进 一步制备 5种不同浓度比例的含大銳皮肤黏液浸提培养基,浓度分别为 0. 5 mg/mL, 0. 1 mg/mL、 0. 05 mg/mL、 0. 01 mg/mL、 0. 005 mg/mL。
在细胞划痕实验中, 分别采用 HUVES以及 L929两种细胞进行测试, 细胞的准备过 程为: 取对数生长期的脐静脉内皮细胞 (HUVES) 和成纤维细胞 (L929) , 胰酶消化得 到单细胞悬浊液, 细胞计数 6 X 105个 /mL; 而后将 lmL细胞悬浊液接种至 6孔板中, 再 加 lmL完全培养基, 37°C孵箱中培养, 待细胞贴壁且长满 6孔板后, 用 200 y L的黄色 枪头进行划痕(横、 纵向各划一道, 使划痕呈“ +”, 以便后期观察时定位) , 划痕后 用 PBS洗涤 2-3遍, 洗去漂浮的细胞, 最后分别往其中 5个小孔中加入前述 5种不同浓 度的大銳皮肤黏液浸提培养基 2 mL, 一个小孔加入不含大銳皮肤黏液浸提培养基的完 全培养基 2 mL作为空白对照组。 所有的实验样本放入 37°C孵箱中培养, 分别在 0 h和 24 h的时候在显微镜下进行观察拍照, 其中以 0. lmg/mL大銳皮肤黏液浸提培养基的实 验结果为代表, 呈现如图 5A所示, 其余浓度则未示出。
利用 Image-J软件对所采集图片进行面积计算与分析, 结果如图 5B所示, 通过实 验证明, 不同浓度的大銳皮肤黏液浸提培养基对 HUVES以及 L929两种细胞的迀移均有 一定的促进作用, 其中以 0. lmg/mL的浓度效果最为显着, 其细胞生长及迀移明显快于 空白对照组, 且两者之间的差异具有统计学意义。
接着,通过 transwel l小室实验,进一步验证 5个不同浓度的大銳皮肤黏液浸提培 养基对于 HUVES以及 L929两种细胞的体外迀移速率的影响, 以反映其促进皮肤、 黏膜 再生的作用。
分别采用 HUVES以及 L929两种细胞进行测试, 细胞的准备过程为: 取对数生长期 的 HUVES和 L929, 胰酶消化得到单细胞悬浊液, 细胞计数 HUVES 2 X 105个 /mL, L929 计数 3 X 105个 /mL, 将 transwel l小室置于 24孔板中, 而后将 100 y L细胞悬浊液接种 至 transwel l上室中, 下室中分别加入 800 y L大銳皮肤黏液浸提培养基, 37°C孵箱中 培养 24h后用镊子小心取出小室, 吸干上室液体, 移到预先加入约 800 y L甲醇的孔中, 室温固定 30分钟后取出小室,吸干上室中的固定液,将小室移到预先加入约 800 y L0. 1% 结晶紫染液的 24孔板中, 室温染色 15— 30分钟, 染色完成后用 PBS浸泡数次洗去多余 染液, 最后吸去上室中液体, 用湿棉棒小心擦去上室底部膜表面上的细胞; 待小室膜干
燥后用镊子小心揭下膜, 移至载玻片上用封片后, 于 200倍显微镜下观察, 如图 5C所 示; 而后对各组实验组样本随机截取的照片进行细胞计数, 每个样本随机选取 5个视野 计数, 图 5C中所示是每个样本的 1个视野, 计数取得的细胞数量如表 5所示, 最后对 得出细胞数量后进行差异统计分析。
表 5; transwel l小室实验结果
实验结果证明,不同浓度的大銳皮肤黏液浸提培养基对两种细胞的迀移速率均有不 同程度的影响。 其中对 HUVES而言, 0. 5mg/mL、 0. lmg/mL大銳皮肤黏液浸提培养基组 和空白对照组之间的差异具有统计学意义; 对 L929而言, 0. lmg/mL、 0. 05mg/mL、
0. 01mg/mL大銳皮肤黏液浸提培养基组和空白对照组之间的差异具有统计学意义。其中 以 0. lmg/mL大銳皮肤黏液浸提培养基对两种细胞的促进效果最为显着。 本实验例的实 验结果表明,不同浓度的大銳皮肤黏液浸提培养基对两种细胞的迀移速率均有不同程度 的影响, 其中 0. lmg/mL大銳皮肤黏液的促进效果尤为显着。
以上体外细胞实验结果均说明, 大銳皮肤黏液浸提培养基的细胞兼容性较好,对细 胞未见明显毒性, 且 0. lmg/mL大銳皮肤黏液浸提培养基能显着加快 HUVES以及 L929 的迀移。
实验例 4: 医用黏合剂对于活体伤口的组织黏附的评估和效果
需要先说明的是, 本发明执行试验的动物均购自重庆医科大学实验动物中心。所有 的动物研究都是按照 NIH关于实验室动物的护理和使用的指导方针进行的 (NIH Publ ication No. 85-23 Rev. 1985) , 并经重庆医科大学牙科学院动物护理与使用委 员会批准 (CQHS-REC-2018-01) 。
针对体内伤口附着及生物兼容性评价,本实验使用 30只雄性 Sprague-Dawley(SD) 大鼠 (6-8周大鼠, 体重 200 g± 20 g) 。 通过腹腔注射戊巴比妥钠 (30 mg/kg) 麻醉 SD大鼠。 剃除背部毛发后用碘和乙醇消毒, 每只 SD大鼠背部切 4个 2厘米切口, 分别 采用使用 4-0不可吸收缝线缝合伤口 (缝线) 、 本发明的医用黏合剂(SSAD) 、 氰基丙 烯酸酯 (商用胶) 、 纤维蛋白胶 (生物胶) 或止血 (空白对照) 等方法治疗。
对于 SSAD治疗组的作法,是将 5 mg大銳皮肤黏液干粉涂在切口,然后用 15 y L -20 y L PBS滴在切口, 轻轻按下两个伤口边缘接触大约 30秒, 让大銳皮肤黏液干粉与 PBS 相互作用成胶并充分实现黏结效果。结果显示,商用胶组所使用的氰基丙烯酸酯与 SSAD 治疗组使用的医用黏合剂相比具有刚性结合特性,而医用黏合剂则与正常皮肤一样具有 柔韧性。此外,虽然生物胶组的纤维蛋白胶也具有一定的柔韧性,但因为黏结能力较低, 黏结切口在移动过程中容易破裂, 性能仍不及医用黏合剂。
所有伤口部位都进行了拍照观察, 以了解愈合过程并监测伤口闭合情况的变化(如 图 6a) 。 术后 5天, 所有未封闭治疗的空白对照组伤口均裂开 (如图 6a) ; 而进一步 相比于生物胶组和空白对照组 (单纯止血治疗) , 商用胶组、 缝线组、 SSAD治疗组的 伤口均恢复, 其中又以 SSAD治疗组的伤口不仅恢复, 且几乎未见瘢痕, 愈合恢复效果 明显优于其他组。 此外, 在 SSAD治疗组的创面周围, 未观察到任何感染或炎症的可疑 迹象, 显示本发明医用黏合剂在伤口愈合上的优越效果。
