[go: up one dir, main page]

WO2020034969A1 - 信号传输方法、波束确定方法及其装置 - Google Patents

信号传输方法、波束确定方法及其装置 Download PDF

Info

Publication number
WO2020034969A1
WO2020034969A1 PCT/CN2019/100449 CN2019100449W WO2020034969A1 WO 2020034969 A1 WO2020034969 A1 WO 2020034969A1 CN 2019100449 W CN2019100449 W CN 2019100449W WO 2020034969 A1 WO2020034969 A1 WO 2020034969A1
Authority
WO
WIPO (PCT)
Prior art keywords
uplink
prach
signal
terminal
uplink signal
Prior art date
Application number
PCT/CN2019/100449
Other languages
English (en)
French (fr)
Inventor
黄秋萍
陈润华
高秋彬
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to EP19849357.9A priority Critical patent/EP3840244A4/en
Priority to US17/268,604 priority patent/US20210352645A1/en
Publication of WO2020034969A1 publication Critical patent/WO2020034969A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • H04B7/06966Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping using beam correspondence; using channel reciprocity, e.g. downlink beam training based on uplink sounding reference signal [SRS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal

Definitions

  • the present application relates to the field of wireless communication technologies, and in particular, to a signal transmission method, a beam determination method, and a device thereof.
  • a wireless transmitter for example, a base station, a terminal
  • a wireless transmitter equipped with multiple antennas can form a beam pointing in a specific direction by beam forming to send a wireless signal.
  • the beam width and direction can be flexibly adjusted by applying appropriate weights on each antenna unit. Beamforming can be performed in the digital or analog domain.
  • Analog beamforming is mainly used in high frequency bands, such as 6GHz to 52.6GHz. This frequency band is often referred to as a millimeter wave band. Compared with the frequency band below 6GHz, the propagation loss (such as caused by path loss, scattering, reflection, etc.) in the high frequency band is more serious. Due to the terminal's mobility and rotation, beam blocking between the transmitter and receiver is also more frequent.
  • the random access process of the L1 layer includes sending a random access sequence (Msg1) on a physical random access channel (PRACH), and a physical downlink control channel (physical downlink control channel).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink shared channel
  • RAR random access response
  • the transmission beam of PRACH can be used as a cell-specific physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • the transmission beam of the PUCCH is semi-statically configured by the base station and is realized by configuring a source reference signal, which can be a channel state information reference signal (CSI-RS), or a synchronization signal / physical Broadcast channel block (synchronization signal / Physical channel channel block, SSB), or sounding reference signal (SRS).
  • CSI-RS channel state information reference signal
  • SSB synchronization signal / Physical channel channel block
  • SRS sounding reference signal
  • the source reference signal of the PUCCH can be configured as a CSI-RS or SSB only when the correspondence (correspondence) of the uplink beam and the downlink beam is established. If the correspondence (correspondence) of the uplink beam and the downlink beam is not established, the source reference signal of the PUCCH can only be configured as an SRS. Configuring a source reference signal for the PUCCH as an SRS can only increase the delay in the PUCCH configuration after the base station has performed beam scanning with the SRS.
  • the base station For PUSCH transmission, the base station needs to configure "Spatial Relation Info" for the SRS resource used for CSI acquisition for PUSCH after completing the downlink receive beam scan for the terminal and / or the uplink transmit beam scan through SRS.
  • PUSCH CSI SRS and then determine the uplink transmission beam of PUSCH through the SRS resource indicated by the base station. This makes the delay of the PUSCH transmission process larger.
  • Embodiments of the present application provide a signal transmission method, a beam determination method, and a device thereof.
  • a signal transmission method including: a base station instructing a terminal to send a first uplink signal, and sending uplink beam indication information to the terminal, where the uplink beam indication information is used to instruct to determine a transmission beam of the first uplink signal A first signal including PRACH.
  • the uplink beam indication information instructs the terminal to determine a transmission beam of the first uplink signal using a transmission beam of PRACH.
  • the first signal further includes at least one of the following signals: SRS, synchronization signal / physical broadcast channel block (SSB), and channel state information reference signal (CSI-RS).
  • SRS synchronization signal / physical broadcast channel block
  • CSI-RS channel state information reference signal
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes instructing the terminal to use a transmission beam in a transmission beam group in which a PRACH transmission beam is located, as the indication information of the transmission beam of the first uplink signal.
  • the method further includes that the base station sends the beam group indication information to the terminal or the uplink beam indication information includes the beam group indication information, and the beam group indication information is used to indicate a transmission in which a PRACH transmission beam is located.
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located, or the first signal is the terminal receiving the uplink beam
  • the PRACH of Msg1 was last sent in the cell where the first uplink signal was located before the indication information; or, the first signal is the first uplink signal before the terminal receives the scheduling information of the first uplink signal.
  • the first signal is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal; or, the first signal
  • the transmission beam is a physical uplink shared channel PUSCH that sends Msg3 in the random access process.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signaling: radio resource control (RRC) signaling; media access layer control element (MAC-CE) signaling; triggering or Scheduling downlink control information (Downlink Control Information) of the first uplink signal (DCI).
  • RRC radio resource control
  • MAC-CE media access layer control element
  • DCI Downlink Control Information
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the candidate indication content of the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: SRS, Phase-tracking reference signals (PTRS), Demodulation Reference Signal (DMRS), Demodulated Reference Signal (DMRS), Uplink signal, the uplink signal transmitted in the PUSCH.
  • SRS Phase-tracking reference signals
  • PTRS Phase-tracking reference signals
  • DMRS Demodulation Reference Signal
  • DMRS Demodulated Reference Signal
  • Uplink signal the uplink signal transmitted in the PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • the coding status of the beam scanning indication information includes at least the following states: a state used to instruct the terminal to perform a global scan of an uplink transmission beam; and used to indicate the The terminal uses the transmission beam of PRACH to determine a state in which the transmission beam of the first uplink signal performs local beam scanning.
  • the method further includes: the first signal is PRACH, and the base station receives the first uplink signal using a receiving beam corresponding to a transmitting beam of PRACH.
  • a signal transmission method including:
  • uplink beam indication information is used to indicate a first signal that determines a transmission beam of a first uplink signal, the first signal includes a PRACH; and the terminal determines the base station according to the uplink beam indication information A transmission beam of a first uplink signal; the terminal transmits the first uplink signal by using the transmission beam of the first uplink signal.
  • the uplink beam indication information instructs the terminal to use a PRACH transmission beam as the transmission beam of the first uplink signal.
  • the first signal further includes at least one of the following signals: SRS, SSB, and CSI-RS.
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes instructing the terminal to use a transmission beam in a transmission beam group in which a PRACH transmission beam is located, as the indication information of the transmission beam of the first uplink signal.
  • the method further includes that the terminal receives the beam group indication information sent by the base station or the uplink beam indication information includes the beam group indication information, and the beam group indication information is used to indicate where a transmission beam of the PRACH is located.
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located, or the first signal is the terminal receiving the uplink beam
  • the PRACH of Msg1 was last sent in the cell where the uplink signal was located before the indication information; or, the first signal is the last of the cell in the cell corresponding to the first uplink signal before the terminal receives the scheduling information of the first uplink signal.
  • the first signal is the PRACH that last transmitted Msg1 in the cell corresponding to the first uplink signal before the terminal sends the first uplink signal; or the first signal is random access
  • the transmission beam of the PUSCH of Msg3 is transmitted.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signaling: RRC signaling; MAC-CE signaling; DCI that triggers or schedules the first uplink signal.
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • the coding status of the beam scanning indication information includes at least the following states: a state used to instruct the terminal to perform a global scan of an uplink transmission beam; and used to indicate the The terminal uses the transmission beam of PRACH to determine a state in which the transmission beam of the first uplink signal performs local beam scanning.
  • the terminal determines the transmission beam of the first uplink signal according to the beam scanning indication information.
  • the sending, by the terminal, the first uplink signal by using the transmit beam of the first uplink signal includes: the terminal using the same spatial domain filter as the spatial domain filter of PRACH indicated by the uplink beam indication information Sending the first uplink signal.
  • a beam determination method including: a base station instructing a terminal to send a first uplink signal; the base station using a reception beam corresponding to a transmission beam of PRACH as a default reception beam of the first uplink signal.
  • the method further includes: the base station receiving and sending the first uplink signal using a spatial domain filter that is the same as the spatial domain filter that received the PRACH.
  • the PRACH is the PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located, or the PRACH is the time before the terminal receives the uplink beam indication information.
  • the cell where the uplink signal is located sends the PRACH of Msg1 for the last time; or the PRACH is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH that the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or the PRACH is that the terminal is at Before sending the first uplink signal, the PRACH of Msg1 was last transmitted in the cell corresponding to the first uplink signal; or, the PRACH is a transmission beam that transmits the PUSCH of Msg3 during the random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • a signal transmission method including: the terminal determines a default transmission beam of the first uplink signal according to a transmission beam of the PRACH.
  • the method further includes: when the first condition is satisfied, the terminal sends the first uplink signal using the default transmission beam; the first condition is that the base station instructs the terminal to send the first uplink signal, The terminal establishes an RRC connection with the base station, but has not yet received uplink beam indication information.
  • the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first signal includes a physical signal. Random access channel PRACH.
  • the determining the default transmission beam of the first uplink signal by the terminal according to the transmission beam of the PRACH includes: the terminal using the transmission beam of the PRACH as the default transmission beam of the first uplink signal.
  • the PRACH is the PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located, or the PRACH is the time before the terminal receives the uplink beam indication information.
  • the cell where the uplink signal is located sends the PRACH of Msg1 for the last time; or the PRACH is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH that the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or the PRACH is that the terminal is at Before sending the first uplink signal, the PRACH of Msg1 was last transmitted in the cell corresponding to the first uplink signal; or, the PRACH is a transmission beam that transmits the PUSCH of Msg3 during the random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • a base station including: a sending module, configured to instruct a terminal to send a first uplink signal, and send uplink beam indication information to the terminal, where the uplink beam indication information is used to indicate that the first uplink signal is determined.
  • a first signal of a transmission beam, the first signal including a physical random access channel PRACH.
  • a terminal including: a receiving module configured to receive uplink beam indication information, where the uplink beam indication information is used to indicate a first signal that determines a transmission beam of a first uplink signal, and the first signal includes PRACH; a processing module, configured to determine a transmission beam of the first uplink signal according to the uplink beam indication information; a sending module, configured to use the transmission beam of the first uplink signal to send the first uplink signal.
  • a base station including: a sending module configured to instruct a terminal to send a first uplink signal; and a receiving module configured to use a receiving beam corresponding to a transmitting beam of PRACH as a default receiving beam of the first uplink signal.
  • a terminal including: a processing module configured to determine a default transmission beam of a first uplink signal according to a transmission beam of PRACH.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is configured to receive or send information under the control of the processor; and the processor is configured to read the The computer instructions in the memory execute the method according to any one of the first aspects.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is configured to receive or send information under the control of the processor; and the processor is configured to read the The computer instructions in the memory execute the method according to any one of the second aspects.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is used to receive or send information under the control of the processor; and the processor is used to read all The computer instructions in the memory execute the method according to any one of the third aspects.
  • a communication device including: a processor, a memory, and a transceiver; the transceiver is used to receive or send information under the control of the processor; and the processor is used to read all
  • the computer instructions in the memory execute the method according to any one of the third aspects.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing first aspects. The method described.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing second aspects. The method described.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing third aspects. The method described.
  • a computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute any one of the foregoing fourth aspects. The method described.
  • the terminal may determine the transmission beam of the uplink signal by using the PRACH transmission beam, so that the uplink signal is used to transmit the uplink signal.
  • the base station may use the reception beam corresponding to the PRACH transmission beam to receive the uplink transmitted by the terminal. Signal, so that the transmission beam of the uplink signal can be determined and the uplink signal can be transmitted based on the transmission beam.
  • the delay of determining the uplink signal transmission beam can be reduced, thereby reducing the delay of uplink signal transmission, and improving system efficiency and performance.
  • FIG. 1 is a schematic diagram of a beam indication process implemented on a base station side according to an embodiment of the present application
  • FIG. 2 is a schematic diagram of an uplink beam indication and an uplink signal transmission process according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a beam determination process implemented on a base station side according to an embodiment of the present application
  • FIG. 4 is a schematic flowchart of an uplink signal sending process implemented on a terminal side according to an embodiment of the present application
  • FIG. 5 is a schematic beam diagram in an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a base station according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a terminal according to another embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device on a base station side according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a communication device on a terminal side according to an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of another communication device on a base station side according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of another terminal-side communication device according to an embodiment of the present application.
  • FIG. 1 is a schematic diagram of a possible communication scenario provided by an embodiment of the present application.
  • the terminal 110 accesses a wireless network through a radio access network (RAN) node 120 to obtain services of an external network (such as the Internet) through the wireless network, or communicate with other terminals through the wireless network.
  • RAN radio access network
  • the terminal is also called user equipment (UE), mobile station (MS), mobile terminal (MT), etc., and is a device that provides voice and / or data connectivity to users , For example, handheld devices with wireless connectivity, vehicle-mounted devices, etc.
  • some examples of terminals are: mobile phones, tablet computers, laptops, PDAs, mobile internet devices (MID), wearable devices, virtual reality (VR) devices, augmented reality (augmented reality) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, and smart grids Wireless terminals, wireless terminals in transportation safety, wireless terminals in smart cities, wireless terminals in smart homes, and the like.
  • RAN is the part of the network that connects the terminal to the wireless network.
  • a RAN node (or device) is a node (or device) in a radio access network, and may also be called a base station.
  • some examples of RAN nodes are: gNB, transmission reception point (TRP), evolved Node B (eNB), radio network controller (RNC), and node B (Node B, NB), base station controller (BSC), base transceiver station (BTS), home base station (e.g., home NodeB, or home NodeB, HNB), baseband unit , BBU), or wireless fidelity (Wifi) access point (access point, AP), etc.
  • the RAN may include a centralized unit (CU) node and a distributed unit (DU) node.
  • the above communication architecture may be a 5th generation wireless communication systems (5G) system or an evolved system thereof, or it may be another orthogonal frequency division multiplexing (OFDM) -based system based on DFT -S-OFDM (DFT-Spread OFDM, DFT-spread OFDM) systems and the like involve beamforming systems.
  • 5G 5th generation wireless communication systems
  • OFDM orthogonal frequency division multiplexing
  • DFT-Spread OFDM DFT-Spread OFDM
  • DFT-spread OFDM DFT-spread OFDM
  • the network architecture described in the embodiments of the present application is to more clearly illustrate the technical solutions in the embodiments of the present application, and does not constitute a limitation on the technical solutions provided in the embodiments of the present application. Those of ordinary skill in the art may know that with the evolution of the network architecture, The technical solutions provided in the embodiments of the present application are also applicable to similar technical problems.
  • the base station may indicate the transmission beam of the first uplink signal, for example, instruct the terminal to determine the transmission beam of the first uplink signal by using the PRACH transmission beam, so that the terminal may perform the transmission according to the indicated uplink.
  • the beam sends the first uplink signal to reduce the delay of uplink signal transmission, improve system efficiency and performance, and also improve the flexibility of the beam indication.
  • the base station may instruct the terminal to use the PRACH transmission beam to determine the transmission beam of the uplink signal, so that it is not necessary to wait until the base station pair configures the PUCCH Only after the source reference signal SRS has been scanned by the beam, and the uplink beam of the PUCCH is determined according to the scanning result, the PUCCH can be transmitted.
  • the base station when transmitting a PUSCH, the base station does not need to configure “SpatialRelationInfo” for the SRS resource used for CSI acquisition of the PUSCH after completing the downlink receiving beam scanning for the terminal and / or completing the uplink transmitting beam scanning through the SRS. Only the SRS used to obtain the PUSCH and CSI can be transmitted, and then the uplink transmission beam of the PUSCH is determined through the SRS resources indicated by the base station, but the transmission beam of the PUSCH is determined according to the transmission beam of the PRACH, thereby reducing the delay of the PUSCH transmission process.
  • the first uplink signal includes, but is not limited to, at least one of the following: SRS, phase-tracking reference signals (PTRS), uplink demodulation reference signal (DeModulation, Reference Signal, DMRS) ), An uplink signal transmitted in PUCCH, and an uplink signal transmitted in PUSCH.
  • SRS phase-tracking reference signals
  • PTRS phase-tracking reference signals
  • DRS uplink demodulation reference signal
  • PUCCH Physical Uplink Physical channels
  • PUSCH uplink signal transmitted in PUSCH.
  • the SRS may specifically include: an SRS used for beam management, an SRS used for uplink CSI acquisition, an SRS used for antenna switching, and the like.
  • an SRS used for beam management an SRS used for uplink CSI acquisition
  • an SRS used for antenna switching an SRS used for antenna switching
  • the configuration method of the SRS resource used for the CSI acquisition based on the codebook based uplink transmission mode is: the corresponding SRS resource set corresponds to the The usage in the high-level parameter SRS-ResourceSet is configured as 'codebook', then the SRS resource set is an SRS resource set corresponding to the codebook-based uplink transmission mode CSI acquisition.
  • the configuration of the SRS resource used for non-codebook uplink transmission mode CSI configuration is: if usage in the high-level parameter SRS-ResourceSet corresponding to the SRS resource set is configured as 'nonCodebook', then the SRS resource set corresponds to the non-codebook The SRS resource set acquired by the CSI in the uplink transmission mode.
  • the SRS resource can be configured by
  • the "SpatialRelationInfo" parameter of the set is configured as PRACH, so that the terminal sends the SRS by using the PRACH transmission beam.
  • the "SpatialRelationInfo" of the SRS resource in the current protocol corresponds to the SRS-SpatialRelationInfo parameter in the SRS-Resource parameter of the high-level signaling in TS38.331.
  • the spatially related parameter information of a signal or resource includes but is not limited to SRS-SpatialRelationInfo, PUCCH-SpatialRelationInfo, QCL-Info and other parameters with similar functions in the 3GPP NR protocol.
  • the PRACH in the embodiments of the present application can be understood as a signal transmitted on the PRACH.
  • FIG. 2 a schematic diagram of an uplink beam indication and an uplink signal transmission process according to an embodiment of the present application is shown. As shown, the process can include:
  • the base station instructs the terminal to send a first uplink signal, and sends uplink beam indication information to the terminal.
  • the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first signal includes a PRACH. If the first signal is PRACH, the uplink beam indication information instructs the terminal to determine a transmission beam of the first uplink signal by using a transmission beam of PRACH.
  • the candidate value of the first signal may further include an uplink reference signal or a downlink signal, such as at least one of SRS, SSB, and CSI-RS. That is, PRACH, SRS, SSB, and CSI-RS can be used as candidate first signals, and the base station can indicate one of these candidate first signals through uplink beam indication information.
  • an uplink reference signal or a downlink signal such as at least one of SRS, SSB, and CSI-RS. That is, PRACH, SRS, SSB, and CSI-RS can be used as candidate first signals, and the base station can indicate one of these candidate first signals through uplink beam indication information.
  • the PRACH may be predefined or default.
  • the first signal may further include a downlink signal.
  • the uplink beam indication information may be included in configuration information of the first uplink signal, for example, included in configuration information of an SRS resource.
  • the configuration information may be a configuration parameter "SpatialRelationInfo" of the SRS resource, which is used to indicate a transmission beam of the SRS resource.
  • the parameter may be configured as PRACH, SRS At least one of, SSB, and CSI-RS.
  • this parameter is configured as PRACH, it indicates that the first signal used to determine the transmission beam of the first uplink signal is PRACH, so that the terminal can determine the transmission beam of the first uplink signal by using the PRACH transmission beam; when this parameter is configured as When SSB, it indicates that the first signal used to determine the transmission beam of the first uplink signal is SSB, and the terminal can determine the transmission beam of the first uplink signal by using the reception beam of the SSB; when this parameter is configured as CSI-RS, it indicates that The first signal for determining the transmission beam of the first uplink signal is a CSI-RS, and the terminal may determine the transmission beam of the first uplink signal by using the reception beam of the CSI-RS.
