[go: up one dir, main page]

WO2019029434A1 - 资源位置的指示、接收方法、装置、设备及存储介质 - Google Patents

资源位置的指示、接收方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2019029434A1
WO2019029434A1 PCT/CN2018/098377 CN2018098377W WO2019029434A1 WO 2019029434 A1 WO2019029434 A1 WO 2019029434A1 CN 2018098377 W CN2018098377 W CN 2018098377W WO 2019029434 A1 WO2019029434 A1 WO 2019029434A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
frequency domain
domain location
location
bwp
Prior art date
Application number
PCT/CN2018/098377
Other languages
English (en)
French (fr)
Inventor
苗婷
毕峰
郝鹏
刘星
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to MX2020001645A priority Critical patent/MX2020001645A/es
Priority to DK18843089.6T priority patent/DK3667980T3/da
Priority to EP18843089.6A priority patent/EP3667980B1/en
Priority to KR1020227029359A priority patent/KR102655572B1/ko
Priority to EP23180813.0A priority patent/EP4266620A3/en
Priority to RU2020110051A priority patent/RU2749096C1/ru
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2020507641A priority patent/JP7206023B2/ja
Priority to KR1020207007250A priority patent/KR102437699B1/ko
Publication of WO2019029434A1 publication Critical patent/WO2019029434A1/zh
Priority to US16/785,072 priority patent/US11617173B2/en
Priority to JP2022166134A priority patent/JP7627673B2/ja
Priority to US18/126,192 priority patent/US20230247608A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Allocation of payload; Allocation of data channels, e.g. PDSCH or PUSCH
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signalling for the administration of the divided path, e.g. signalling of configuration information
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • H04W72/1273Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows of downlink data flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present invention relates to, but is not limited to, the field of communications, and in particular, to an indication, a receiving method, a device, a device, and a storage medium of a resource location.
  • the 5G new Radio Access Technology (RAT) system has a potential working frequency band of 100 GHz. Since the carrier frequency corresponding to high-frequency communication has a shorter wavelength, it can ensure that more antenna elements can be accommodated per unit area, and more antenna elements mean that beamforming can be used to improve the antenna gain, thereby ensuring Coverage performance of high frequency communication.
  • RAT Radio Access Technology
  • the transmitting end can concentrate the transmitting energy in a certain direction, and the energy is small or absent in other directions, that is, each beam has its own directivity, and each beam can only cover To a terminal in a certain direction, the transmitting end, that is, the base station needs to transmit a beam in dozens or even hundreds of directions to complete the full coverage.
  • the measurement and identification of the preliminary beam direction are performed during the initial access of the terminal to the network, and the base station side transmit beam is polled once in a time interval for the terminal to measure and identify the preferred beam or port.
  • each SS block carries a synchronization signal of a specific beam/port (group), and one synchronization signal transmission period completes one beam scanning, that is, completion. All beam/port transmissions.
  • the physical carrier center frequency (ie, the DC frequency) is placed at a frequency domain location corresponding to each channel number.
  • the frequency spacing between adjacent channel numbers is referred to as a channel raster or carrier raster interval.
  • the frequency domain step size of the terminal search sync signal is referred to as a frequency raster or a UE raster interval.
  • the terminal grid spacing is the same as the channel grid spacing, that is, the terminal searches for the synchronization signal in the frequency domain position corresponding to all possible channel numbers (ie, channel numbers).
  • FIG. 1 is a prior art terminal grid and The same schematic diagram of the channel grid, as shown in Figure 1.
  • the industry proposes to use a larger terminal grid spacing, that is, the terminal grid spacing can be larger than the channel grid spacing.
  • the center frequency of the synchronization signal, broadcast channel or other relevant signal/channel is likely to be different from the center frequency of the physical carrier.
  • the minimum carrier bandwidth and the synchronization bandwidth have been determined in the current standard discussion, which means that the maximum value of the terminal grid spacing is determined, and the minimum value of the terminal grid spacing is greater than or equal to the channel grid spacing. If the terminal grid spacing takes a value in the middle, since the NR system bandwidth is usually large, one physical carrier bandwidth may contain multiple SS blocks in the frequency domain.