评估伤口愈合效果和本发明医用黏合剂治疗可能对大鼠皮肤组织产生的副作用,手 术 5天后, 大鼠被处死, 收集皮肤(3 X 3厘米)样本用于苏木精和伊红染色分析(H&E;
G1120, Solarbio, 中国) , 进行了组织学研究, 结果如图 6b所示。 在 SSAD治疗组中, 经医用黏合剂处理的切口下方可见纵向的胶原纤维、 散在的中性粒细胞和成纤维细胞。 上皮与基底膜连续融合, 组织深处未见裂隙。 此外, 在切口处观察到毛发再生, 无明显 瘢痕, 提示医用黏合剂促进伤口整体愈合, 无明显副作用。
在 SSAD治疗组以外的组别, 缝合伤口部位有较少不规则的胶原纤维、 中性粒细胞 及成纤维细胞, 同时毛发再生也较少。 值得重视的是, 与 SSAD治疗组相比, 其他组别 的缝合切口部位没有细胞, 而 SSAD治疗组组充满核蓝染的新生细胞。 商用胶组中, 经 氰基丙烯酸酯处理的切口, 在其切口底部可见明显的空泡, 其中可能充满不可降解的氰 基丙烯酸酯, 部分氰基丙烯酸酯周围环绕坏死细胞, 基底细胞区未见明显核蓝染细胞。 生物胶组的切口可见明显的溃疡表面, 及底部未降解的纤维蛋白胶残留。仅行止血处理 的空白对照组, 切口充满大量肉芽组织, 伤口部位可见一定数量的多形性核白细胞、 巨 噬细胞、 成纤维细胞和血毛细血管。
商用胶组中的氰基丙烯酸酯在体内和体外黏接的黏合力最高,甚至高于天然皮肤组 织的强度。 然而, 氰基丙烯酸酯对脂肪的黏合力较弱, 且形成黏结界面较硬, 且其细胞 毒性也不可忽视。生物胶组中的纤维蛋白基胶黏剂具有与软组织相似的特性,但黏合力 低, 不能单独使用。 至于 SSAD治疗组的效果则显示, 其治疗的切口比常规缝合线治疗 的切口恢复更好, 未引起明显的伤口感染或炎症, 且具有促进细胞再生的功效。
实验例 5: 医用黏合剂对于体内伤口愈合的评估和效果
本实验例应用全层皮肤缺损, 评价医用黏合剂应用于糖尿病 SD大鼠体内创面的愈 合能力。 根据论文 (Biomaterials science. 2018 ; 6: 2757-72) 描述的方法, 糖尿病 大鼠成功构建后, 用 1%戊巴比妥钠 (腹腔注射) 麻醉, 然后将其背部表面毛发刮除干 净。 使用一次性活检穿刺器在背部皮肤上制作直径 10毫米的全厚度圆形伤口。 在伤口 处理上, 空白对照组采用用纱布覆盖; SSAD治疗组是按照 30 mg/平方厘米缺损面积, 计算大銳皮肤黏液干粉的用量, 将大銳皮肤黏液干粉均匀撒在伤口表面, 保持实验动物 的静止状态 2分钟以上, 使大銳皮肤黏液干粉吸收伤口的血液 (即为水性溶液的功能) 后成胶, 使之形成医用黏合剂并覆盖伤口。 术后第 0、 3、 7、 14、 21天, 对伤口闭合率 进行分析; 术后 21天, 对于伤口进行组织切片分析, 包括对皮肤厚度比 (STR) 、 平均 正常皮肤厚度及皮肤附件 (如: 毛囊、 皮脂腺、 汗腺) 数进行统计分析。
伤口闭合率是采用 Image J软件 (National Institute of Heath) 根据以下公式 (式 I I) 计算:
伤口闭合率 = Slnitial Scurrent X 100% (式 I I)
sInitial
其中, sInitlal为初始创面大小, seum„t为当前创面大小。 每个条件至少要进行三次测 试。
皮肤厚度比 (STR) 是采用 Image J软件根据公式 (I I I) 计算:
皮肤厚度比 =:j^^ X 100% (式 I I I)
其中 Ts 为疤痕组°纟7^]平均皮肤厚度, TNOTml为平均正常皮肤厚度。每个条件至少进 行三次测试。
为进一步评价医用黏合剂对于体内创面愈合的疗效,用一次性活检穿刺机在大鼠背 部制备直径为 1厘米的圆形全厚度皮肤创面。 SSAD治疗组采用如实施例 1所制备的医 用黏合剂, 用量按照 100mg/平方厘米缺损面积计算; 阴性对照组覆盖纱布, 不使用任 何黏合剂。 根据手术处置后 0、 3、 7、 14、 21天的时间间隔, 拍照观察治疗组伤口愈合 情况, 整体结果如图 7。
如图 7a及图 7b所示, 用医用黏合剂处理的伤口, 伤口闭合率明显提高。 在第 0 天的图像中, 两组缺损部位未发现明显的差异; 缺损术后第 3天起, 治疗组的创口闭合 率(30. 9 ± 8. 2%) 明显高于对照组(10. 4 ± 1. 5%) ; 第 7天时, 对照组显示创口闭合率 为 24. 4 ± 5. 5%, 而治疗组创口闭合率为 54. 5 ± 12. 4%; 第 14天, 治疗组创口闭合率为 80. 9 ± 7. 5%, 而对照组创口闭合率为 58. 2 ± 11. 4%; 在第 21天, 治疗组伤口几乎完全 愈合的 (98. 1%± 2. 6%) , 且观察到再生的毛发遮盖住里创口, 而对照组创口闭合率为 71. 9%± 6. 4%。 整体而言, 治疗组的伤口外观明显改善, 而未经治疗的对照组则出现明 显的大而长的疤痕。
为了确定医用黏合剂治疗对表皮再生和结缔组织收缩的影响, 在术后第 21天进行 H&E染色 (如图 7c) 。 H&E染色结果显示, SSAD治疗组皮肤再生较厚, 溃疡面积较小, 统计结果也证明比较结果有统计上的差异 (如图 7d) 。 针对 SD大鼠伤口部位切片进行 Masson染色(如图 7e)结果显示, 与正常皮肤相比, 由于 21天仍处于肉芽组织增生和 重塑阶段, SSAD治疗组的肉芽组织更成熟, 含有更多的血管。 除表皮愈合外, 治疗组 形成了成熟的真皮结构(包括毛囊和皮脂腺) , 这与正常组织成分相似, 而空白对照组 无法观察到此现象 (如图 7f) 。
为了判断伤口部位的血管新形情况, 分析血管生成相关标记物⑶ 31和 a -SMA, 结 果如图 7g所示, 其中以 DAPI染色标记组织中细胞核的位置, 供做对比。 从图 7g可见, SSAD治疗组在术后 7天, ⑶ 31阳性细胞含量为 4. 42 ± 0. 55%, 空白对照组⑶ 31阳性细 胞含量为 1. 48 ± 0. 39%; 术后 14天, 大銳皮肤黏液水凝胶治疗组⑶ 31阳性细胞含量为 13. 03 ± 1. 03%, 空白对照组⑶ 31阳性细胞含量为 8. 30 ± 1. 59%, 差异均有统计学意义 (P á 0. 001) ; 证明 SSAD治疗组较空白对照组可显着增加损伤部位新生血管的形成, 促进伤口愈合, 也证明本发明提供的医用黏合剂具有明显的促进组织再生的效果。