  • some possible indication methods of SpatialRelationInfo may be: carrying an uplink beam indication information field in the DCI, and the state of the information field includes at least one coding state for indicating a PRACH index, or at least one coding The status indicates that the terminal sends the uplink signal using a default or predefined PRACH.
  • Other possible indication methods of SpatialRelationInfo may be: carrying an uplink beam indication information field in the DCI, and the coding state of the information field includes a first signal used to instruct the terminal to determine a transmission beam of the first uplink signal.
  • the index or the coding state of the information field includes an identification (ID) of the first signal used to instruct the terminal to determine a transmission beam of the first uplink signal.
  • the uplink beam indication information may also be in scheduling information of the first uplink signal, for example, in a DCI scheduling PUSCH.
  • the information domain of the traditional DCI can be extended, that is, the above-mentioned uplink beam indication information is carried through the newly added information domain.
  • bearer manners of the uplink beam indication information listed above are merely examples, and the embodiment of the present application does not limit the bearer manners of the uplink beam indication information.
  • the first signal may be indicated in the following manner, for example, an identifier (ID) of the first signal may be used for indication, or an index of the first signal may be used for instruction, or a transmission beam of the first signal may be used.
  • ID indicates, or the index of the transmission beam of the first signal is used for instruction.
  • S202 The terminal determines a transmission beam of the first uplink signal according to the received uplink beam indication information, and sends the first uplink signal by using the transmission beam of the first uplink signal.
  • the uplink beam indication information indicates that the first signal used by the terminal to determine the transmission beam of the first uplink signal is PRACH, when the terminal sends the first uplink signal, use the PRACH transmission beam to determine the transmission beam of the first uplink signal. Further, if the terminal does not receive such uplink beam indication information, the terminal determines the transmission beam of the first uplink signal in another manner, for example, determines the transmission beam of the first uplink signal in a global beam scanning manner.
  • the terminal may send the first uplink signal using the same spatial domain filtering as the spatial domain filtering of the PRACH indicated by the uplink beam indication information.
  • S203 The base station receives the first uplink signal sent by the terminal.
  • the terminal if the base station configures the terminal with the first uplink signal, the terminal sends the uplink signal according to the configuration of the base station; in another possible scenario, The base station configures the terminal with a first uplink signal, and when the base station schedules the terminal to send the first uplink signal, the terminal sends the first uplink signal according to the scheduling of the base station.
  • the first signal is one or more PRACHs.
  • the base station and the terminal may agree on one or more PRACH signals in advance.
  • the uplink beam indication information instructs the terminal to determine the transmission beam of the first uplink signal using the PRACH transmission beam
  • the first signal is a pre-approved PRACH
  • the terminal uses The agreed transmission beam of PRACH determines the transmission beam of the first uplink signal.
  • the uplink beam indication information is 1 bit and includes two states. One state instructs the terminal to determine the transmission beam of the first uplink signal by using the PRACH transmission beam, and the other state indicates how the terminal determines the first uplink signal.
  • the transmission beam of the signal is not defined.
  • the uplink beam indication information is 1 bit and includes two states. One state instructs the terminal to determine the transmission beam of the first uplink signal using the PRACH transmission beam, and the other state indicates that the terminal does not use the PRACH transmission. The beam determines a transmission beam of the first uplink signal.
  • the pre-approved PRACH is a protocol-defined PRACH, or the pre-approved PRACH signal is indicated to the terminal by a base station.
  • the specific way for the base station to indicate a PRACH signal to the terminal may be: the base station indicates the PRACH identification or index for the terminal, or the base station indicates the specific PRACH transmission corresponding to the PRACH identification or index to the terminal.
  • a possible implementation manner for the terminal to determine the transmission beam of the PRACH transmission beam is the transmission beam of the uplink signal.
  • the terminal uses the same spatial domain filter (spatial domain filter) as the spatial domain filter to send the PRACH to send the uplink signal.
  • the uplink beam indication information instructs the terminal to use a PRACH transmission beam as a transmission beam of a first uplink signal. That is, if the base station indicates that the first signal used to determine the transmission beam of the first uplink signal is PRACH by using the uplink beam indication information, it means that the terminal is instructed to use the transmission beam of PRACH as the transmission beam of the first uplink signal.
  • the terminal uses the transmission beam of PRACH as the transmission beam of the first uplink signal.
  • the base station receives the first uplink signal using a receiving beam corresponding to a transmitting beam of PRACH.
  • the uplink beam indication information sent by the base station in S201 includes the following indication information: the terminal is instructed to use a transmission beam in a transmission beam group in which a transmission beam of PRACH is located. , As a transmission beam of the first uplink signal. That is, if the base station indicates that the first signal used to determine the transmission beam of the first uplink signal is PRACH by using the uplink beam indication information, it also means that the terminal is instructed to use the transmission beam in the transmission beam group in which the transmission beam of the PRACH is located, As a transmission beam of the first uplink signal.
  • the terminal determines that the first transmission beam of the uplink signal is a transmission beam in a transmission beam group in which a transmission beam of the PRACH is located.
  • the terminal sends the first uplink signal using a transmission beam group in which a transmission beam of PRACH is located.
  • the base station may further send beam group indication information to the terminal, and the beam group indication The information is used to indicate a transmission beam group in which a transmission beam of the PRACH is located.
  • the beam group indication information may be used as a part of the uplink beam indication information, or may be sent by the base station independently of the uplink beam indication information.
  • the beam group indication information may be an identifier or an index of the beam group, or other information capable of indicating the beam group, which is not limited in the embodiment of the present application.
  • the base station may also send beam indication information to the terminal, and the beam indication information is used A beam in a transmission beam group indicating a transmission beam for PRACH.
  • the beam indication information may be part of the uplink beam indication information, or may be sent by the base station independently of the uplink beam indication information.
  • the beam indication information may be an identifier or an index of the beam, or other information capable of indicating the beam, which is not limited in the embodiment of the present application.
  • the base station may further send the beam group indication information and the beam indication information to the terminal.
  • the beam group indication information is used to indicate a transmission beam group in which a PRACH transmission beam is located
  • the beam instruction information is used to indicate a beam in a transmission beam group in which the PRACH transmission beam is located.
  • the beam group indication information and the beam indication information may be part of the uplink beam indication information, or may be sent by the base station independently of the uplink beam indication information.
  • the first signal is one or more PRACHs.
  • the uplink beam indication information includes information indicating one or more PRACHs from a group of candidate PRACHs. That is, the base station may indicate one or more PRACHs selected from a group of candidate PRACHs through the uplink beam indication information.
  • the uplink indication information includes the identifier or index of the one or more PRACHs or other indications capable of indicating the PRACH.
  • the uplink beam indication information indicates that the first signal used to determine the transmission beam of the first uplink signal is PRACH, and on the other hand, it indicates which PRACH or PRACH groups in the candidate PRACH group.
  • the identifier or index of the PRACH may be used as the uplink beam indication information or as a part of the uplink beam indication information.
  • the terminal may determine the first transmission beam of the uplink signal according to the PRACH indicated by the uplink beam indication information.
  • the terminal may determine the first transmission beam of the uplink signal according to the spatial domain filter of the PRACH indicated by the uplink beam indication information.
  • the terminal sends the first uplink signal by using the same spatial domain filter as the spatial domain filter of the PRACH indicated by the uplink beam indication information.
  • the first signal indicated by the uplink beam indication information sent by the base station in S201 and used to determine the transmission beam of the first uplink signal may be the following PRACH One of:
  • the terminal sends the PRACH of Msg1 for the last time when the terminal initially accesses the cell where the uplink signal is located;
  • the terminal sends the PRACH of Msg1 for the last time in the cell where the uplink signal is located before receiving the uplink beam indication information;
  • the terminal sends the PRACH of Msg1 for the last time in the cell corresponding to the uplink signal before receiving the scheduling information of the uplink signal;
  • the terminal sends the PRACH of Msg1 for the last time in the cell corresponding to the uplink signal before receiving the configuration information and / or trigger information of the uplink signal;
  • the terminal sends the PRACH of Msg1 for the last time in the cell corresponding to the uplink signal before sending the uplink signal;
  • the Msg1 is a message sent by the terminal through the PRACH channel during random access, and the message carries the random access sequence of the terminal;
  • the Msg3 is a message sent by the terminal through the PUSCH channel during the random access, and the message is Request to establish an RRC connection with the base station.
  • the first signal is at least one PRACH.
  • the uplink beam indication information sent by the base station in S201 includes PRACH type information.
  • the base station can indicate, by using the uplink beam indication information, that the first signal used to determine the transmission beam of the first uplink signal is PRACH.
  • the base station can also indicate the type of the PRACH by using the uplink beam indication information.
  • the PRACH type is indicated by PRACH type information (such as a PRACH type identifier) included in the uplink beam indication information.
  • type information (such as a type identifier) of PRACH may be used as the uplink beam indication information or as a part of the uplink beam indication information.
  • the PRACH indicated by the PRACH type information may include at least one of the following PRACHs:
  • the base station may carry uplink beam indication information through one or more of the following signaling: RRC signaling, MAC-CE signaling, Triggering or scheduling the DCI of the uplink signal.
  • the uplink beam indication information is multiplexed with the uplink beam indication information parameters in the current protocol, such as the RRC signaling SpatialRelationInfo of the uplink signal on the transmission beam (for example, in the NR system).
  • SpatialRelationInfo is generally the RRC parameter "spatialRelationInfo”
  • SpatialRelationInfo can also be the RRC parameter "csi-RS” or "associatedCSI-RS”
  • SpatialRelationInfo is generally the RRC parameter "PUCCH-SpatialRelationInfo”
  • the information indicated by SpatialRelationInfo for determining the transmission beam of the uplink signal may include one of the following indication information: CSI-RS, SSB, SRS , PRACH.
  • the base station sends the uplink beam indication information of the aperiodic SRS resource (for convenience of description later, this information is expressed as SpatialRelationInfo) to the terminal through the uplink beam indication information field of the SRS resource in DCI.
  • a state of the uplink beam indication field of the aperiodic SRS resource defines a transmission beam corresponding to one or a group of aperiodic SRS resources.
  • the transmission beam indication field of an aperiodic SRS resource includes 2 bits, and state 01 is used for triggering.
  • SRS resource set 1 and the transmission beam corresponding to the SRS resource in SRS resource set 1 is the same as the transmission beam of PRACH. Similar to the aperiodic SRS example described above, the base station sends the uplink beam indication information of the PUSCH to the terminal through the uplink beam indication information field of the PUSCH in the DCI, and specific examples are not described again.
  • the uplink beam indication information may be one piece of information, or may include multiple parts (that is, may include multiple pieces of information).
  • the first part of the uplink beam indication information is used to instruct the terminal to use the PRACH transmission beam as the transmission beam of the uplink signal
  • the second part of the uplink beam indication information is used to indicate the specific PRACH (for example, it may be the ID or index of the PRACH) ).
  • the first part can be sent through RRC signaling
  • the second part can be sent through DCI signaling.
  • the DCI used to carry the uplink beam indication information may include an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the above-mentioned uplink beam indication information may be carried by extending the traditional DCI information field, that is, by adding a new DCI information field.
  • the uplink beam indication information sent by the base station in S201 may include at least one of the following information:
  • the terminal determining the first transmission beam of the first uplink signal according to the uplink beam indication information may include: the terminal determining the first uplink signal according to the PRACH indicated by the uplink beam indication information. Send beam.
  • the terminal may determine a transmission beam of the first uplink signal according to a spatial domain filter of the PRACH indicated by the uplink beam indication information.
  • the terminal may send the first uplink signal using the same spatial domain filter as the spatial domain filter of the PRACH indicated by the uplink beam indication information.
  • the uplink beam indication information sent by the base station in S201 includes indication information that indicates whether the terminal uses a PRACH transmission beam to determine a transmission beam of a first uplink signal.
  • the uplink beam indication information is indication information that instructs the terminal to determine the transmission beam of the first uplink signal by using the PRACH transmission beam
  • the terminal determines the first transmission signal by using the PRACH transmission beam according to the uplink beam indication information.
  • the uplink beam indication information instructs the terminal to use the PRACH transmission beam as the transmission beam of the first uplink signal
  • the uplink beam indication information instructs the terminal to determine the first transmission beam of the first uplink signal.
  • the signal is PRACH. If the uplink beam indication information instructs the terminal not to determine the transmission beam of the first uplink signal by using the transmission beam of the PRACH, it can be understood that the uplink beam indication information instructs the terminal to determine the first signal of the transmission beam of the first uplink signal It is the first signal of a type other than PRACH.
  • the indication information that indicates whether the terminal uses the transmission beam of PRACH to determine the transmission beam of the first uplink signal may be 1-bit information.
  • the value of the bit information is 0, it indicates the indication information of determining the transmission beam of the first uplink signal by using the transmission beam of PRACH.
  • the value of the bit information is 1, it indicates that the first uplink signal is not determined by using the transmission beam of PRACH. Indication information of the transmitted beam and vice versa.
  • the uplink beam indication information sent by the base station in S201 includes beam scanning indication information
  • the encoding state of the beam scanning indication information includes at least the following states: It is used to indicate a state in which the terminal performs global scanning of the uplink transmission beam, and is used to indicate that the terminal uses the transmission beam in PRACH to determine a state in which the transmission beam of the first uplink signal performs local beam scanning.
  • the beam scanning instruction information may be 1-bit information.
  • the beam scanning instruction information has two states: a state with a value of 0 and a state with a value of 1.
  • the terminal When the value of the bit information is 1, the terminal is instructed to perform a global scan of the uplink transmit beam to determine the transmission beam of the first uplink signal. When the value of the bit information is 0, the terminal is instructed to perform a local beam scan using the PRACH transmission beam Determine the transmit beam of the first uplink signal, and vice versa.
  • the terminal determines the first by using the transmission beam of PRACH A transmit beam of an uplink signal, and use the transmit beam to send the first uplink signal; if the encoding state of the beam scanning instruction information is a state instructing the terminal to perform an uplink transmission beam global scan, the terminal performs an uplink transmission beam global scan.
  • the uplink beam indication information includes second information for indicating a signal identifier or index of the first signal in addition to the beam scanning indication information, then Determining, by the terminal, a transmission beam of the first uplink signal according to the first signal. If the uplink beam indication information does not include the second information, but includes the foregoing beam scanning indication information, the terminal determines the transmission beam of the first uplink signal according to the beam scanning indication information.
  • a beam determination process according to another embodiment of the present application is provided. As shown, the process can include:
  • S301 The base station instructs the terminal to send a first uplink signal.
  • the base station uses the receiving beam corresponding to the transmitting beam of PRACH as the default receiving beam of the first uplink signal.
  • process may further include the following steps:
  • the base station receives the first uplink signal by using a receiving beam of the first uplink signal.
  • the base station receives and sends the first uplink signal by using the same spatial domain filtering for receiving the PRACH spatial domain filtering.
  • the terminal sends an uplink signal according to the configuration of the base station; in another possible scenario, the base station is The terminal is configured with an uplink signal, and when the base station schedules the terminal to send an uplink signal, the terminal sends an uplink signal according to the schedule of the base station.
  • the base station uses a beam in a beam group in which a PRACH transmission beam is located as a default reception beam of the uplink signal.
  • the PRACH may be one of the following PRACHs:
  • the PRACH is the last PRACH that sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located;
  • the PRACH is the PRACH that last transmitted Msg1 in the cell where the uplink signal is located before the terminal receives the uplink beam indication information;
  • the PRACH is a PRACH for which the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH for the last time sending Msg1 in the cell corresponding to the first uplink signal before the terminal receives the configuration information and / or trigger information of the first uplink signal;
  • the PRACH is the PRACH for which the terminal last transmitted Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal;
  • the PRACH is a transmission beam of a PUSCH that transmits Msg3 in a random access process.
  • the Msg1 is a message sent by the terminal through the PRACH channel during the random access process, and the message carries the random access sequence of the terminal;
  • the Msg3 is a message sent by the terminal through the PUSCH channel during the random access process, and the message is used for Request to establish an RRC connection with the base station.
  • the type of the PRACH may include at least one of the following types:
  • an uplink signal transmission process according to another embodiment of the present application is provided. As shown, the process can include:
  • the terminal determines a default transmission beam of the first uplink signal according to the transmission beam of the PRACH;
  • the terminal sends the first uplink signal by using a default transmission beam of the first uplink signal.
  • the terminal when the first condition is satisfied, the terminal sends the first uplink signal using the default transmission beam; the first condition is : The base station instructs the terminal to send a first uplink signal, and the terminal has established an RRC connection with the base station, but has not yet received uplink beam indication information.
  • the terminal uses the transmission beam of PRACH as a default transmission beam of the first uplink signal.
  • the terminal may use a beam in a beam group in which a PRACH transmission beam is located as a default transmission beam of the uplink signal.
  • the PRACH may be one of the following PRACHs:
  • the PRACH is the last PRACH that sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located;
  • the PRACH is the PRACH that last transmitted Msg1 in the cell where the uplink signal is located before the terminal receives the uplink beam indication information;
  • the PRACH is a PRACH for which the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH for the last time sending Msg1 in the cell corresponding to the first uplink signal before the terminal receives the configuration information and / or trigger information of the first uplink signal;
  • the PRACH is the PRACH for which the terminal last transmitted Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal;
  • the PRACH is a transmission beam of a PUSCH that transmits Msg3 in a random access process.
  • the Msg1 is a message sent by the terminal through the PRACH channel during the random access process, and the message carries the random access sequence of the terminal;
  • the Msg3 is a message sent by the terminal through the PUSCH channel during the random access process, and the message is used for Request to establish an RRC connection with the base station.
  • the type of the PRACH may include at least one of the following types:
  • the uplink beam indication information sent by the base station instructs the terminal to determine that the first signal for the transmission beam of the SRS is PRACH, and the terminal sends In SRS, according to the received uplink beam indication information, uplink transmission beam scanning is performed by using a set of beams corresponding to a default PRACH or a predefined PRACH transmission beam as the SRS transmission beam.
  • the beam group corresponding to the transmission beam of PRACH may be determined by the terminal based on a predefined criterion.
  • the above scenario may be applied when the SRS resource is configured as an SRS resource for beam scanning.
  • the SRS resource is configured as an SRS resource for beam scanning.
  • the RRC parameter usage of the SRS resource set where the SRS resource is located is configured as "beam management".
  • the base station sends signaling to the terminal to indicate whether the terminal uses the beam in the beam group corresponding to the transmit beam of the PRACH to send the SRS, For beam scanning.
  • One or more coding states of the signaling instruct the terminal to use the beams in the beam group corresponding to the transmission beam of the PRACH to send SRS (ie, perform local beam scanning), and one or more coding states indicate that the terminal can use all available uplinks.
  • the transmission beam transmits SRS, and performs transmission beam scanning (that is, global beam scanning).
  • the terminal receives the signaling and sends an uplink signal according to the beam scanning mode indicated by the status of the signaling to implement beam scanning.
  • the signaling is RRC signaling or L1 signaling, for example, signaling included in DCI. If the signaling is the signaling contained in the DCI, it may correspond to an information domain in the DCI and be used to carry the signaling.
  • the above scenario may be applied when the SRS resource is configured as an SRS resource for beam scanning.
  • the SRS resource is configured as an SRS resource for beam scanning.
  • the RRC parameter usage of the SRS resource set where the SRS resource is located is configured as "beam management".
  • FIG. 5 a schematic diagram is shown in FIG. 5.
  • the terminal has the following 12 transmission beams. If the uplink beam indication information sent by the base station instructs the terminal to use the beam in the beam corresponding to the transmission beam of PRACH to send the SRS, since beams 1 to 4 belong to the beam group corresponding to the transmission beam of PRACH Therefore, the terminal uses beam beam1 to beam beam4 to send SRS; if the base station does not instruct the terminal to use the beam in the beam corresponding to the transmission beam of PRACH to send the SRS through the uplink beam indication information, or although the base station sends the uplink beam indication information, the uplink beam The indication information does not instruct the terminal to use the beams in the beam corresponding to the transmission beam of the PRACH to send the SRS, and then the terminal uses all the beams to send the SRS.
  • the terminal has the following 12 transmit beams in total.
  • the uplink beam indication information sent by the base station instructs the terminal to use the beam in the beam group corresponding to a PRACH transmit beam to send SRS
  • the terminal sends the SRS using beams beam1 to beam4.
  • the terminal uses the other several beams corresponding to the PRACH to send the SRS.
  • the uplink beam indication information is included in the spatialRelationInfo in the high-level parameter SRS-Resource of the SRS resource configuration, where the spatialRelationInfo may be:
  • the "referenceSignal” and “prach” fields are used to configure the first signal (signal candidates include SSB, CSI-RS, SRS, and PRACH), where both referenceSignal and prach can only indicate one.
  • the "PRACH-Index" indicated by the "prach” field may be used to indicate the PRACH used by the terminal to determine the transmission beam of the first uplink signal.
  • the “referenceSignal” field is used for the first signal (that is, candidates for the first signal include SSB, CSI-RS, SRS, and PRACH).
  • the "PRACH-Index" indicated by the "prach” field may be used to indicate the PRACH used by the terminal to determine the transmission beam of the first uplink signal.
  • the "referenceSignal” and “prach” fields are used to configure the first signal (signal candidates include SSB, CSI-RS, SRS, and PRACH), and only one of the referenceSignal and prach can be configured. If the "prach” field exists, it means that the terminal determines the transmission beam of the first uplink signal by using the transmission beam of PRACH.
  • the PRACH for determining the transmission beam of the first signal may be a predefined PRACH.
  • the embodiment of the present application further provides a base station, which can implement the functions on the base station side in the process shown in FIG. 2.
  • the base station may include a sending module 601, and further may include a receiving module 602.
  • the sending module 601 is configured to instruct the terminal to send a first uplink signal and send uplink beam indication information to the terminal, where the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first One signal includes PRACH.
  • the uplink beam indication information instructs the terminal to determine a transmission beam of the first uplink signal using a transmission beam of PRACH.
  • the first signal further includes at least one of the following signals: SRS, SSB, and CSI-RS.
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes the indication beam that instructs the terminal to use a transmission beam in a transmission beam group in which a transmission beam of PRACH is located, as the transmission beam of the first uplink signal.
  • the sending module 601 is further configured to send the beam group indication information or the uplink beam indication information to the terminal, including the beam group indication information, and the beam group indication information is used to indicate a transmission beam in which a PRACH transmission beam is located.
  • Group; and / or, sending beam indication information or the uplink beam indication information to the terminal includes beam indication information, and the beam indication information is used to indicate a beam in a transmission beam group in which a transmission beam of PRACH is located.
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell where the first uplink signal is located before the terminal receives the uplink beam indication information; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal; or,
  • the first signal is a transmission beam of a physical uplink shared channel PUSCH that sends Msg3 in a random access process.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signalings:
  • Triggering or scheduling downlink control information DCI of the first uplink signal Triggering or scheduling downlink control information DCI of the first uplink signal.
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • an encoding state of the beam scanning indication information includes at least the following states:
  • It is used to instruct the terminal to determine a state of performing a local beam scan on the transmission beam of the first uplink signal by using the transmission beam of PRACH.
  • the first signal is PRACH
  • the receiving module 602 is configured to receive the first uplink signal by using a receiving beam corresponding to a transmitting beam of PRACH.
  • an embodiment of the present application further provides a terminal, which can implement functions on the terminal side in the process shown in FIG. 2.
  • the terminal may include a receiving module 701, a processing module 702, and a sending module 703.
  • the receiving module 701 is configured to receive uplink beam indication information, where the uplink beam indication information is used to indicate a first signal that determines a transmission beam of a first uplink signal, where the first signal includes a PRACH; and the processing module 702 is configured to The beam indication information determines a transmission beam of the first uplink signal; and a sending module 703 is configured to send the first uplink signal by using the transmission beam of the first uplink signal.
  • the processing module 702 determines the transmission beam of the first uplink signal according to the beam scanning indication information.
  • the uplink beam indication information instructs the terminal to determine a transmission beam of the first uplink signal using a transmission beam of PRACH.
  • the first signal further includes at least one of the following signals: SRS, SSB, and CSI-RS.
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes instructing the terminal to use a transmission beam in a transmission beam group in which a PRACH transmission beam is located, as the indication information of the transmission beam of the first uplink signal.
  • the receiving module 701 is further configured to receive beam group indication information or the uplink beam indication information sent by the base station includes beam group indication information, and the beam group indication information is used to indicate where a transmission beam of a PRACH is located. And / or receiving the beam indication information or the uplink beam indication information sent by the base station includes beam indication information, and the beam indication information is used to indicate a beam in a transmission beam group in which a PRACH transmission beam is located. .
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or, the first signal is the terminal receiving the uplink beam
  • the PRACH of Msg1 was last sent in the cell where the first uplink signal was located before the indication information; or, the first signal is the first uplink signal before the terminal receives the scheduling information of the first uplink signal.
  • the first signal is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal; or, the first signal
  • the transmission beam is a physical uplink shared channel PUSCH that sends Msg3 in the random access process.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signaling: RRC signaling; MAC-CE signaling; DCI that triggers or schedules the first uplink signal.
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • the coding status of the beam scanning indication information includes at least the following states: a state used to instruct the terminal to perform a global scan of an uplink transmission beam; and used to indicate the The terminal uses the transmission beam of PRACH to determine a state in which the transmission beam of the first uplink signal performs local beam scanning.
  • the processing module 702 is configured to The first signal determines a transmission beam of the first uplink signal
  • the processing module 702 is configured to determine a transmission beam of the first uplink signal according to the beam scanning indication information.
  • the sending module 703 is specifically configured to send the first uplink signal by using the same spatial domain filtering as the spatial domain filtering of the PRACH indicated by the uplink beam indication information.
  • the embodiment of the present application further provides a base station, which can implement the functions on the base station side in the process shown in FIG. 3.
  • the base station may include: a sending module 801 and a receiving module 802.
  • the sending module 801 is configured to instruct a terminal to send a first uplink signal; the receiving module 802 is configured to use a receiving beam corresponding to a transmitting beam of PRACH as a default receiving beam of the first uplink signal.
  • the receiving module 802 is further configured to receive and send the first uplink signal by using the same spatial domain filter that receives the PRACH spatial domain filter.
  • the PRACH is the PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or, the PRACH is the time before the terminal receives the uplink beam indication information.
  • the cell where the uplink signal is located sends the PRACH of Msg1 for the last time; or the PRACH is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH that the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or the PRACH is that the terminal is at Before sending the first uplink signal, the PRACH of Msg1 was last transmitted in the cell corresponding to the first uplink signal; or, the PRACH is a transmission beam that transmits the PUSCH of Msg3 during the random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the embodiment of the present application further provides a terminal, which can implement the functions on the terminal side in the process shown in FIG. 4.
  • the terminal may include: a processing module 901, and further, may further include a sending module 902.
  • the processing module 901 is configured to determine a default transmission beam of the first uplink signal according to the transmission beam of the PRACH.
  • the sending module 902 is configured to send the first uplink signal using the default sending beam when the first condition is met; the first condition is that the base station instructs the terminal to send the first uplink signal, and the terminal An RRC connection is established with the base station, but uplink beam indication information has not been received, and the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first signal includes a physical random access Channel PRACH.
  • the processing module 901 is specifically configured to use the PRACH transmission beam as a default transmission beam of the first uplink signal.
  • the PRACH is the PRACH that last transmitted Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or, the PRACH is the time before the terminal receives the uplink beam indication information.
  • the cell where the uplink signal is located sends the PRACH of Msg1 for the last time; or the PRACH is the last time that the terminal sends the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal;
  • the PRACH is a PRACH that the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or the PRACH is that the terminal is at Before sending the first uplink signal, the PRACH of Msg1 was last transmitted in the cell corresponding to the first uplink signal; or, the PRACH is a transmission beam that transmits the PUSCH of Msg3 during the random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a base station, and can implement functions implemented on the base station side in the process shown in FIG. 2 in the embodiment of the present application.
  • the communication device may include a processor 1001, a memory 1002, a transceiver 1003, and a bus interface 1004.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the transceiver 1003 is configured to receive and transmit data under the control of the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1001 and various circuits of the memory represented by the memory 1002 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in the form of software.
  • the processor 1001 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1001 is configured to read computer instructions in the memory 1002 and execute the following processes:
  • the terminal Instruct the terminal to send a first uplink signal and send uplink beam indication information to the terminal, where the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first signal includes a physical random connection Incoming channel PRACH.
  • the uplink beam indication information instructs the terminal to determine a transmission beam of the first uplink signal using a transmission beam of PRACH.
  • the first signal further includes at least one of the following signals: SRS, SSB, and CSI-RS.
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes instructing the terminal to use a transmission beam in a transmission beam group in which a PRACH transmission beam is located, as the indication information of the transmission beam of the first uplink signal.
  • the processor 1001 is further configured to: send beam group indication information or the uplink beam indication information to the terminal includes beam group indication information, and the beam group indication information is used to indicate a transmission beam where a transmission beam of PRACH is located Group; and / or, sending beam indication information or the uplink beam indication information to the terminal includes beam indication information, and the beam indication information is used to indicate a beam in a transmission beam group in which a transmission beam of PRACH is located.
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell where the first uplink signal is located before the terminal receives the uplink beam indication information; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal; or,
  • the first signal is a transmission beam of a physical uplink shared channel PUSCH that sends Msg3 in a random access process.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signaling: radio resource control RRC signaling; MAC-CE signaling; and downlink control information DCI that triggers or schedules the first uplink signal.
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • an encoding state of the beam scanning indication information includes at least the following states:
  • the processor 1001 is further configured to: the first signal is PRACH, and use the receiving beam corresponding to the transmitting beam of PRACH to receive the first uplink signal.
  • the embodiment of the present application further provides a communication device, which may be a terminal, and can implement functions implemented on the terminal side in the process shown in FIG. 2 in the embodiment of the present application.
  • the communication device may include a processor 1101, a memory 1102, a transceiver 1103, and a bus interface 1104.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 may store data used by the processor 1101 when performing operations.
  • the transceiver 1103 is configured to receive and transmit data under the control of the processor 1101.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1101 and various circuits of the memory represented by the memory 1102 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 may store data used by the processor 1101 when performing operations.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the processor 1101 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1101 is configured to read computer instructions in the memory 1102 and execute the following processes.
  • Uplink beam indication information is used to indicate a first signal that determines a transmission beam of a first uplink signal, and the first signal includes PRACH;
  • the uplink beam indication information instructs the terminal to use a PRACH transmission beam as the transmission beam of the first uplink signal.
  • the first signal further includes at least one of the following signals: SRS, SSB, and CSI-RS.
  • the uplink beam indication information includes indication information that indicates whether the terminal determines a transmission beam of the first uplink signal by using a PRACH transmission beam.
  • the uplink beam indication information includes instructing the terminal to use a transmission beam in a transmission beam group in which a PRACH transmission beam is located, as the indication information of the transmission beam of the first uplink signal.
  • the processor 1101 is further configured to: receive beam group indication information or the uplink beam indication information sent by the base station includes beam group indication information, and the beam group indication information is used to indicate a transmission where a PRACH transmission beam is located. Beam set; and / or,
  • Receiving the beam indication information or the uplink beam indication information sent by the base station includes beam indication information, and the beam indication information is used to indicate a beam in a transmission beam group in which a transmission beam of a PRACH is located.
  • the first signal is one or more PRACHs
  • the uplink beam indication information includes information indicating the one or more PRACHs from a group of candidate PRACHs.
  • the first signal is a PRACH that last sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located, or
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell where the uplink signal is located before the terminal receives the uplink beam indication information;
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal; or,
  • the first signal is the last time that the terminal sent the PRACH of Msg1 in the cell corresponding to the first uplink signal before sending the first uplink signal; or,
  • the first signal is a transmission beam of a PUSCH that transmits Msg3 in a random access process.
  • the first signal is at least one PRACH
  • the uplink beam indication information includes PRACH type information.
  • the uplink beam indication information is carried by one or more of the following signaling: RRC signaling; MAC-CE signaling; and downlink control information DCI that triggers or schedules the first uplink signal.
  • the DCI includes an uplink beam indication field, and the uplink beam indication field is used to carry the uplink beam indication information.
  • the uplink beam indication information includes at least one of the following information:
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • the uplink beam indication information includes beam scanning indication information
  • an encoding state of the beam scanning indication information includes at least the following states:
  • It is used to instruct the terminal to determine a state of performing a local beam scan on the transmission beam of the first uplink signal by using the transmission beam of PRACH.
  • the terminal if the uplink beam indication information includes second information for indicating a signal identifier or index of the first signal, in addition to the beam scanning indication information, the terminal according to the first signal Determining a transmission beam of the first uplink signal;
  • the terminal determines a transmission beam of the first uplink signal according to the beam scan indication information.
  • the processor 1101 is specifically configured to send the first uplink signal using the same spatial domain filtering as the spatial domain filtering of the PRACH indicated by the uplink beam indication information.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a base station, and can implement functions implemented on the base station side in the process shown in FIG. 3 in the embodiment of the present application.
  • the communication device may include a processor 1001, a memory 1002, a transceiver 1003, and a bus interface 1004.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the transceiver 1003 is configured to receive and transmit data under the control of the processor 1001.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1001 and various circuits of the memory represented by the memory 1002 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1001 is responsible for managing the bus architecture and general processing, and the memory 1002 can store data used by the processor 1001 when performing operations.
  • the processes disclosed in the embodiments of the present application may be applied to the processor 1001 or implemented by the processor 1001.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1001 or an instruction in the form of software.
  • the processor 1001 may be a general-purpose processor, a digital signal processor, an application specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1002, and the processor 1001 reads the information in the memory 1002 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1001 is configured to read computer instructions in the memory 1002 and execute the following processes:
  • the receiving beam corresponding to the transmitting beam of PRACH is used as the default receiving beam of the first uplink signal.
  • the processor 1001 is further configured to: receive and send the first uplink signal using a spatial domain filter that is the same as a spatial domain filter that receives the PRACH.
  • the PRACH is the last PRACH that sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or,
  • the PRACH is the PRACH that last transmitted Msg1 in the cell where the uplink signal is located before the terminal receives the uplink beam indication information;
  • the PRACH is a PRACH for which the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal; or,
  • the PRACH is a PRACH that last transmitted Msg1 in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal;
  • the PRACH is the PRACH that last transmitted Msg1 in the cell corresponding to the first uplink signal before the terminal sends the first uplink signal; or,
  • the PRACH is a transmission beam of a PUSCH that transmits Msg3 in a random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • an embodiment of the present application further provides a communication device.
  • the communication device may be a terminal, and can implement functions implemented on the terminal side in the process shown in FIG. 4 in the embodiment of the present application.
  • the communication device may include a processor 1101, a memory 1102, a transceiver 1103, and a bus interface 1104.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 may store data used by the processor 1101 when performing operations.
  • the transceiver 1103 is configured to receive and transmit data under the control of the processor 1101.
  • the bus architecture may include any number of interconnected buses and bridges, and one or more processors specifically represented by the processor 1101 and various circuits of the memory represented by the memory 1102 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art, so they are not described further herein.
  • the bus interface provides an interface.
  • the processor 1101 is responsible for managing the bus architecture and general processing, and the memory 1102 may store data used by the processor 1101 when performing operations.
  • each step of the signal processing flow may be completed by an integrated logic circuit of hardware in the processor 1101 or an instruction in the form of software.
  • the processor 1101 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement or execute the embodiments in this application.
  • a general-purpose processor may be a microprocessor or any conventional processor.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly performed by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory 1102, and the processor 1101 reads the information in the memory 1102 and completes the steps of the signal processing flow in combination with its hardware.
  • the processor 1101 is configured to read computer instructions in the memory 1102 and execute the following processes:
  • a default transmission beam of the first uplink signal is determined according to the transmission beam of the PRACH.
  • the processor 1101 is further configured to: when the first condition is satisfied, use the default transmission beam to send a first uplink signal; the first condition is that the base station instructs the terminal to send the first uplink signal, so The terminal has established an RRC connection with the base station, but has not yet received uplink beam indication information.
  • the uplink beam indication information is used to indicate a first signal that determines a transmission beam of the first uplink signal, and the first signal includes a physical randomness. Access channel PRACH.
  • the processor 1101 is specifically configured to use a PRACH transmission beam as a default transmission beam of the first uplink signal.
  • the PRACH is the last PRACH that sent Msg1 when the terminal initially accessed the cell where the first uplink signal is located; or,
  • the PRACH is the PRACH that last transmitted Msg1 in the cell where the uplink signal is located before the terminal receives the uplink beam indication information;
  • the PRACH is a PRACH for which the terminal sends Msg1 for the last time in the cell corresponding to the first uplink signal before receiving the scheduling information of the first uplink signal; or,
  • the PRACH is a PRACH that last transmitted Msg1 in the cell corresponding to the first uplink signal before receiving the configuration information and / or trigger information of the first uplink signal;
  • the PRACH is the PRACH that last transmitted Msg1 in the cell corresponding to the first uplink signal before the terminal sends the first uplink signal; or,
  • the PRACH is a transmission beam of a PUSCH that transmits Msg3 in a random access process.
  • the first uplink signal includes at least one of the following: an uplink signal transmitted in SRS, PTRS, DMRS, PUCCH, and an uplink signal transmitted in PUSCH.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute a process performed by the base station in FIG. 2 or FIG. 3.
  • an embodiment of the present application further provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to execute a process performed by the terminal in FIG. 2 or FIG. 4.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing device to work in a particular manner such that the instructions stored in the computer-readable memory produce a manufactured article including an instruction device, the instructions
  • the device implements the functions specified in one or more flowcharts and / or one or more blocks of the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing device, so that a series of steps can be performed on the computer or other programmable device to produce a computer-implemented process, which can be executed on the computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more flowcharts and / or one or more blocks of the block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信号传输方法、波束确定方法及其装置。该方法中,基站指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括PRACH。