实验例 6: 医用黏合剂在体内降解的评估和效果
在深吸入异氟醚全身麻醉下, SD大鼠俯卧位, 背部无菌准备手术。 在脊柱轴外的 备皮肤切口 (3厘米) , 和底层皮下组织分离, 为植入医用黏合剂提供足够的空间。 取 100 mg大銳皮肤黏液干粉, 与 200-600 y L PBS混合后形成医用黏合剂, 植入皮下空间, 植入后缝合关闭皮肤。 术后 3、 7、 14天收集周围组织及全皮肤进行组织学分析, 评估 医用黏合剂的降解效果, 其降解效果如图 8所示。
医用黏合剂在体内植入 3、 7和 14天后, H&E和 Masson染色显示出轻度炎症反应 (分别如图 8a、 图 8b所示) 。 植入 3天后, 在植入的医用黏合剂最外层观察到中度急 性炎症反应, 有典型的炎性细胞染成深蓝色(即如图 8中颜色相对较深的细胞) 。 植入 7天后, 医用黏合剂结构开始失去完整性, 几乎被侵入的炎性细胞所填满, 几乎没有观 察到纤维囊, 说明宿主对医用黏合剂的反应较弱。 此外, 植入 14天后, 植入部位几乎 没有医用黏合剂残留, 皮肤结构与空白对照一样正常, 说明医用水性凝胶在体内可以完 全降解。
使用淋巴细胞 (⑶ 3) 和巨噬细胞 (⑶ 68) 标志物染色, 评估创口愈合区域的细胞 特征, 其结果如图 8c所示。 在图 8c中 i、 v、 ix为术后 3天切片同一视野下的局部放 大图; 同理, i i、 vi、 x表示术后 7天的图像; i i i、 vi i、 xi表示术后 14天的图像; iv、 vi i i、 xi i表示术后 21天的图像。 从图 8c可以发现, 植入后第 3天, 在医用黏合 剂治疗组在移植物周围淋巴细胞浸润率为 0. 23 ± 0. 06%, 仅见少量巨噬细胞浸润; 巨噬 细胞浸润在第 7天达到最大值 (3. 21 ± 0. 87%) ; 随着时间的推移, 淋巴细胞和巨噬细 胞的浸润的数量都减少, 到第 21天几乎完全消失, 同时, 以上过程进行了量化统计, 结果如图 8d和 8e所示, 各时间点之间都具备统计上差异; 这一观察结果证明大銳皮肤 黏液水凝胶作为医用黏合剂具有良好的生物兼容性,在体内可完全降解且几乎无刺激性,
未见明显的免疫排斥反应。
采用液相色谱技术对大銳皮肤黏液干粉主要物质含量进行检测, 发现其中 87%以上 为各种氨基酸。 见表 6。
表 6 大銳皮肤黏液干粉主要物质含量 _
排序 氨基酸 含量 (mg/kg) 含量百分
数 (%)
赖氨酸 84718.11+705.005 8. 47
2 苏氨酸 71375.08+714.28 7. 14
3 谷氨酸 69488.71+1151.98 6. 95
4 甘氨酸 68308.8+594.745 6. 83
5 天冬氨酸 62547.98+674.25 6. 25
6 亮氨酸 61047.84+453.635 6. 1
7 脯氨酸 59855.79+493.31 5. 99
8 异亮氨酸 59898.02+417.785 5. 99
9 酪氨酸 55928.19+4420.91 5. 59
10 缬氨酸 53311.17+1022.665 5. 33
11 丝氨酸 52322.74+99.4 5. 23
12 苯丙氨酸 50825.46+340.375 5. 08
13 丙氨酸 41874.33+328.675 4. 19
14 精氨酸 38365.15+389.165 3. 84
15 组氨酸 17974.12±178.975 1. 8
16 蛋氨酸 14394.41±129.13 1. 44
17 色氨酸 9372.815+5.325 0. 94
18 胱氨酸 1680.24+71 0. 17 实验例 7: 不同水性溶剂种类的评估和效果
采取电刺激法得到大銳皮肤黏液, 干粉碎后采用环氧乙烷灭菌, 放置 48小时得到 大銳皮肤黏液干粉。水性溶液分别采用生理盐水(NaCl缓冲液)、磷酸盐缓冲液(PBS)、 Tris缓冲液 (TBS) 、 柠檬酸盐缓冲液、 2%氯己定、 血液以及富血小板血浆 (PRP) 、 富血小板血浆纤维蛋白 (PRF) 、 浓缩生长因子(CGF) , 按照本发明实施例 1所述的方 法制备医用黏合剂。 大銳皮肤黏液干粉与上述水性溶液的重量比例见表 7。
表 7: 本实施例中大銳皮肤黏液干粉与水性溶液的重量比例
分别用上述不同水性溶液按照不同的粉水比配置的医用黏合剂对多例大鼠进行治 疗, 治疗方法是将医用黏合剂黏附覆盖创面, 其均能黏附与覆盖创面, 显示良好的黏附 性能。 35天后, 取大鼠心脏、 肝脏、 脾脏、 肺、 肾进行组织学分析, 评价医用黏合剂 的生物兼容性。采集血样进行血生化分析,包括: 乳酸脱氢酶(LDH)、血尿素氮(BUN), 丙氨酸转氨酶(ALT)和天冬氨酸转氨酶(AST) , 以评估医用黏合剂对于生理数值的影 响。 在治疗期间和随后的观察 (损伤后 35天) 中, 未观察到对大鼠总体健康或行为的 影响。 此外, H&E染色对心脏、 肝脏、 脾脏、 肺和肾脏的组织学检查没有发现任何系统 性损伤。 此外, 还对医用黏合剂处理组大鼠的肾脏 (血尿素氮) 和肝脏 (谷草转氨酶、 谷丙转氨酶) 以及一般损害(乳酸脱氢酶) 的毒性作用进行了评估。 医用水性凝胶局部 给药后,这些参数与对照组相比均在正常参考值范围内, 提示医用水性凝胶治疗后各主 要器官无明显损伤。
实验例 8: 医用黏合剂在体内生物兼容性的评估和效果
用本发明的多种不同水性溶液和不同粉水比例的医用黏合剂对多例大鼠进行治疗, 治疗方法是将适量医用黏合剂缝合于大鼠皮下。 治疗 35天后取大鼠心脏、肝脏、 脾脏、 肺、 肾进行组织学分析, 评价医用黏合剂的生物兼容性。 采集血样进行血生化分析, 包 括: 乳酸脱氢酶 (LDH) 、 血尿素氮 (BUN) 、 丙氨酸转氨酶 (ALT) 和天冬氨酸转氨酶 (AST) , 以评估医用黏合剂对于生理数值的影响。 医用黏合剂可以黏附皮肤切口, 促 进糖尿病模型创面愈合。然而, 体内长期毒性的评估对于生物应用至关重要。在治疗期 间和随后的观察(损伤后第 35天) 中, 未观察到对大鼠总体健康或行为的影响。 此外, H&E染色对心脏、肝脏、脾脏、肺和肾脏的组织学检查没有发现任何系统性损伤。此外, 还对医用黏合剂处理组大鼠的肾脏(血尿素氮)和肝脏(谷草转氨酶、 谷丙转氨酶) 以 及一般损害(乳酸脱氢酶)的毒性作用进行了评估。这些参数与对照组相比均在正常参 考值范围内, 提示医用黏合剂治疗后各主要器官无明显损伤。
实验例 9: 医用黏合剂对肌腱治疗效果评估
采用 SD大鼠为实验动物, 其中正常组采用不进行任何手术的正常大鼠; SSAD治疗 组在切断跟腱后采用本发明的医用黏合剂进行治疗;空白对照组在切断跟腱后采用磷酸 缓冲盐溶液(PBS)处理, 任其自然愈合。 具体做法是, 选用 3月龄 SPF级雄性 SD大鼠 20只 (重庆医科大学实验动物中心提供) , 体重 (280 ± 30 g) 适应性喂养 7天。 根 据已经建立好的大鼠跟腱离断缺损模型, 执行腱离断手术步骤 (如图 9) : 任选大鼠一 条后腿为实验组 (例如右后腿) , 切开皮肤分离出腱鞘膜 (如图 9a) 。 暴露跟腱和跖 肌腱 (如图 9b) 。 切断跟腱, 为了防止内固定, 跖跟腱也要切除 (如图 9c) 。 腱鞘膜 可以增强生长因子促跟腱愈合能力, 在切断肌腱及缝合时注意不过度损伤。
将大鼠随机分为 SSAD治疗组和空白对照组,每组各 10只, 并以上述手术方法切断 跟腱。 SSAD治疗组采用实施例 1所得到的医用黏合剂治疗: 取大銳黏液干粉 10mg置于 肌腱断端 (如图 9d) , 与 30微升 PBS混合形成水凝胶包绕跟腱断端 (如图 9e) , 关闭 创面 (如图 9f) 空白对照组采用 30微升 PBS滴注跟腱断端后关闭创面。
术后所有动物自由摄水及摄食 (标准饲料) , 在室温 25 °C〜 28°C, 湿度 75〜 80 % 清洁级环境中喂养。 在术后第 28天采用小动物步态仪分析术后各组大鼠的运动情况, 并取部分样品进行力学测试(n = 6) , 剩余部分肌腱进行固定处理, 之后进行石蜡切片 和 HE及 Masson染色等。
对比 SSAD治疗组和空白对照组的肌腱强度。 力学测试的方法按照以下方法进行。 首先, 分离出完整的肌腱组织, 用两个并在一起的手术刀片沿肌腱组织上下各 5mm的安
全距离切掉周边的原有肌肉组织而保留所有肌腱组织。将带有 5_肌肉的两端固定在万 能试验机 (MTS Criterion, Model 43, 美国) 。 力学测试所用的参数为 15毫米 /分钟, 当到达新生肌腱组织所能承受的最大力时肌腱发生断裂,此时机器会记录力与位移的曲 线。根据最大拉力和预先测得的新生肌腱组织的横截面积计算出最大断裂强度 (以 N/mm2 为单位) ; 杨氏模量则可以根据曲线的斜率计算得到。
力学测试显示, 术后 21天, SSAD治疗组肌腱最大负荷拉力 (25.6N±8.2N) 明显 高于对照组 (13.8±3.9N) (P á 0.05) 。 同时, SSAD治疗组的肌腱横截面积 (10.5 ±4.7mm2) 仍小于对照组 ( 16.1 ±5.8mm2) 。 SSAD治疗组肌腱强度 (2.8± 1. IMPa) 高 于对照组 (0.9±0.2MPa) (P á 0.05) 。 SSAD治疗组肌腱刚度 ( 17.7±7.5N/mm) 高 于对照组 (6.9±1.2N/mm) (P á0.05) 。 SSAD治疗组弹性模量 ( 14.6±6.9Mpa) 高于 对照组 (3.0±0.6Mpa) 。
术后 28天, SSAD治疗组肌腱最大负荷拉力 (52.8N±9.8N) 高于对照组 (33.3土 8.3N) (P á 0.05) 。 同时, SSAD治疗组肌腱横断面积 (7.7±1. Imm2) 仍小于对照 组 (9.3±1.6mm2) 。 SSAD治疗组肌腱强度 (7.1±1.9Mpa)高于对照组 (3.6±0.9MPa) (P á 0.05) 。 SSAD治疗组 (28.6±7.8N/mm) 刚度明显高于对照组 ( 15.3±3. ON/mm) (P á0.05) 。 SSAD治疗组的弹性模量 (36.3±11.2Mpa) 高于对照组 ( 15.0±3.5Mpa) (P á 0.05) 0
正常组的肌腱最大负荷拉力为 42.3±2.9N, 强度为 14.0±5.8Mpa, 刚度为 29.8土 7.3N/mm, 弹性模量为 44.4± 12.9Mpa。
SSAD治疗组肌腱最大负荷拉力甚至超过正常组, 但 SSAD治疗组面积大于正常组 (7.7±1. Imm2 VS 3.5±1.2mm2) 。 正常组肌腱强度 ( 14.0 ± 5.8Mpa) 仍远高于 SSAD 治疗组 (7. l±1.9Mpa) , 说明正常组肌腱质量高于 SSAD治疗组。 SSAD治疗组肌腱负 荷甚至超过正常肌腱的原因应该是早期肌腱愈合伴有增生所致。说明本发明的医用黏合 剂可以提高愈合跟腱强度, 减少再次断裂的风险。
对比 SSAD治疗组、空白对照组和正常组的跑步态仪。其中 SSAD治疗组和空白对照 组的动物模型均为左后腿正常, 右后腿手术。正常组的左右腿均未进行手术。使用啮齿 类小动物步态仪 (Catwalk XT步态分析系统, 诺达思, 荷兰) 评估术后大鼠的行动能 力, 机器自带软件导出检测数据。 使用 SPSS statistics 25软件 (IBM公司, Armonk, NY, USA) 进行统计分析。 数据以均数土标准差表示。 用两独立样本 t检验计算是否有 统计学差异。
分别测定脚印面积、 最大接触面积、 占空比、 到达最大强度占比、 最大接触面积最 大强度、 最大接触面积平均强度、 最大强度、 平均强度、 前 15最大脚掌压强的平均强 度。 21天时, 空白对照组测量 10只大鼠, SSAD治疗组测量 10只大鼠。 28天时, 空白 对照组测量 4只大鼠, SSAD治疗组测量 5只大鼠。 同时测量 4只正常大鼠的步态数据。 数据用均值土标准差表示。根据已有文献报道和与正常组大鼠对比, 跟腱愈合良好的表 现为: 除了到达最大强度占比变大外, 其余指标均变小。
术后 21天, SSAD治疗组大鼠脚印面积 (1.68±0.55 cm2)小于对照组 (2.15±0.33 cm2) (P á0.05) 。 SSAD治疗组大鼠占空比 (脚掌接触地面时间 /步行周期) (71.7土 3.8%) 低于对照组 (77.1±4.8%) (P<0.05) (如图 10) 。 SSAD治疗组大鼠的最大接 触面积最大强度 (176.3±32.3),最大接触面积平均强度 (90.6±13.1),最大强度 (186.0 ±25.0),平均强度 (96.8±13.9),前 15最大脚掌压强的平均强度 ( 168.8±32.4)小 于对照组的最大接触面积最大强度 (199.3±9.7%) ,最大接触面积平均强度 (103.0土 6.5) ,最大强度 (205.2±8.1) (如图 11) ,平均强度 (109.7±6.9) ,前 15最大脚掌 压强的平均强度 (196.2±13.1) 。 在 SSAD治疗组中脚掌触地到达最大强度时间占比