Description

信号传输方法、波束确定方法及其装置
相关申请的交叉引用
本申请要求在2018年08月17日提交中国专利局、申请号为201810942908.2、申请名称为“信号传输方法、波束确定方法及其装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,尤其涉及一种信号传输方法、波束确定方法及其装置。
背景技术
装备了多根天线的无线发射机(例如基站、终端)可以通过波束赋形形成指向特定方向的波束来发送无线信号。波束的宽度和方向可以通过在各个天线单元上应用合适的权值进行灵活地调整。波束赋形可以在数字域或者模拟域进行。
模拟波束赋形主要用于高频段,例如6GHz至52.6GHz的频段。这个频段通常被称为毫米波带(mm Wave band)。相对于6GHz以下的频段,高频段的传播损耗(例如由路径损耗、散射、反射等引起)更为严重。由于终端的移动性和旋转,发射机和接收机间的波束阻塞也更为频繁。
从物理层的角度,L1层的随机接入过程包括在一个物理随机接入信道(physical random access channel,PRACH)上发送随机接入序列(Msg1),在一个物理下行控制信道(physical downlink control channel,PDCCH)/物理下行共享信道(physical downlink shared channel,PDSCH)上发送随机接入响应(random access response,RAR)信息(Msg2),如果需要的话,还在物理上行共享信道(physical uplink shared channel,PUSCH)上发送Msg3,以及在PDSCH上发送竞争解决信息的过程。
在NR系统当前的协议版本中,在无线资源控制(radio resource control,RRC)参数配置之前,PRACH的发送波束可以用作小区专属(cell-specific)物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)的发送波束。在终端被配置了RRC参数后,PRACH不再用于PUSCH或PUCCH的上行波束管理。PUCCH的发送波束由基站半静态地配置,通过配置一个源参考信号实现,所述源参考信号可以是信道状态信息参考信号(Channel state information Reference Signal,CSI-RS),也可以是同步信号/物理广播信道块(synchronization signal/Physical broadcast channel block,SSB),或者是探测参考信号(sounding reference signal,SRS)。
但是,只有在上行波束和下行波束的一致性(correspondence)成立时,才可以将PUCCH的源参考信号配置为CSI-RS或SSB。若上行波束和下行波束的一致性(correspondence)不成立,则PUCCH的源参考信号只能配置为SRS。为PUCCH配置一个为SRS的源参考信号只能在基站利用SRS进行了波束扫描之后,这将增加PUCCH配置的时延。
对于PUSCH传输,基站需要在对终端完成下行接收波束扫描和/或通过SRS完成上行发送波束扫描后,为用于PUSCH的CSI获取的SRS资源配置了“Spatial Relation Info”后,才能发送用于获取PUSCH CSI的SRS,然后再通过基站指示的SRS资源确定PUSCH的上行发送波束。这使得PUSCH传输过程时延较大。
因此,如何确定上行信号的发送波束并基于该发送波束发送上行信号,以减少上行信号的发送时延,是目前需要解决的问题。
发明内容
本申请实施例提供一种信号传输方法、波束确定方法及其装置。
第一方面,提供一种信号传输方法,包括:基站指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括PRACH。
可选地,所述上行波束指示信息指示终端使用PRACH的发送波束确定所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,同步信号/物理广播信道块(SSB),信道状态信息参考信号(CSI-RS)。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
可选地,该方法还包括:所述基站向所述终端发送波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,所述基站向所述终端发送波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH,或者,所述第一信号为所述终端在接收到所述上行波束指示信息之前在所述第一上行信号所在小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为随机接入过程中发送Msg3的物理上行共享信道PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括 PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:无线资源控制(RRC)信令;媒体接入层控制单元(MAC Control Element,MAC-CE)信令;触发或调度所述第一上行信号的下行控制信息(Downlink Control Information,DCI)。
可选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息的候选指示内容包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,相位追踪参考信号(Phase-tracking reference signals,PTRS),解调参考信号(Demodulation Reference Signal,DMRS),PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:用于指示所述终端进行上行发送波束全局扫描的状态;用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
可选地,该方法还包括:所述第一信号为PRACH,所述基站使用与PRACH 的发送波束对应的接收波束,接收所述第一上行信号。
第二方面,提供一种信号传输方法,包括:
终端接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH;所述终端根据所述上行波束指示信息确定所述第一上行信号的发送波束;所述终端使用所述第一上行信号的发送波束发送所述第一上行信号。
可选地,所述上行波束指示信息指示终端使用PRACH的发送波束作为所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,SSB,CSI-RS。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
可选地,该方法还包括:所述终端接收所述基站发送的波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,所述终端接收所述基站发送的波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH,或者,所述第一信号为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触 发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:RRC信令;MAC-CE信令;触发或调度所述第一上行信号的DCI。
可选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:用于指示所述终端进行上行发送波束全局扫描的状态;用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
可选地,若所述上行波束指示信息中包含除所述波束扫描指示信息以外 的用于指示所述第一信号的信号标识或索引的第二信息,则所述终端根据所述第一信号确定所述第一上行信号的发送波束;若所述上行波束指示信息中不包含所述第二信息,则所述终端根据所述波束扫描指示信息确定所述第一上行信号的发送波束。
可选地,所述终端使用所述第一上行信号的发送波束发送所述第一上行信号,包括:所述终端使用与所述上行波束指示信息指示的PRACH的空间域滤波相同的空间域滤波发送所述第一上行信号。
第三方面,提供一种波束确定方法,包括:基站指示终端发送第一上行信号;所述基站将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
可选地,该方法还包括:所述基站使用接收所述PRACH的空间域滤波相同的空间域滤波接收发送所述第一上行信号。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH,或者,所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
第四方面,提供一种信号传输方法,包括:终端根据PRACH的发送波束,确定第一上行信号的默认发送波束。
可选地,该方法还包括:当满足第一条件时,所述终端使用所述默认发 送波束,发送第一上行信号;所述第一条件为:基站指示所述终端发送第一上行信号,所述终端与基站建立了RRC连接,但尚未接收到上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
可选地,所述终端根据PRACH的发送波束,确定第一上行信号的默认发送波束,包括:所述终端将PRACH的发送波束,作为所述第一上行信号的默认发送波束。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH,或者,所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
第五方面,提供一种基站,包括:发送模块,用于指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
第六方面,提供一种终端,包括:接收模块,用于接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH;处理模块,用于根据所述上行波束指示信息确定所述第一上行信号的发送波束;发送模块,用于使用所述第一上行信号 的发送波束发送所述第一上行信号。
第七方面,提供一种基站,包括:发送模块,用于指示终端发送第一上行信号;接收模块,用于将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
第八方面,提供一种终端,包括:处理模块,用于根据PRACH的发送波束,确定第一上行信号的默认发送波束。
第九方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行上述第一方面中任一项所述的方法。
第十方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行上述第二方面中任一项所述的方法。
第十一方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行上述第三方面中任一项所述的方法。
第十二方面,提供一种通信装置,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行上述第三方面中任一项所述的方法。
第十三方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第一方面中任一项所述的方法。
第十四方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第二方面中任一项所述的方法。
第十五方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第三方面中任一项所述的方法。
第十六方面,提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述第四方面中任一项所述的方法。
本申请的上述实施例中,终端可以利用PRACH的发送波束确定上行信号的发送波束,从而使用该上行信号的发送该上行信号,基站可以利用PRACH的发送波束对应的接收波束,接收终端发送的上行信号,从而可以实现上行信号的发送波束的确定以及并基于该发送波束发送上行信号。尤其在将本申请实施例应用于上行波束和下行波束的一致性不成立的情况下时,可以降低确定上行信号发送波束的时延,进而降低上行信号传输的时延,提高系统效率和性能。
附图说明
图1为本申请实施例提供的在基站侧实现的一种波束指示流程示意图;
图2为本申请实施例提供的上行波束指示以及上行信号传输流程示意图;
图3为本申请实施例提供的在基站侧实现的波束确定流程示意图;
图4为本申请实施例提供的在终端侧实现的上行信号发送流程示意图;
图5为本申请实施例中的波束示意图;
图6为本申请实施例提供的一种基站的结构示意图;
图7为本申请实施例提供的一种终端的结构示意图;
图8为本申请另外的实施例提供的一种基站的结构示意图;
图9为本申请另外的实施例提供的一种终端的结构示意图;
图10为本申请实施例提供的一种基站侧的通信装置的结构示意图;
图11为本申请实施例提供的一种终端侧的通信装置的结构示意图;
图12为本申请实施例提供的另一种基站侧的通信装置的结构示意图;
图13为本申请实施例提供的另一种终端侧的通信装置的结构示意图。
具体实施方式
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
(1)本申请实施例中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。
(2)本申请实施例中术语“多个”是指两个或两个以上,其它量词与之类似。
(3)“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
参见图1,为本申请实施例提供的一种可能的通信场景的示意图。如图1所示,终端110通过无线接入网(radio access network,RAN)节点120接入到无线网络,以通过无线网络获取外网(例如因特网)的服务,或者通过无线网络与其它终端通信。
其中,终端又称之为用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。
RAN是网络中将终端接入到无线网络的部分。RAN节点(或设备)为无线接入网中的节点(或设备),又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(transmission reception point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、 节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(base band unit,BBU),或无线保真(wireless fidelity,Wifi)接入点(access point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(centralized unit,CU)节点和分布单元(distributed unit,DU)节点。
上述通信架构,可以是第五代移动通信技术(5th generation wireless systems,5G)系统或其演进系统,也可以是其它的基于正交频分复用(orthogonal frequency division multiplexing,OFDM)系统,基于DFT-S-OFDM(DFT-Spread OFDM,DFT扩展OFDM)的系统等涉及到波束赋形的系统。
本申请实施例描述的网络架构是为了更加清楚的说明本申请实施例的技术方案,并不构成对本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请实施例以基站和终端为例进行描述。
基于上述通信系统架构,本申请实施例中,基站可以对第一上行信号的发送波束进行指示,比如指示终端利用PRACH的发送波束确定第一上行信号的发送波束,使得终端可以根据所指示的上行波束发送第一上行信号,以降低上行信号传输的时延,提高系统效率和性能,还可以提高波束指示的灵活性。
举例来说,采用本申请实施例,尤其在上行波束和下行波束的一致性(correspondence)不成立时,基站可以指示终端利用PRACH的发送波束确定上行信号的发送波束,从而不必等到基站对为PUCCH配置的源参考信号SRS进行了波束扫描,并根据扫描结果确定PUCCH的上行波束之后,才能发送PUCCH。基于本申请实施例,在发送PUSCH时,基站无需在对终端完成下行接收波束扫描和/或通过SRS完成上行发送波束扫描后,为用于PUSCH的CSI获取的SRS资源配置了“SpatialRelationInfo”后,才能发送用于获取 PUSCH CSI的SRS,然后再通过基站指示的SRS资源确定PUSCH的上行发送波束,而是根据PRACH的发送波束确定PUSCH的发送波束,从而可以降低PUSCH传输过程的时延。
本申请实施例中,所述第一上行信号包括但不限于以下中的至少一种:SRS,相位追踪参考信号(phase-tracking reference signals,PTRS),上行解调参考信号(DeModulation Reference Signal,DMRS),PUCCH中传输的上行信号,PUSCH中传输的上行信号。
其中,SRS可具体包括:用于波束管理的SRS,用于上行CSI获取的SRS,用于天线切换的SRS等。以第三代移动通信标准化组织(3rd Generation Partnership Project New Radio,3GPP NR)系统现行协议为例,用于基于码本的上行传输模式CSI获取的SRS资源的配置方式为:将SRS资源集对应的高层参数SRS-ResourceSet中的usage被配置为‘codebook’,则该SRS资源集为对应于基于码本的上行传输模式CSI获取的SRS资源集。用于非码本的上行传输模式CSI获取的SRS资源的配置方式为:将SRS资源集对应的高层参数SRS-ResourceSet中的usage被配置为‘nonCodebook’,则该SRS资源集为对应于非码本的上行传输模式CSI获取的SRS资源集。
例如,在3GPP NR系统R15协议f20版本中,若SRS资源所在的SRS资源集的RRC参数usage被配置为“beam management”(即配置为用于波束管理的SRS),则可以通过将该SRS资源集的“SpatialRelationInfo”(空间关系信息)参数配置为PRACH,以使得终端利用PRACH的发送波束发送该SRS。在3GPP NR系统中现行协议里SRS资源的“SpatialRelationInfo”对应于TS38.331里高层信令SRS-Resource参数里的SRS-SpatialRelationInfo参数,为了表述方便,我们在本文中用“SpatialRelationInfo”表示用于指示一个信号或资源的空间相关参数信息,包含但不限于3GPP NR协议中具有类似功能的SRS-SpatialRelationInfo,PUCCH-SpatialRelationInfo,QCL-Info等参数。
需要说明的是,本申请实施例中的PRACH,可以理解为在PRACH上传输的信号。
下面结合附图对本申请实施例进行详细描述。
参见图2,为本申请实施例提供的一种上行波束指示以及上行信号传输流程示意图。如图所示,该流程可包括:
S201:基站指示终端发送第一上行信号,并向终端发送上行波束指示信息。
其中,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括PRACH。若所述第一信号为PRACH,则所述上行波束指示信息指示终端使用PRACH的发送波束确定第一上行信号的发送波束。
可选地,所述第一信号的候选取值还可以包括上行参考信号或者下行信号,比如SRS、SSB、CSI-RS中的至少一种。也就是说,PRACH、SRS、SSB和CSI-RS,可以作为候选第一信号,基站可以通过上行波束指示信息指示这些候选第一信号中的一种。
可选地,所述PRACH可以是预定义的或者是默认的。
可选地,所述第一信号还可以包括下行信号。
可选地,所述上行波束指示信息可以包含在第一上行信号的配置信息中,例如,包含在SRS资源的配置信息中。更具体地,所述配置信息可以是SRS资源的配置参数“SpatialRelationInfo”(空间关系信息),该参数用于指示SRS资源的发送波束,本申请实施例中,该参数可被配置为PRACH、SRS、SSB、CSI-RS中的至少一种。当该参数被配置为PRACH时,表示用于确定第一上行信号的发送波束的第一信号为PRACH,使得终端可以利用PRACH的发送波束确定第一上行信号的发送波束;当该参数被配置为SSB时,表示用于确定第一上行信号的发送波束的第一信号为SSB,终端可以利用SSB的接收波束确定第一上行信号的发送波束;当该参数被配置为CSI-RS时,表示用于确定第一上行信号的发送波束的第一信号为CSI-RS,终端可以利用CSI-RS的接收波束确定第一上行信号的发送波束。