(63.8±12.7%) 大于在对照组 (47.7±13.9%) 中的时间占比。 SSAD治疗组与对照组 的大鼠体重相似, 排除了体重对足强度的干扰。
术后 28天, SSAD治疗组和对照组之间有统计学差异的指标包括最大接触面积 (0.8 ±0. lcm2 VS 1.3±0.3cm2) (如图 12) ,最大强度 ( 154.9±21.0 VS 192±10.8) ,最 大接触面积平均强度 (67.5±2.7 VS 80.0±8.4) ,脚印面积 ( 1.2±0.2 cm2 VS 1.8 ±0.4cm2) ,最大强度 (173.3±16.8 VS 200.2±7.0) (如图 11) ,前 15最大脚掌压 强的平均强度 (146.2±13.6 VS 182.1±17.8) (P á 0.05) 。 正常组数据是脚印面 积 (0.45cm2±0.14cm2) , 最大接触面积 (0.32cm2±0. Ilcm2) , 占空比 (脚掌接触地 面时间 /步行周期) (62.1±2.9%) , 脚掌触地到达最大强度时间占比 (70.7±12.8%) , 最大接触面积最大强度 (83.4±20.2) , 最大接触面积平均强度 (47.1±7.4) , 最大 强度 (93.1±21.3) , 平均强度 (51.8±7.1) , 前 15最大脚掌压强的平均强度 (74.1 ±16.2) , 无论是 21天还是 28天时, 在上述各项指标上 SSAD治疗组数据与正常组更 为接近, 说明本发明提供的医用黏合剂可以改善损伤肌腱的运动功能。 21天大鼠右脚 步行占空比如图 10,是术后 21天大鼠右脚步行占空比 (脚掌触地时间 /步行周期) , 将 三组大鼠步行周期拉长为相同长度, 可以看出脚掌触地时间是空白对照组 ñ SSAD治疗 组 ñ正常组, 即占空比是空白对照组 ñ SSAD治疗组 ñ正常组。 21, 28天的大鼠右脚脚印最 大压强图如图 11, 是术后 21天、 28天大鼠右脚脚印压强 3D图。 X轴表示脚印的长度, Y轴表示脚印的宽度, Z轴表示脚印的最大压强。结果显示最大压强为空白对照组 ñ SSAD 治疗组 ñ正常组。 21天和 28天的大鼠右脚脚印最大面积图如图 12, 是术后 21天、 28 天的大鼠右脚脚印面积显示为空白对照组 ñ SSAD治疗组 ñ正常组。 所有步态指标具体数 据见表 8。
表 8 步态仪结果 _
指标 21天对照组 21天治疗组 ~~ P 28天对照组 28天治疗组 P
脚印面积 2.1 ±0.33 1.7±0.55 0.036 1.8±0.4 1.2±0.2 0.026 最大接触面 1.6±0.2 1.3±0.4 0.113 1.3±0.3 0.8±0.2 0.018 积
占空比 77.1±4.8 71.7±3.8 0.016 68.5±5.1 67.2±5.2 0.771 到达最大强 47.7±13.9 63.8±12.7 0.016 49.7±19.2 68.4±13.6 0.190 度时间占比
最大接触面 199.3±9.7 176.3±32.3 0.065 192 ±10.7 154.9 ± 0.034 积最大强度 21.0
最大接触面 103.0±6.5 90.6±13.1 0.016 80.0±8.4 67.5±2.7 0.030 积平均强度
最大强度 205.2 ±8.1 186.0±25.0 0.050 200.3 ±7.0 173.3 ± 0.041
16.8
平均强度 109.7±6.9 96.8±13.9 0.026 86.8±10.8 72.7±4.2 0.053 前 15最大脚 196.2 士 168.8±32.4 0.036 182.1 士 146.2 ± 0.023 掌压强的平 13.2 17.8 13.6
均强度 手术 28天后, 取实验组和对照组两只大鼠的右后腿 HE切片染色。发现空白对照组
(如图 13a) 胶原纤维较少, 且无方向性, 内部有脂肪细胞浸润。 SSAD治疗组 (如图 13b) 胶原纤维丰富, 纤维呈一定方向性, 未见明显脂肪细胞浸润。 说明本发明对肌腱 的治疗效果明显。 以上结果均说明 SSAD治疗组的跟腱愈合优于空白对照组。 但由于恢 复时间较短 (28天) , SSAD治疗组的大鼠运动能力暂未恢复到正常状态。
从以上说明可知,本发明提供一种基于未经改性的大銳皮肤黏液制备的医用黏合剂 及其用途, 可通过多元化的使用方式, 应用于创面的组织黏附, 并促进伤口愈合, 综合 性能优于现有的医用黏合剂。
医用黏合剂使用过程中, 水凝胶能迅速 ( á60秒)封闭大鼠背部出血的开放性的伤 口, 有效治疗糖尿病 SD大鼠全层皮肤缺损。 此外, 医用黏合剂在体内 2周内可完全降 解, 炎症异物反应低。 因此, 本发明提供的医用黏合剂具有操作方便、 易于改性、 生物 兼容性好等优点, 以及促进组织再生、促伤口愈合、抗氧化、抑菌等综合效果, 为皮肤、 致密结缔组织、脆弱器官和不可触及的内部组织的伤口提供了一个很有前途且实用的无 缝合选择。另考虑到大銳皮肤黏液的低廉的成本和环保的加工步骤, 预期本发明提出的 医用黏合剂可作为一种有弹性和延展性的医用胶黏剂的产品,克服既有产品的缺陷和限 制, 并被广泛运用。
以上所述仅为本发明之较佳实施例, 并非用以限定本发明之权利范围; 同时以上的 描述,对于相关技术领域之专门人士应可明了及实施, 因此其他未脱离本发明所揭示之 精神下所完成的等效改变或修饰, 均应包含在申请专利范围中。
Claims
1、 一种医用黏合剂, 其特征在于, 包括:
大銳皮肤黏液干粉和水性溶液,所述大銳皮肤黏液干粉和所述水性溶液的重量份数比例 介于 1 : 1至 1 : 6。
2、 如权利要求 1所述的医用黏合剂, 其特征在于, 所述医用黏合剂为凝胶状。
3、 如权利要求 2所述的医用黏合剂, 其特征在于, 所述大銳皮肤黏液干粉在所述医用 黏合剂中的重量含量百分比介于 14. 2%至 50%。
4、 如权利要求 1所述的医用黏合剂, 其特征在于, 所述水性溶液的组份选自蒸馏水、 生理缓冲液、 氯己定、 血液、 血浆、 血细胞制剂、 富血小板血浆、 富血小板血浆纤维蛋 白或上述任意组合。
5、 如权利要求 4所述的医用黏合剂, 其特征在于, 所述生理缓冲液的组份选自生理盐 水、 磷酸盐缓冲液、 Tri s缓冲液、 柠檬酸盐缓冲液或上述任意组合。
6、 如权利要求 2所述的医用黏合剂, 其特征在于, 所述医用黏合剂具有多孔结构。
7、 如权利要求 6所述的医用黏合剂, 其特征在于, 所述多孔结构的孔洞平均直径小于 116 u mD
8、 如权利要求 6所述的医用黏合剂, 其特征在于, 所述多孔结构的孔洞平均直径在 6 y m_37 y m之间。
9、 如权利要求 1所述的医用黏合剂, 其特征在于, 所述大銳皮肤黏液干粉的颗粒尺寸 为 -20目。
10、 如权利要求 1所述的医用黏合剂, 其特征在于, 所述大銳皮肤黏液干粉的颗粒尺寸 为 -60目至 +300目。
11、 一种使用如权利要求 1-10任一所述医用黏合剂的用途, 其特征在于, 所述医用黏 合剂应用在创面的黏合、 修复和愈合。
12、 如权利要求 11所述的医用黏合剂的用途, 其特征在于, 所述创面包含位于表皮、 真皮及皮下结缔组织的创面。
13、 如权利要求 11所述的医用黏合剂的用途, 其特征在于, 所述创面包含位于骨骼肌、 肌腱、 韧带、 骨骼及 /或骨骼周围结缔组织的创面。
14、 如权利要求 11所述的医用黏合剂的用途, 其特征在于, 在所述创面直接施用所述 大銳皮肤黏液干粉以及所述水性溶液, 从而在所述创面直接形成所述医用黏合剂。
15、 如权利要求 11所述的医用黏合剂的用途, 其特征在于, 预先使用所述大銳皮肤黏 液干粉以及所述水性溶液制备成所述医用黏合剂,再用于敷贴所述创面或用于封堵所述 创面。
16、 一种制备如权利要求 1-10任一所述医用黏合剂的方法, 其特征在于, 通过以下步 骤得到:
提供大銳皮肤黏液干粉;
对所述大銳皮肤黏液干粉进行灭菌; 以及
将灭菌后的所述大銳皮肤黏液干粉和水性溶液混合, 进行成胶作用, 以形成凝胶状 的所述医用黏合剂,其中所述医用黏合剂中所述大銳皮肤黏液干粉和所述水性溶液的重 量份数比例为 1 : 1至 1 : 6, 所述大銳皮肤黏液干粉在凝胶状的所述医用黏合剂中的重 量含量百分比介于 14. 2%至 50%。
17、 如权利要求 16所述的医用黏合剂的制备方法, 其特征在于, 提供所述大銳皮肤黏 液干粉的步骤更包含:
从活体大銳皮肤取得大銳皮肤黏液;
将所述大銳皮肤黏液进行冷冻干燥; 以及
对冷冻干燥后的所述大銳皮肤黏液进行研磨及粉碎, 形成所述大銳皮肤黏液干粉。
18、 如权利要求 16或 17所述的医用黏合剂的制备方法, 其特征在于, 所述大銳皮肤黏 液干粉的颗粒尺寸为 -20目。
19、 如权利要求 16或 17所述的医用黏合剂, 其特征在于, 所述大銳皮肤黏液干粉的颗 粒尺寸为 -60目至 +300目。
20、 如权利要求 16所述的医用黏合剂的制备方法, 其特征在于, 所述灭菌是利用环氧 乙烷达成。
21、 如权利要求 16所述的医用黏合剂的制备方法, 其特征在于, 所述水性溶液的组份 选自蒸馏水、 生理缓冲液、 氯己定、 血液、 血浆、 血细胞制剂、 富血小板血浆、 富血小 板血浆纤维蛋白或上述任意组合。
22、 如权利要求 21所述的医用黏合剂的制备方法, 其特征在于, 所述生理缓冲液的组 份选自生理盐水、 磷酸盐缓冲液、 Tris缓冲液、 柠檬酸盐缓冲液或上述任意组合。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/433,505 US20220267655A1 (en) | 2019-02-26 | 2020-02-26 | Medical adhesive and the preparation method and use thereof |
JP2021549446A JP7378486B2 (ja) | 2019-02-26 | 2020-02-26 | 医療用接着剤及びその調製方法、その用途 |
EP20762978.3A EP3932436A4 (en) | 2019-02-26 | 2020-02-26 | MEDICAL ADHESIVE STICK AND METHOD OF MANUFACTURE THEREOF AND USE THEREOF |
CN202080016081.8A CN113727740A (zh) | 2019-02-26 | 2020-02-26 | 医用黏合剂及其制备方法和用途 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910140042.8A CN110559469B (zh) | 2019-02-26 | 2019-02-26 | 一种医用黏合剂 |
CN201910140042.8 | 2019-02-26 | ||
CN201910536465.1 | 2019-06-20 | ||
CN201910536465.1A CN112107723B (zh) | 2019-06-20 | 2019-06-20 | 医用水性黏胶及其使用方法 |
CN201910603111.4 | 2019-07-05 | ||
CN201910603111.4A CN112169011A (zh) | 2019-07-05 | 2019-07-05 | 可用于致密结缔组织的医用黏合剂 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020173459A1 true WO2020173459A1 (zh) | 2020-09-03 |
Family
ID=72239144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/076763 WO2020173459A1 (zh) | 2019-02-26 | 2020-02-26 | 医用黏合剂及其制备方法和用途 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20220267655A1 (zh) |