举例来说,一些可能的SpatialRelationInfo的指示方式可以是:在DCI中 携带一个上行波束指示信息域,所述信息域的状态中,至少包括一个编码状态用于指示一个PRACH的索引,或者至少一个编码状态指示终端使用默认或预定义的PRACH发送所述上行信号。另一些可能的SpatialRelationInfo的指示方式可以是:在DCI中携带一个上行波束指示信息域,所述信息域的编码状态中包含用于指示终端用于确定第一上行信号的发送波束的第一信号的索引,或者所述信息域的编码状态中包含用于指示终端用于确定第一上行信号的发送波束的第一信号的标识(ID)。
可选地,所述上行波束指示信息也可以在第一上行信号的调度信息中,例如,在调度PUSCH的DCI中。具体实施时,可以扩展传统DCI的信息域,即通过新增加的信息域来承载上述上行波束指示信息。
需要说明的是,上述所列举的所述上行波束指示信息的承载方式仅为示例,本申请实施例对所述上行波束指示信息的承载方式不作限制。
可选地,所述第一信号可以通过以下方式进行指示,比如,可以使用第一信号的标识(ID)进行指示,或者使用第一信号的索引进行指示,或者使用第一信号的发送波束的标识(ID)进行指示,或者使用第一信号的发送波束的索引进行指示。上述仅示例性列举了几种第一信号的指示方式,本申请实施例对此不作限制。
S202:终端根据接收到的上行波束指示信息,确定第一上行信号的发送波束,并使用所述第一上行信号的发送波束发送所述第一上行信号。
举例来说,如果基站为终端配置了第一上行信号资源,并且终端接收到基站发送的上行波束指示信息,该上行波束指示信息指示终端用于确定第一上行信号的发送波束的第一信号为PRACH,则终端在发送所述第一上行信号时,利用PRACH的发送波束确定第一上行信号的发送波束。进一步地,如果终端没有接收到这样的上行波束指示信息,则终端采用其他方式确定所述第一上行信号的发送波束,比如通过全局波束扫描的方式确定第一上行信号的发送波束。
可选地,所述终端可以使用与所述上行波束指示信息指示的PRACH的空 间域滤波相同的空间域滤波发送所述第一上行信号。
S203:基站接收所述终端发送的所述第一上行信号。
可选地,根据图2所示的流程,在一种可能的场景中,如果基站为终端配置了第一上行信号,则终端根据基站的配置发送上行信号;在另一种可能的场景中,基站为终端配置了第一上行信号,并当基站调度终端发送第一上行信号时,终端根据基站的调度发送所述第一上行信号。
可选地,所述第一信号为一个或多个PRACH。基站和终端可以预先约定一个或多个PRACH信号。根据图2所示的流程,在一种可能的场景中,若上行波束指示信息指示终端使用PRACH的发送波束确定第一上行信号的发送波束,则第一信号为预先约定的PRACH,终端使用预先约定的PRACH的发送波束确定第一上行信号的发送波束。作为一种可能的方式,所述上行波束指示信息为1bit,包含2个状态,其中一个状态指示终端使用PRACH的发送波束确定第一上行信号的发送波束,另一个状态对终端如何确定第一上行信号的发送波束不作定义。作为一种可能的方式,所述上行波束指示信息为1bit,包含2个状态,其中一个状态指示终端使用PRACH的发送波束确定第一上行信号的发送波束,另一个状态指示终端不使用PRACH的发送波束确定第一上行信号的发送波束。
可选地,所述预先约定的PRACH是协议预定义的PRACH,或者所述预先约定的PRACH信号是基站指示给所述终端的。
可选地,基站向终端指示一个PRACH信号的具体指示方式可以为:基站为终端指示PRACH的标识或索引,或者基站向终端指示所述PRACH标识或索引对应的具体的PRACH传输。
其中,终端将PRACH的发送波束确定上行信号的发送波束的一种可能的实现方式是:终端使用与发送PRACH的空间域滤波器相同的空间域滤波器(spatial domain filter)来发送上行信号。
可选地,根据图2的流程,在一些实施例中,在S201中基站发送的所述上行波束指示信息所指示的用于确定第一上行信号的发送波束的第一信号为 PRACH时,所述上行波束指示信息指示终端使用PRACH的发送波束作为第一上行信号的发送波束。也就是说,如果基站通过上行波束指示信息指示用于确定第一上行信号的发送波束的第一信号为PRACH,也就意味着指示终端使用PRACH的发送波束作为第一上行信号的发送波束。相应地,在S202中,终端将PRACH的发送波束作为第一上行信号的发送波束。相应地,在S203中,基站使用与PRACH的发送波束对应的接收波束,接收所述第一上行信号。
可选地,根据图2所示的流程,在一些实施例中,S201中基站发送的所述上行波束指示信息包括以下指示信息:指示终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为第一上行信号的发送波束。也就是说,如果基站通过上行波束指示信息指示用于确定第一上行信号的发送波束的第一信号为PRACH,也就意味着指示终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为第一上行信号的发送波束。相应地,在S202中,终端确定上行信号的第一发送波束为PRACH的发送波束所在的发送波束组中的发送波束。可选地,所述终端使用PRACH的发送波束所在的发送波束组中的发送所述第一上行信号。
可选地,如果上行波束指示信息指示终端使用PRACH的发送波束所在的发送波束组中的发送波束作为第一上行信号的发送波束,则基站还可以向终端发送波束组指示信息,该波束组指示信息用于指示PRACH的发送波束所在的发送波束组。该波束组指示信息可以作为所述上行波束指示信息的一部分,也可以独立于所述上行波束指示信息由基站发送。该波束组指示信息可以是波束组的标识或索引,或者其他能够指示波束组的信息,本申请实施例对此不做限制。
可选地,如果上行波束指示信息指示终端使用PRACH的发送波束所在的发送波束组中的发送波束作为第一上行信号的发送波束,则基站还可以向终端发送波束指示信息,该波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。该波束指示信息可以作为所述上行波束指示信息的一部分,也可以独立于所述上行波束指示信息由基站发送。该波束指示信息可以 是波束的标识或索引,或者其他能够指示波束的信息,本申请实施例对此不做限制。
可选地,如果上行波束指示信息指示终端使用PRACH的发送波束所在的发送波束组中的发送波束作为第一上行信号的发送波束,则基站还可以向终端发送波束组指示信息和波束指示信息,该波束组指示信息用于指示PRACH的发送波束所在的发送波束组,该波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。该波束组指示信息和波束指示信息可以作为所述上行波束指示信息的一部分,也可以独立于所述上行波束指示信息由基站发送。
可选地,根据图2所示的流程,在一些实施例中,所述第一信号为一个或多个PRACH。所述上行波束指示信息包括从一组候选PRACH中指示一个或多个PRACH的信息。也就是说,基站可以通过上行波束指示信息指示从一组候选PRACH中选择出的一个或多个PRACH,比如上行指示信息中包括该一个或多个PRACH的标识或索引或其他能够指示PRACH的指示信息,从而一方面通过上行波束指示信息指示出用于确定第一上行信号的发送波束的第一信号为PRACH,另一方面指示出具体为候选PRACH组中的哪个或哪几个PRACH。具体实施时,可将PRACH的标识或索引作为所述上行波束指示信息或者作为所述上行波束指示信息的一部分。
相应地,在S202中,终端可根据所述上行波束指示信息指示的PRACH确定上行信号的第一发送波束。可选地,终端可根据所述上行波束指示信息指示的PRACH的空间域滤波器(spatial domain filter)确定上行信号的第一发送波束。终端使用与所述上行波束指示信息指示的PRACH的空间域滤波器(spatial domain filter)相同的空间域滤波器发送所述第一上行信号。
可选地,根据图2所示的流程,在一些实施例中,S201中基站发送的所述上行波束指示信息所指示的用于确定第一上行信号的发送波束的第一信号可以是以下PRACH中的一种:
-终端初始接入所述上行信号所在小区时最后一次发送Msg1的PRACH;
-终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;
-终端在接收到所述上行信号的调度信息之前在所述上行信号所对应小区最后一次发送Msg1的PRACH;
-终端在接收到所述上行信号的配置信息和/或触发信息之前在所述上行信号所对应小区最后一次发送Msg1的PRACH;
-终端在发送所述上行信号之前在所述上行信号所对应小区最后一次发送Msg1的PRACH;
-随机接入过程中发送Msg3的PUSCH的发送波束。
其中,所述Msg1为随机接入过程中终端通过PRACH信道发送的消息,该消息携带终端的随机接入序列;所述Msg3为随机接入过程中终端通过PUSCH信道发送的消息,该消息用于请求与基站建立RRC连接。
可选地,根据图2所示的流程,在一些实施例中,所述第一信号为至少一个PRACH。S201中基站发送的所述上行波束指示信息包括PRACH的类型信息。也就是说,基站一方面可以通过上行波束指示信息指示用于确定第一上行信号的发送波束的第一信号为PRACH,另一方面,还可以通过上行波束指示信息指示该PRACH的类型,比如可以通过上行波束指示信息中包含的PRACH类型信息(比如PRACH类型标识)来指示PRACH的类型。具体实施时,可将PRACH的类型信息(比如类型标识)作为所述上行波束指示信息或者作为所述上行波束指示信息的一部分。
可选地,所述PRACH的类型信息所指示的PRACH可包括以下PRACH中的至少一个:
-用于初始随机接入的PRACH;
-用于波束失败恢复的PRACH;
-用于非竞争随机接入的PRACH;
-用于竞争随机接入的PRACH。
可选地,根据图2所示的流程,在一些实施例中,在S201中,基站可以 通过如下一种或多种信令来承载上行波束指示信息:RRC信令,MAC-CE信令,触发或调度所述上行信号的DCI。
以RRC信令为例,一种可能的实现方式中,所述上行波束指示信息复用目前协议中的上行波束指示信息参数,如上行信号关于发送波束的RRC信令SpatialRelationInfo(例如,在NR系统中,对于SRS资源,SpatialRelationInfo一般为RRC参数“spatialRelationInfo”;对于usage被配置为”nonCodebook”的SRS资源集内的SRS资源,SpatialRelationInfo还可以为RRC参数“csi-RS”或“associatedCSI-RS”;对于PUCCH,SpatialRelationInfo一般为RRC参数“PUCCH-SpatialRelationInfo”),在本实施方式下,SpatialRelationInfo指示的用于确定上行信号的发送波束的信息可以包含以下指示信息中的一个:CSI-RS,SSB,SRS,PRACH。
再以DCI信令为例,基站将非周期的SRS资源的上行波束指示信息(为后续描述方便,将该信息表示成SpatialRelationInfo)通过DCI中的SRS资源的上行波束指示信息域发送给终端。非周期的SRS资源的上行波束指示域的一个状态定义了一个或一组非周期的SRS资源对应的发送波束,例如,非周期的SRS资源的发送波束指示域包含2bit,其中状态01用于触发SRS资源集1,且SRS资源集1中的SRS资源对应的发送波束与PRACH的发送波束相同。类似于上述非周期的SRS的示例,基站将PUSCH的上行波束指示信息通过DCI中的PUSCH的上行波束指示信息域发送给终端,具体示例不再赘述。
需要说明的是,所述上行波束指示信息可以是一个信息,也可以包含多个部分(即可以包含多个信息)。例如,该上行波束指示信息的第一部分用于指示终端使用PRACH的发送波束作为上行信号的发送波束,该上行波束指示信息的第二部分用于指示具体的PRACH(比如可以是PRACH的ID或索引)。其中,第一部分可以通过RRC信令发送,第二部分可以通过DCI信令发送。
可选地,上述用于承载上行波束指示信息的DCI中,可包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。具体实施时,可通过对传统DCI信息域的扩展,即新增加DCI信息域,来承载上述上行波 束指示信息。
可选地,根据图2所示的流程,在一些实施例中,S201中基站发送的所述上行波束指示信息,可以包括以下信息中的至少一个:
-指示终端用于确定所述上行信号的发送波束的PRACH的信息;
-指示终端利用默认或预定义的PRACH发送波束确定所述上行信号的发送波束的信息;
-指示终端使用PRACH的发送波束对应的波束组里的波束发送所述上行信号的信息;
-指示终端使用PRACH的发送波束发送所述上行信号的信息;
-指示终端不使用PRACH的发送波束确定所述上行信号的发送波束的信息;
-指示终端进行上行发送波束扫描的信息。
相应地,在终端侧,在S202中,终端根据所述上行波束指示信息确定第一上行信号的第一发送波束,可包括:终端根据所述上行波束指示信息指示的PRACH确定第一上行信号的发送波束。
可选地,终端可根据所述上行波束指示信息指示的PRACH的空间域滤波器(spatial domain filter)确定第一上行信号的发送波束。
可选地,终端可使用与所述上行波束指示信息指示的PRACH的空间域滤波(spatial domain filter)相同的空间域滤波发送所述第一上行信号。
可选地,根据图2所示的流程,在一些实施例中,在S201中基站发送的所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定第一上行信号的发送波束的指示信息。相应地,在S202中,如果所述上行波束指示信息为指示终端利用PRACH的发送波束确定第一上行信号的发送波束的指示信息,则终端根据该上行波束指示信息,利用PRACH的发送波束确定第一上行信号的发送波束,并使用该发送波束发送第一上行信号;如果所述上行波束指示信息为指示终端不利用PRACH的发送波束确定第一上行信号的发送波束的指示信息,则终端可以采用其他方式确定第一上行信号的发送波 束,比如根据PRACH以外类型的第一信号的发送波束确定第一上行信号的发送波束。
其中,如果上行波束指示信息指示终端利用PRACH的发送波束作为第一上行信号的发送波束,则可以理解为所述上行波束指示信息指示终端用于确定所述第一上行信号的发送波束的第一信号为PRACH。如果上行波束指示信息指示终端不利用PRACH的发送波束确定第一上行信号的发送波束,则可以理解为所述上行波束指示信息指示终端用于确定所述第一上行信号的发送波束的第一信号为PRACH以外的类型的第一信号。
具体实施时,所述指示终端是否利用PRACH的发送波束确定第一上行信号的发送波束的指示信息,可以是1比特信息。当该比特信息取值为0时,表示利用PRACH的发送波束确定第一上行信号的发送波束的指示信息,当该比特信息取值为1时,表示不利用PRACH的发送波束确定第一上行信号的发送波束的指示信息,反之亦然。
可选地,根据图2所示的流程,在一些实施例中,在S201中基站发送的所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:用于指示终端进行上行发送波束全局扫描的状态,以及用于指示终端利用PRACH的发送波束确定第一上行信号的发送波束进行局部波束扫描的状态。一种可能的实现方式为:所述波束扫描指示信息可以是1比特信息。该波束扫描指示信息有两种状态:取值为0的状态和取值为1的状态。当该比特信息取值为1时,指示终端进行上行发送波束全局扫描来确定第一上行信号的发送波束,当该比特信息取值为0时,指示终端利用PRACH的发送波束进行局部波束扫描来确定第一上行信号的发送波束,反之亦然。
相应地,在S202中,如果所述波束扫描指示信息的编码状态为指示终端利用PRACH的发送波束确定第一上行信号的发送波束进行局部波束扫描的状态,则终端利用PRACH的发送波束确定第一上行信号的发送波束,并使用该发送波束发送所述第一上行信号;如果所述波束扫描指示信息的编码状态 为指示终端进行上行发送波束全局扫描的状态,则终端进行上行发送波束全局扫描。
可选地,在一种可能的实现方式中,若所述上行波束指示信息中包含除所述波束扫描指示信息以外的用于指示所述第一信号的信号标识或索引的第二信息,则所述终端根据所述第一信号确定所述第一上行信号的发送波束。若上行波束指示信息中不包含所述第二信息,但包含上述波束扫描指示信息,则终端根据所述波束扫描指示信息确定所述第一上行信号的发送波束。
参见图3,为本申请另外的实施例提供的波束确定流程。如图所示,该流程可包括:
S301:基站指示终端发送第一上行信号;
S302:基站将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
进一步地,该流程还可包括以下步骤:
S303:基站使用所述第一上行信号的接收波束接收所述第一上行信号。
具体地,所述基站使用接收所述PRACH的空间域滤波相同的空间域滤波接收发送所述第一上行信号。
可选地,根据图3所示的流程,在一种可能的场景中,如果基站为终端配置了上行信号,则终端根据基站的配置发送上行信号;在另一种可能的场景中,基站为终端配置了上行信号,并当基站调度终端发送上行信号时,终端根据基站的调度发送上行信号。
可选地,根据图3所示的流程,在一些实施例中,所述基站将PRACH的发送波束所在的波束组中的波束,作为所述上行信号的默认接收波束。
可选地,根据图3所示的流程,在一些实施例中,所述PRACH可以是以下PRACH中的一种:
-所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;
-所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行 信号所在小区最后一次发送Msg1的PRACH;
-所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
其中,所述Msg1为随机接入过程中终端通过PRACH信道发送的消息,该消息携带终端的随机接入序列;所述Msg3为随机接入过程中终端通过PUSCH信道发送的消息,该消息用于请求与基站建立RRC连接。
可选地,所述PRACH的类型,可包括以下类型中的至少一种:
-用于初始随机接入的PRACH;
-用于波束失败恢复的PRACH;
-用于非竞争随机接入的PRACH;
-用于竞争随机接入的PRACH。
参见图4,为本申请另外的实施例提供的一种上行信号传输流程。如图所示,该流程可包括:
S401:终端根据PRACH的发送波束,确定第一上行信号的默认发送波束;
S402:终端使用所述第一上行信号的默认发送波束,发送所述第一上行信号。
可选地,根据图4所示的流程,在一些实施例中,在S402中,当满足第一条件时,所述终端使用所述默认发送波束发送第一上行信号;所述第一条件为:基站指示所述终端发送第一上行信号,所述终端与基站建立了RRC连接,但尚未接收到上行波束指示信息。
可选地,根据图4所示的流程,在一些实施例中,在S401中,所述终端 将PRACH的发送波束,作为所述第一上行信号的默认发送波束。
可选地,根据图4所示的流程,在一些实施例中,在S401中,终端可将PRACH的发送波束所在的波束组中的波束,作为所述上行信号的默认发送波束。
可选地,根据图4所示的流程,在一些实施例中,所述PRACH可以是以下PRACH中的一种:
-所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;
-所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;
-所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;
-所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
其中,所述Msg1为随机接入过程中终端通过PRACH信道发送的消息,该消息携带终端的随机接入序列;所述Msg3为随机接入过程中终端通过PUSCH信道发送的消息,该消息用于请求与基站建立RRC连接。
可选地,所述PRACH的类型,可包括以下类型中的至少一种:
-用于初始随机接入的PRACH;
-用于波束失败恢复的PRACH;
-用于非竞争随机接入的PRACH;
-用于竞争随机接入的PRACH。
基于上述的一个实施例或多个实施例的组合,在一种可能的场景中,基 站发送的所述上行波束指示信息指示终端用于确定SRS的发送波束的第一信号为PRACH,则终端发送SRS时,根据接收到的该上行波束指示信息,利用默认的PRACH或者预定义的PRACH的发送波束对应的一组波束作为SRS的发送波束进行上行发送波束扫描。其中,PRACH的发送波束对应的波束组可以是终端基于预定义的准则确定的。
可选地,上述场景可应用于当SRS资源被配置为用于波束扫描的SRS资源时。比如,在3GPP NR系统R15协议f20版本中,SRS资源所在的SRS资源集的RRC参数usage被配置为“beam management”。
基于上述的一个实施例或多个实施例的组合,在另一种可能的场景中,基站向终端发送信令,用以指示终端是否使用PRACH的发送波束对应的波束组中的波束发送SRS,以进行波束扫描。该信令的一个或多个编码状态指示终端使用PRACH的发送波束对应的波束组中的波束发送SRS(即进行局部波束扫描),另外的一个或多个编码状态指示终端可以使用所有可用的上行发送波束发送SRS,进行发送波束扫描(即全局波束扫描)。终端接收该信令,根据该信令的状态所指示的波束扫描方式进行上行信号发送,以实现波束扫描。
可选地,所述信令是RRC信令,或者是L1信令,例如是DCI中包含的信令。如果所述信令是DCI中包含的信令,则可以对应于DCI中的一个信息域,用来承载该信令。
可选地,上述场景可应用于当SRS资源被配置为用于波束扫描的SRS资源时。比如,在3GPP NR系统R15协议f20版本中,SRS资源所在的SRS资源集的RRC参数usage被配置为“beam management”。