EP (1) | EP3932436A4 (zh) |
JP (1) | JP7378486B2 (zh) |
CN (1) | CN113727740A (zh) |
WO (1) | WO2020173459A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112353748A (zh) * | 2020-12-07 | 2021-02-12 | 成都高新区九州华昀医疗美容门诊部有限公司 | 基于富血小板血浆及大鲵活性肽的美容组合物 |
CN114177105A (zh) * | 2021-11-17 | 2022-03-15 | 西北工业大学 | 一种以大鲵黏液蛋白为主要成分的生发剂 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115804863A (zh) * | 2022-11-25 | 2023-03-17 | 中国人民解放军第三〇五医院 | 包裹间充质干细胞的大鲵皮肤粘液凝胶敷料及制备方法 |
CN117797172B (zh) * | 2024-02-28 | 2024-05-14 | 合肥启色生物科技有限公司 | 一种抗炎、止血、促愈合的组合体的制备方法 |
CN119157907B (zh) * | 2024-11-21 | 2025-01-28 | 云南贺尔思细胞生物技术有限公司 | 一种促进皮肤细胞修复的干细胞组合物及其制备方法与应用 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002022756A1 (en) * | 2000-09-18 | 2002-03-21 | Luminis Pty Ltd | An adhesive derived from amphibian skin secretions |
CN104740678A (zh) * | 2015-04-02 | 2015-07-01 | 重庆馗旭生物科技股份有限公司 | 大鲵粘液在制备粘合剂中的应用 |
CN104758978A (zh) * | 2015-04-02 | 2015-07-08 | 重庆馗旭生物科技股份有限公司 | 大鲵粘液在制备止血材料中的应用 |
CN104815349A (zh) | 2015-04-02 | 2015-08-05 | 重庆馗旭生物科技股份有限公司 | 利用大鲵粘液制备的粘合剂及其制备方法 |
CN106581736A (zh) | 2016-12-28 | 2017-04-26 | 安顺市四海农业科技开发有限公司 | 原料为娃娃鱼体表黏液的医用粘合剂及制备方法 |
CN107236134A (zh) * | 2017-04-10 | 2017-10-10 | 魏泓 | 大鲵分泌物水凝胶及其制备方法和应用 |
CN108421080A (zh) | 2018-05-07 | 2018-08-21 | 魏泓 | 大鲵分泌物水凝胶及其制备方法和应用 |
CN110559469A (zh) * | 2019-02-26 | 2019-12-13 | 重庆医科大学附属口腔医院 | 一种医用黏合剂 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1327905C (zh) * | 2002-09-10 | 2007-07-25 | 美国国家红十字会 | 止血敷料 |
WO2008019129A2 (en) * | 2006-08-04 | 2008-02-14 | Stb Lifesaving Technologies, Inc. | Solid dressing for treating wounded tissue |
EP2626091B1 (en) * | 2006-11-06 | 2016-09-28 | Atrium Medical Corporation | Coated surgical mesh |
CN104721882B (zh) * | 2015-04-02 | 2017-10-03 | 重庆馗旭生物科技股份有限公司 | 大鲵粘液在制备软组织填充材料中的应用 |
CN107412845B (zh) * | 2017-08-10 | 2020-09-11 | 魏泓 | 大鲵分泌物生物膜及其制备方法和应用 |
CN107281535B (zh) * | 2017-08-10 | 2020-09-15 | 魏泓 | 大鲵分泌物粘性生物膜及其制备方法和应用 |
CN112169011A (zh) * | 2019-07-05 | 2021-01-05 | 重庆医科大学附属口腔医院 | 可用于致密结缔组织的医用黏合剂 |
CN112107723B (zh) * | 2019-06-20 | 2021-10-12 | 重庆医科大学附属口腔医院 | 医用水性黏胶及其使用方法 |
-
2020
- 2020-02-26 WO PCT/CN2020/076763 patent/WO2020173459A1/zh unknown
- 2020-02-26 JP JP2021549446A patent/JP7378486B2/ja active Active
- 2020-02-26 EP EP20762978.3A patent/EP3932436A4/en not_active Withdrawn
- 2020-02-26 US US17/433,505 patent/US20220267655A1/en active Pending
- 2020-02-26 CN CN202080016081.8A patent/CN113727740A/zh active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002022756A1 (en) * | 2000-09-18 | 2002-03-21 | Luminis Pty Ltd | An adhesive derived from amphibian skin secretions |
CN104740678A (zh) * | 2015-04-02 | 2015-07-01 | 重庆馗旭生物科技股份有限公司 | 大鲵粘液在制备粘合剂中的应用 |