基于上述的一个实施例或多个实施例的组合,在另一种可能的场景中,一个示意图如图5所示。终端共有如下12个发送波束,如果基站发送的上行波束指示信息指示终端使用PRACH的发送波束对应的波束中里的波束发送SRS时,由于波束beam1到波束beam 4属于PRACH的发送波束对应的波束组,因此终端使用波束beam1到波束beam 4发送SRS;如果基站未通过上行波束指示信息指示终端使用PRACH的发送波束对应的波束中里的波束发送 SRS,或者基站虽然发送了上行波束指示信息,但该上行波束指示信息未指示终端使用PRACH的发送波束对应的波束中里的波束发送SRS,则终端使用所有的波束发送SRS。
仍以图5为例,终端共有如下12个发送波束,当基站发送的上行波束指示信息指示终端使用某个PRACH的发送波束对应的波束组里的波束发送SRS时,由于波束beam1到波束beam 4属于该PRACH的发送波束对应的波束组,因此终端使用波束beam1到波束beam 4发送SRS。当基站发送的上行波束指示信息指示终端使用另一个PRACH的发送波束对应的波束组中的波束发送SRS时,终端使用该PRACH对应的另外几个波束发送SRS。
基于上述的一个实施例或多个实施例的组合,所述上行波束指示信息包含在SRS资源配置的高层参数SRS-Resource里的spatialRelationInfo中,其中spatialRelationInfo有可能为:
Figure PCTCN2019100449-appb-000001
其中,“referenceSignal”和”prach”字段用于配置第一信号(信号候选包括 SSB,CSI-RS,SRS和PRACH),其中referenceSignal和prach二者只能指示其一。“prach”字段所指示的“PRACH-Index”,可用来指示终端用来确定第一上行信号的发送波束的PRACH。
spatialRelationInfo的另一种可能为:
Figure PCTCN2019100449-appb-000002
其中,“referenceSignal”字段用于第一信号(即第一信号的候选包括SSB,CSI-RS,SRS和PRACH)。prach”字段所指示的“PRACH-Index”,可用来指示终端用来确定第一上行信号的发送波束的PRACH。
spatialRelationInfo的另一种可能为:
Figure PCTCN2019100449-appb-000003
Figure PCTCN2019100449-appb-000004
其中,“referenceSignal”和”prach”字段用于配置第一信号(信号候选包括SSB,CSI-RS,SRS和PRACH),其中referenceSignal和prach二者只能配置其一。若存在”prach”字段,则表示终端利用PRACH的发送波束确定第一上行信号的发送波束。所述用于确定第一信号的发送波束的PRACH可以是预定义的PRACH。
基于相同的技术构思,本申请实施例还提供了一种基站,该基站可实现图2所示的流程中基站侧的功能。
参见图6,为本申请实施例提供的基站的结构示意图,该基站可包括:发送模块601,进一步地,还可包括接收模块602。
发送模块601,用于指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括PRACH。
可选地,所述上行波束指示信息指示终端使用PRACH的发送波束确定所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,SSB,CSI-RS。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指 示信息。
可选地,发送模块601还用于:向所述终端发送波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,向所述终端发送波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述上行波束指示信息之前在所述第一上行信号所在小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为随机接入过程中发送Msg3的物理上行共享信道PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:
无线资源控制RRC信令;
MAC-CE信令;
触发或调度所述第一上行信号的下行控制信息DCI。
可选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:
用于指示所述终端进行上行发送波束全局扫描的状态;
用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
可选地,所述第一信号为PRACH,接收模块602用于:使用与PRACH的发送波束对应的接收波束,接收所述第一上行信号。
基于相同的技术构思,本申请实施例还提供了一种终端,该终端可实现图2所示流程中终端侧的功能。
参见图7,为本申请实施例提供的终端的结构示意图,该终端可包括:接收模块701、处理模块702、发送模块703。
接收模块701用于接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH; 处理模块702用于根据所述上行波束指示信息确定所述第一上行信号的发送波束;发送模块703用于使用所述第一上行信号的发送波束发送所述第一上行信号。
可选地,若所述上行波束指示信息中包含除所述波束扫描指示信息以外的用于指示所述第一信号的信号标识或索引的第二信息,则处理模块702根据所述第一信号确定所述第一上行信号的发送波束;若所述上行波束指示信息中不包含所述第二信息,则处理模块702根据所述波束扫描指示信息确定所述第一上行信号的发送波束。可选地,所述上行波束指示信息指示终端使用PRACH的发送波束确定所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,SSB,CSI-RS。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
可选地,所述接收模块701还用于:接收所述基站发送的波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,接收所述基站发送的波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述上行波束指示信息之前在所述第一上行信号所在小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH; 或者,所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述第一信号为随机接入过程中发送Msg3的物理上行共享信道PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:RRC信令;MAC-CE信令;触发或调度所述第一上行信号的DCI。
选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:用于指示所述终端进行上行发送波束全局扫描的状态;用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
可选地,若所述上行波束指示信息中包含除所述波束扫描指示信息以外的用于指示所述第一信号的信号标识或索引的第二信息,则所述处理模块702用于根据所述第一信号确定所述第一上行信号的发送波束;
若所述上行波束指示信息中不包含所述第二信息,则所述处理模块702用于根据所述波束扫描指示信息确定所述第一上行信号的发送波束。
可选地,发送模块703具体用于:使用与所述上行波束指示信息指示的PRACH的空间域滤波相同的空间域滤波发送所述第一上行信号。
基于相同的技术构思,本申请实施例还提供了一种基站,该基站可实现图3所示流程中基站侧的功能。
参见图8,为本申请实施例提供的基站的结构示意图。该基站可包括:发送模块801、接收模块802。
发送模块801用于指示终端发送第一上行信号;接收模块802用于将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
可选地,接收模块802还用于使用接收所述PRACH的空间域滤波相同的空间域滤波接收发送所述第一上行信号。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
基于相同的技术构思,本申请实施例还提供了一种终端,该终端可实现图4所示流程中终端侧的功能。
参见图9,为本申请实施例提供的终端的结构,该终端可包括:处理模块901,进一步地,还可包括发送模块902。
处理模块901用于根据PRACH的发送波束,确定第一上行信号的默认发送波束。
可选地,发送模块902用于当满足第一条件时,使用所述默认发送波束,发送第一上行信号;所述第一条件为:基站指示所述终端发送第一上行信号,所述终端与基站建立了RRC连接,但尚未接收到上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
可选地,处理模块901具体用于:将PRACH的发送波束,作为所述第一上行信号的默认发送波束。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以是基站,能够实现本申请实施例如图2所示的流程中基站侧实现的功 能。
参见图10,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1001、存储器1002、收发机1003以及总线接口1004。
处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。收发机1003用于在处理器1001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1001中,或者由处理器1001实现。在实现过程中,信号处理流程的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1001,用于读取存储器1002中的计算机指令并执行下列过程:
指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
可选地,所述上行波束指示信息指示终端使用PRACH的发送波束确定所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,SSB,CSI-RS。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
可选地,处理器1001还用于:向所述终端发送波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,向所述终端发送波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述上行波束指示信息之前在所述第一上行信号所在小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为随机接入过程中发送Msg3的物理上行共享信道PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:无线资源控制RRC信令;MAC-CE信令;触发或调度所述第一上行信号的下行控制信息DCI。
可选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:
用于指示所述终端进行上行发送波束全局扫描的状态;
用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发 送波束进行局部波束扫描的状态。
可选地,处理器1001还用于:所述第一信号为PRACH,使用与PRACH的发送波束对应的接收波束,接收所述第一上行信号。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以是终端,能够实现本申请实施例中如图2所示的流程中终端侧实现的功能。
参见图11,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1101、存储器1102、收发机1103以及总线接口1104。
处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。收发机1103用于在处理器1101的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1102代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1101中,或者由处理器1101实现。在实现过程中,信号处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1101可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者 电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1101,用于读取存储器1102中的计算机指令并执行下列过程。
接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH;
根据所述上行波束指示信息确定所述第一上行信号的发送波束;
使用所述第一上行信号的发送波束发送所述第一上行信号。
可选地,所述上行波束指示信息指示终端使用PRACH的发送波束作为所述第一上行信号的发送波束。
可选地,所述第一信号还包括以下信号中的至少一种:SRS,SSB,CSI-RS。
可选地,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
可选地,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
可选地,处理器1101还用于:接收所述基站发送的波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,
接收所述基站发送的波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
可选地,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
可选地,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH,或者,
所述第一信号为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述第一信号为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
可选地,所述上行波束指示信息通过如下一种或多种信令承载:RRC信令;MAC-CE信令;触发或调度所述第一上行信号的下行控制信息DCI。
可选地,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
可选地,所述上行波束指示信息包括以下信息中的至少一个:
指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
指示所述终端进行上行发送波束扫描的信息。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS, PUCCH中传输的上行信号,PUSCH中传输的上行信号。
可选地,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:
用于指示所述终端进行上行发送波束全局扫描的状态;
用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
可选地,若所述上行波束指示信息中包含除所述波束扫描指示信息以外的用于指示所述第一信号的信号标识或索引的第二信息,则所述终端根据所述第一信号确定所述第一上行信号的发送波束;
若所述上行波束指示信息中不包含所述第二信息,则所述终端根据所述波束扫描指示信息确定所述第一上行信号的发送波束。
可选地,所述处理器1101具体用于:使用与所述上行波束指示信息指示的PRACH的空间域滤波相同的空间域滤波发送所述第一上行信号。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以是基站,能够实现本申请实施例如图3所示流程中基站侧实现的功能。
参见图12,为本申请实施例提供的通信装置的结构示意图,如图10所示,该通信装置可包括:处理器1001、存储器1002、收发机1003以及总线接口1004。
处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。收发机1003用于在处理器1001的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1001代表的一个或多个处理器和存储器1002代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1001负责管理总线架构和通常的处理,存储器1002可以存储处理器1001在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1001中,或者由处理器1001实现。在实现过程中,信号处理流程的各步骤可以通过处理器1001中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1001可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1002,处理器1001读取存储器1002中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1001,用于读取存储器1002中的计算机指令并执行下列过程:
指示终端发送第一上行信号;
将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
可选地,处理器1001还用于:使用接收所述PRACH的空间域滤波相同的空间域滤波接收发送所述第一上行信号。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
基于相同的技术构思,本申请实施例还提供了一种通信装置,该通信装置可以是终端,能够实现本申请实施例中如图4所示的流程中终端侧实现的功能。
参见图13,为本申请实施例提供的通信装置的结构示意图,如图所示,该通信装置可包括:处理器1101、存储器1102、收发机1103以及总线接口1104。
处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。收发机1103用于在处理器1101的控制下接收和发送数据。
总线架构可以包括任意数量的互联的总线和桥,具体由处理器1101代表的一个或多个处理器和存储器1102代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。处理器1101负责管理总线架构和通常的处理,存储器1102可以存储处理器1101在执行操作时所使用的数据。
本申请实施例揭示的流程,可以应用于处理器1101中,或者由处理器1101实现。在实现过程中,信号处理流程的各步骤可以通过处理器1101中的硬件的集成逻辑电路或者软件形式的指令完成。处理器1101可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体 现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器1102,处理器1101读取存储器1102中的信息,结合其硬件完成信号处理流程的步骤。
具体地,处理器1101,用于读取存储器1102中的计算机指令并执行下列过程:
根据PRACH的发送波束,确定第一上行信号的默认发送波束。
可选地,处理器1101还用于:当满足第一条件时,使用所述默认发送波束,发送第一上行信号;所述第一条件为:基站指示所述终端发送第一上行信号,所述终端与基站建立了RRC连接,但尚未接收到上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
可选地,处理器1101具体用于:将PRACH的发送波束,作为所述第一上行信号的默认发送波束。
可选地,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
可选地,所述第一上行信号包括以下中的至少一种:SRS,PTRS,DMRS, PUCCH中传输的上行信号,PUSCH中传输的上行信号。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行图2或图3中基站所执行的流程。
基于相同的技术构思,本申请实施例还提供了一种计算机可读存储介质。所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行图2或图4中终端所执行的流程。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本 申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (52)

  1. 一种信号传输方法,其特征在于,包括:
    基站指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
  2. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息指示终端使用PRACH的发送波束确定所述第一上行信号的发送波束。
  3. 如权利要求1所述的方法,其特征在于,所述第一信号还包括以下信号中的至少一种:探测参考信号SRS,同步信号/物理广播信道块SSB,信道状态信息参考信号CSI-RS。
  4. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
  5. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
  6. 如权利要求5所述的方法,其特征在于,该方法还包括:
    所述基站向所述终端发送波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,
    所述基站向所述终端发送波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
  7. 如权利要求1所述的方法,其特征在于,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
  8. 如权利要求1所述的方法,其特征在于,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述上行波束指示信息之前在所述第一上行信号所在小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为随机接入过程中发送Msg3的物理上行共享信道PUSCH的发送波束。
  9. 如权利要求1所述的方法,其特征在于,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
  10. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息通过如下一种或多种信令承载:
    无线资源控制RRC信令;
    MAC-CE信令;
    触发或调度所述第一上行信号的下行控制信息DCI。
  11. 如权利要求10所述的方法,其特征在于,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
  12. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息包括以下信息中的至少一个:
    指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
    指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
    指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
    指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
    指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
    指示所述终端进行上行发送波束扫描的信息。
  13. 如权利要求1所述的方法,其特征在于,所述第一上行信号包括以下中的至少一种:
    SRS,相位追踪参考信号PTRS,解调参考信号DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
  14. 如权利要求1所述的方法,其特征在于,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:
    用于指示所述终端进行上行发送波束全局扫描的状态;
    用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
  15. 如权利要求1至14中任一项所述的方法,其特征在于,该方法还包括:
    所述第一信号为PRACH,所述基站使用与PRACH的发送波束对应的接收波束,接收所述第一上行信号。
  16. 一种信号传输方法,其特征在于,包括:
    终端接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH;
    所述终端根据所述上行波束指示信息确定所述第一上行信号的发送波束;
    所述终端使用所述第一上行信号的发送波束发送所述第一上行信号。
  17. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息指示终端使用PRACH的发送波束作为所述第一上行信号的发送波束。
  18. 如权利要求16所述的方法,其特征在于,所述第一信号还包括以下 信号中的至少一种:探测参考信号SRS,同步信号/物理广播信道块SSB,信道状态信息参考信号CSI-RS。
  19. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息包括指示终端是否利用PRACH的发送波束确定所述第一上行信号的发送波束的指示信息。
  20. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息包括指示所述终端使用PRACH的发送波束所在的发送波束组中的发送波束,作为所述第一上行信号的发送波束的指示信息。
  21. 如权利要求20所述的方法,其特征在于,该方法还包括:
    所述终端接收所述基站发送的波束组指示信息或所述上行波束指示信息包括波束组指示信息,所述波束组指示信息用于指示PRACH的发送波束所在的发送波束组;和/或,
    所述终端接收所述基站发送的波束指示信息或所述上行波束指示信息包括波束指示信息,所述波束指示信息用于指示PRACH的发送波束所在的发送波束组中的波束。
  22. 如权利要求16所述的方法,其特征在于,所述第一信号为一个或多个PRACH,所述上行波束指示信息包括从一组候选PRACH中指示所述一个或多个PRACH的信息。
  23. 如权利要求16所述的方法,其特征在于,所述第一信号为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述第一上行信号的调度信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为所述终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述第一信号为随机接入过程中发送Msg3的PUSCH的发送波束。
  24. 如权利要求16所述的方法,其特征在于,所述第一信号为至少一个PRACH,所述上行波束指示信息包括PRACH的类型信息。
  25. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息通过如下一种或多种信令承载:
    RRC信令;
    MAC-CE信令;
    触发或调度所述第一上行信号的下行控制信息DCI。
  26. 如权利要求25所述的方法,其特征在于,所述DCI中包括上行波束指示域,所述上行波束指示域用于承载所述上行波束指示信息。
  27. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息包括以下信息中的至少一个:
    指示所述终端用于确定所述第一上行信号的发送波束的PRACH的信息;
    指示所述终端利用默认或预定义的PRACH的发送波束确定所述第一上行信号的发送波束的信息;
    指示所述终端使用PRACH的发送波束对应的波束组里的波束发送所述第一上行信号的信息;
    指示所述终端使用PRACH的发送波束发送所述第一上行信号的信息;
    指示所述终端不使用PRACH的发送波束确定所述第一上行信号的发送波束的信息;
    指示所述终端进行上行发送波束扫描的信息。
  28. 如权利要求16所述的方法,其特征在于,所述第一上行信号包括以下中的至少一种:
    SRS,相位追踪参考信号PTRS,解调参考信号DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
  29. 如权利要求16所述的方法,其特征在于,所述上行波束指示信息包括波束扫描指示信息,所述波束扫描指示信息的编码状态包含至少以下状态:
    用于指示所述终端进行上行发送波束全局扫描的状态;
    用于指示所述终端利用PRACH的发送波束确定所述第一上行信号的发送波束进行局部波束扫描的状态。
  30. 如权利要求29所述的方法,其特征在于,若所述上行波束指示信息中包含除所述波束扫描指示信息以外的用于指示所述第一信号的信号标识或索引的第二信息,则所述终端根据所述第一信号确定所述第一上行信号的发送波束;
    若所述上行波束指示信息中不包含所述第二信息,则所述终端根据所述波束扫描指示信息确定所述第一上行信号的发送波束。
  31. 如权利要求16至30中任一项所述的方法,其特征在于,所述终端使用所述第一上行信号的发送波束发送所述第一上行信号,包括:
    所述终端使用与所述上行波束指示信息指示的PRACH的空间域滤波相同的空间域滤波发送所述第一上行信号。
  32. 一种波束确定方法,其特征在于,包括:
    基站指示终端发送第一上行信号;
    所述基站将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
  33. 如权利要求32所述的方法,其特征在于,该方法还包括:
    所述基站使用接收所述PRACH的空间域滤波相同的空间域滤波接收发送所述第一上行信号。
  34. 如权利要求32所述的方法,其特征在于,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
    所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在 所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
  35. 权利要求32至34中任一项所述的方法,其特征在于,所述第一上行信号包括以下中的至少一种:
    SRS,PTRS,DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
  36. 一种信号传输方法,其特征在于,包括:
    终端根据PRACH的发送波束,确定第一上行信号的默认发送波束。
  37. 如权利要求36所述的方法,其特征在于,该方法还包括:
    当满足第一条件时,所述终端使用所述默认发送波束,发送第一上行信号;所述第一条件为:
    基站指示所述终端发送第一上行信号,所述终端与基站建立了RRC连接,但尚未接收到上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
  38. 如权利要求36所述的方法,其特征在于,所述终端根据PRACH的发送波束,确定第一上行信号的默认发送波束,包括:
    所述终端将PRACH的发送波束,作为所述第一上行信号的默认发送波束。
  39. 如权利要求36所述的方法,其特征在于,所述PRACH为所述终端初始接入所述第一上行信号所在小区时最后一次发送Msg1的PRACH;或者,
    所述PRACH为所述终端在接收到所述上行波束指示信息之前在上行信号所在小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为所述终端在接收到所述第一上行信号的调度信息之前在 所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为终端在接收到所述第一上行信号的配置信息和/或触发信息之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为终端在发送所述第一上行信号之前在所述第一上行信号所对应小区最后一次发送Msg1的PRACH;或者,
    所述PRACH为随机接入过程中发送Msg3的PUSCH的发送波束。
  40. 权利要求36至39中任一项所述的方法,其特征在于,所述第一上行信号包括以下中的至少一种:
    SRS,相位追踪参考信号PTRS,解调参考信号DMRS,PUCCH中传输的上行信号,PUSCH中传输的上行信号。
  41. 一种基站,其特征在于,包括:
    发送模块,用于指示终端发送第一上行信号,并向终端发送上行波束指示信息,所述上行波束指示信息用于指示确定所述第一上行信号的发送波束的第一信号,所述第一信号包括物理随机接入信道PRACH。
  42. 一种终端,其特征在于,包括:
    接收模块,用于接收上行波束指示信息,所述上行波束指示信息用于指示确定第一上行信号的发送波束的第一信号,所述第一信号包括PRACH;
    处理模块,用于根据所述上行波束指示信息确定所述第一上行信号的发送波束;
    发送模块,用于使用所述第一上行信号的发送波束发送所述第一上行信号。
  43. 一种基站,其特征在于,包括:
    发送模块,用于指示终端发送第一上行信号;
    接收模块,用于将PRACH的发送波束对应的接收波束作为所述第一上行信号的默认接收波束。
  44. 一种终端,其特征在于,包括:
    处理模块,用于根据PRACH的发送波束,确定第一上行信号的默认发送 波束。
  45. 一种通信装置,其特征在于,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行如权利要求1至15中任一项所述的方法。
  46. 一种通信装置,其特征在于,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行如权利要求16至31中任一项所述的方法。
  47. 一种通信装置,其特征在于,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行如权利要求32至35中任一项所述的方法。
  48. 一种通信装置,其特征在于,包括:处理器、存储器和收发机;所述收发机用于在所述处理器的控制下接收或发送信息;所述处理器,用于读取所述存储器中的计算机指令,执行如权利要求36至40中任一项所述的方法。
  49. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求1至15中任一项所述的方法。
  50. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求16至31中任一项所述的方法。
  51. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如权利要求32至35中任一项所述的方法。
  52. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行如 权利要求36至40中任一项所述的方法。
PCT/CN2019/100449 2018-08-17 2019-08-13 信号传输方法、波束确定方法及其装置 WO2020034969A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19849357.9A EP3840244A4 (en) 2018-08-17 2019-08-13 SIGNAL TRANSMISSION METHOD, BEAM DETERMINATION METHOD AND ASSOCIATED APPARATUS
US17/268,604 US20210352645A1 (en) 2018-08-17 2019-08-13 Signal transmission method, beam determination method and apparatuses therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810942908.2A CN110838861B (zh) 2018-08-17 2018-08-17 信号传输方法、波束确定方法及其装置
CN201810942908.2 2018-08-17