CN104758978A (zh) * | 2015-04-02 | 2015-07-08 | 重庆馗旭生物科技股份有限公司 | 大鲵粘液在制备止血材料中的应用 |
CN104815349A (zh) | 2015-04-02 | 2015-08-05 | 重庆馗旭生物科技股份有限公司 | 利用大鲵粘液制备的粘合剂及其制备方法 |
CN106581736A (zh) | 2016-12-28 | 2017-04-26 | 安顺市四海农业科技开发有限公司 | 原料为娃娃鱼体表黏液的医用粘合剂及制备方法 |
CN107236134A (zh) * | 2017-04-10 | 2017-10-10 | 魏泓 | 大鲵分泌物水凝胶及其制备方法和应用 |
CN108421080A (zh) | 2018-05-07 | 2018-08-21 | 魏泓 | 大鲵分泌物水凝胶及其制备方法和应用 |
CN110559469A (zh) * | 2019-02-26 | 2019-12-13 | 重庆医科大学附属口腔医院 | 一种医用黏合剂 |
Non-Patent Citations (1)
Title |
---|
BIOMATERIALS SCIENCE, vol. 6, 2018, pages 2757 - 27 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112353748A (zh) * | 2020-12-07 | 2021-02-12 | 成都高新区九州华昀医疗美容门诊部有限公司 | 基于富血小板血浆及大鲵活性肽的美容组合物 |
CN114177105A (zh) * | 2021-11-17 | 2022-03-15 | 西北工业大学 | 一种以大鲵黏液蛋白为主要成分的生发剂 |
CN114177105B (zh) * | 2021-11-17 | 2023-07-25 | 西北工业大学 | 一种以大鲵黏液蛋白为主要成分的生发剂 |
Also Published As
Publication number | Publication date |
---|---|
JP7378486B2 (ja) | 2023-11-13 |
US20220267655A1 (en) | 2022-08-25 |
JP2023516514A (ja) | 2023-04-20 |
CN113727740A (zh) | 2021-11-30 |
EP3932436A1 (en) | 2022-01-05 |
EP3932436A4 (en) | 2022-12-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Deng et al. | A bioinspired medical adhesive derived from skin secretion of Andrias davidianus for wound healing | |
JP7378486B2 (ja) | 医療用接着剤及びその調製方法、その用途 | |
US9833541B2 (en) | Hemostatic compositions | |
CN112107723B (zh) | 医用水性黏胶及其使用方法 | |
JP7099822B2 (ja) | コラーゲンで強化した組織移植片 | |
US9801975B2 (en) | Flowable matrix compositions and methods | |
CN110559469B (zh) | 一种医用黏合剂 | |
JP6960333B2 (ja) | 任意にシーラントを含む微粒子化胎盤組織の組成物、ならびにその組成物の作製方法および使用方法 | |
JP6845145B2 (ja) | コラーゲンおよび微粉化胎盤組織からなる組成物ならびにその調製および使用方法 | |
CN115624569A (zh) | 伤口修复剂组合物的制备工艺、管子及装置 | |
JP2020142114A (ja) | 細胞外基質組成物 | |
CN104740678A (zh) | 大鲵粘液在制备粘合剂中的应用 | |
BR112015013755B1 (pt) | Adesivo tecidual no qual o colágeno e a fibrina estão misturados e método para preparar o adesivo | |
JP2016514150A (ja) | ポリ−n−アセチルグルコサミンナノファイバーを有する疾患の処置 | |
JP2012521270A (ja) | 軟骨修復 | |
CN112169011A (zh) | 可用于致密结缔组织的医用黏合剂 | |
CN119770707B (zh) | 一种具有水下粘附性的水凝胶止血贴片的制备方法 | |
US20220249550A1 (en) | Preparation and use of tissue matrix derived powder | |
CN117460544A (zh) | 稳定、保护和治疗伤口的伤口治疗物及方法 | |
Abo-Ghanema et al. | Preparation of fibrin glue from catfish blood and its application | |
EA048656B1 (ru) | Двойная гидрогелевая мультисшивающаяся гемостатическая композиция и способ ее изготовления | |
NZ623908B2 (en) | Hemostatic compositions |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20762978 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2021549446 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2020762978 Country of ref document: EP Effective date: 20210927 |