Publications (1)

Publication Number Publication Date
WO2020034969A1 true WO2020034969A1 (zh) 2020-02-20

Family

ID=69525105

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100449 WO2020034969A1 (zh) 2018-08-17 2019-08-13 信号传输方法、波束确定方法及其装置

Country Status (4)

Country Link
US (1) US20210352645A1 (zh)
EP (1) EP3840244A4 (zh)
CN (1) CN110838861B (zh)
WO (1) WO2020034969A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113395780B (zh) * 2020-03-13 2023-09-12 大唐移动通信设备有限公司 上行信道传输方法、装置、基站、终端及存储介质
US12362814B2 (en) * 2020-05-09 2025-07-15 Beijing Xiaomi Mobile Software Co., Ltd. Data transmission method, data transmission apparatus, and storage medium
CN115175327A (zh) * 2021-04-02 2022-10-11 北京紫光展锐通信技术有限公司 一种传输方法及相关产品
CN115776361A (zh) * 2021-09-07 2023-03-10 大唐移动通信设备有限公司 时间单元确定方法、通信设备和存储介质
CN116684043A (zh) * 2022-02-18 2023-09-01 大唐移动通信设备有限公司 Msg3发送方法、Msg3接收方法、装置、设备及可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
CN107645324A (zh) * 2016-07-22 2018-01-30 华硕电脑股份有限公司 无线通信系统中使用波束成形的传送或接收方法和设备
CN107925605A (zh) * 2015-09-10 2018-04-17 英特尔Ip公司 针对5g rat中的基于波束的无小区操作的随机接入过程
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
WO2018141204A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Ue-assisted srs resource allocation

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108668370B (zh) * 2017-01-05 2019-08-06 华为技术有限公司 一种上行测量信号的指示方法及装置
EP3537618B1 (en) * 2017-01-05 2021-05-19 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Wireless communication method and apparatus
EP3577793A1 (en) * 2017-02-03 2019-12-11 IDAC Holdings, Inc. Uplink beam management
WO2018203680A1 (ko) * 2017-05-04 2018-11-08 엘지전자(주) 무선 통신 시스템에서 빔을 통해 신호를 송수신하는 방법 및 이를 위한 장치
CN109089315B (zh) * 2017-06-14 2021-04-02 维沃移动通信有限公司 一种基于多波束的数据传输方法和装置
EP3639601B1 (en) * 2017-06-15 2024-09-25 InterDigital Patent Holdings, Inc. Scheduling requests, status reports, and logical channel prioritization
CN111034143B (zh) * 2017-08-10 2023-07-07 三星电子株式会社 用于确定上行链路发送定时的方法和装置
US11277301B2 (en) * 2017-09-07 2022-03-15 Comcast Cable Communications, Llc Unified downlink control information for beam management
US10750453B2 (en) * 2017-09-07 2020-08-18 Ofinno, Llc Sounding reference signal transmission for uplink beam management
CN109474313B (zh) * 2017-09-08 2020-08-04 华硕电脑股份有限公司 非许可频谱中考虑波束成形传送的信道使用的方法
EP3487083B1 (en) * 2017-11-17 2020-12-16 ASUSTek Computer Inc. Method and apparatus for user equipment (ue) monitoring behavior for beam recovery in a wireless communication system
EP3547566B1 (en) * 2018-03-30 2023-07-05 Comcast Cable Communications, LLC Configuration for beam failure recovery
US11026233B2 (en) * 2018-06-20 2021-06-01 Apple Inc. Emission and panel aware beam selection
WO2020032737A1 (ko) * 2018-08-09 2020-02-13 엘지전자 주식회사 무선 통신 시스템에서 상향링크 전송을 수행하기 위한 방법 및 이를 위한 장치

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107211451A (zh) * 2014-11-26 2017-09-26 Idac控股公司 高频无线系统中的初始接入
CN107925605A (zh) * 2015-09-10 2018-04-17 英特尔Ip公司 针对5g rat中的基于波束的无小区操作的随机接入过程
CN107645324A (zh) * 2016-07-22 2018-01-30 华硕电脑股份有限公司 无线通信系统中使用波束成形的传送或接收方法和设备
CN108024365A (zh) * 2016-11-03 2018-05-11 华为技术有限公司 一种信息传输方法及设备
WO2018141204A1 (en) * 2017-02-03 2018-08-09 Huawei Technologies Co., Ltd. Ue-assisted srs resource allocation

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CATT: "Considerations on UL Beam Management", 3GPP TSG RAN WG1 NR AD-HOC#2 R1-1710057, 30 June 2017 (2017-06-30), XP051299282 *
CATT: "Details of Beam Management", 3GPP TSG RAN WGI MEETING NR#3 R1-1715801, 21 September 2017 (2017-09-21), XP051339261 *
See also references of EP3840244A4 *

Also Published As

Publication number Publication date
EP3840244A4 (en) 2022-02-23
EP3840244A1 (en) 2021-06-23
US20210352645A1 (en) 2021-11-11
CN110838861A (zh) 2020-02-25
CN110838861B (zh) 2023-03-17

Similar Documents

Publication Publication Date Title
CN109890079B (zh) 一种资源配置方法及其装置
US11805487B2 (en) Wireless communication method and device
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
US11284282B2 (en) Beam measurement method, terminal and network device
CN114389922B (zh) 一种码本子集的确定方法及装置、用户设备
CN112188622B (zh) 一种协作传输方法及通信装置
CN110838861B (zh) 信号传输方法、波束确定方法及其装置
CN110574455B (zh) 数据传输的方法和终端设备
CA3066297C (en) Signal processing method and apparatus
WO2018141111A1 (zh) 通信方法、终端设备和网络设备
KR20220038095A (ko) 풀 전력 상향링크 전송 방법 및 장비
EP3565150A1 (en) Uplink transmission method, terminal, and network device
WO2019075701A1 (zh) 无线通信方法和设备
WO2019024101A1 (zh) 无线通信方法和终端设备
US11425663B2 (en) Wireless communication method, terminal device, and network device
CN116325605A (zh) Tci状态列表更新方法、装置、设备及存储介质
CN111526534B (zh) 通信方法和装置
CN109587708A (zh) 信号处理方法和用户终端
CN117581497A (zh) 用于上行链路传输的方法及设备
CN114828226A (zh) 通信方法和通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19849357

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019849357

Country of ref document: EP

Effective date: 20210317