  • the working bandwidth of high-frequency communication is usually high, up to several hundred MHz.
  • the related technology can be used in future wireless communication systems (New Radio, NR).
  • the physical carrier bandwidth is divided into a plurality of bandwidth parts (BWP), and resources for data transmission are scheduled for the terminal in the BWP, or broadcast type information is transmitted to the terminal.
  • BWP bandwidth parts
  • the common control information is carried in the common control resource set common CORESET(s), which is very important information, such as paging, partial UE specific control information, and partial broadcast type information are related to common control information, common
  • CORESET(s) is very important information, such as paging, partial UE specific control information, and partial broadcast type information are related to common control information
  • the spectrum resources scheduled by CORESET(s) need to be in a certain BWP or Physical Downlink Shared Channel (PDSCH) resource. Therefore, how the base station indicates the resource locations of BWP, PDSCH and common CORESET(s) is very important.
  • embodiments of the present invention are directed to providing an indication, a receiving method, a device, a device, and a storage medium for resource locations, which can effectively indicate resource locations of BWP, PDSCH, and common CORESET(s).
  • An embodiment of the present invention provides a method for indicating a resource location, including:
  • the first type of node sends resource location information to the second type of node, where the resource location information is configured to at least indicate a frequency domain location of the resource; wherein the frequency domain location includes at least one of: a frequency domain location of the first resource, a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by a Physical Downlink Shared Channel (PDSCH), and a public control resource set.
  • a BWP a resource occupied by a Physical Downlink Shared Channel (PDSCH), and a public control resource set.
  • PDSCH Physical Downlink Shared Channel
  • the frequency domain location of the first resource is a frequency domain location of a configured Synchronization Signal (SS) block; and the frequency domain location of the second resource is a frequency domain of a common control resource set. position.
  • SS Synchronization Signal
  • the common control resource set is included in a resource occupied by the BWP or the PDSCH; or the common control resource set overlaps with a resource part occupied by the BWP or the PDSCH; or the common control resource set and The resource parts occupied by the BWP or the PDSCH do not overlap at all; or, there is no fixed relationship between the common control resource set and the resources occupied by the BWP or the PDSCH.
  • the resource scheduled by the control information carried by the common control resource set is located in a resource occupied by the BWP or the PDSCH.
  • the indicating, by the first type of node, the frequency domain location of the first resource to the second type of node includes: indicating an offset in a frequency domain of the first resource relative to a reference point; or And indicating an offset of the first resource in a frequency domain with respect to a reference point, and a bandwidth of the first resource, where the reference point includes a center or a boundary of any one of: a physical carrier, a downlink synchronization signal Bandwidth, downlink synchronization signal block SS block.
  • the indicating, by the first type of node, the frequency domain location of the second resource to the second type of node includes: indicating a frequency domain of the second resource relative to a reference point or the first resource Offset; or, indicating an offset in the frequency domain of the second resource relative to the reference point or the first resource, and a bandwidth of the second resource or a bandwidth of the second resource and a bandwidth of the first resource
  • the reference point includes a center or a boundary of any one of the following: a physical carrier, a downlink synchronization signal bandwidth, and a downlink synchronization signal block SS block.
  • indicating a frequency domain location of the BWP includes an index indicating the BWP.
  • determining a frequency domain location of the first resource as a frequency domain location of the configured synchronization signal block SS block includes: configuring, by the first type of node, one or more SS blocks in a system bandwidth, The frequency domain location of each SS block corresponds to an index; and the frequency domain location of the first resource is configured as one of frequency domain locations of the one or more SS blocks.
  • indicating a frequency domain location of the configured SS block includes: indicating a frequency domain location index of the configured SS block.
  • the first type of node indicating the frequency domain location of the resource to the second type of node includes: the first type of node carrying the resource location information by using a physical broadcast channel; or the first type of node
  • the radio resource control (RRC) dedicated signaling is used to carry the resource location information; or the first type of node uses the physical broadcast channel to carry frequency domain location information of the first resource, and utilizes RRC dedicated signaling.
  • the frequency domain location information of the second resource is carried, or a part of the frequency domain location of the first resource and/or the frequency domain location information of the second resource is carried by a physical broadcast channel, and another part is used for RRC signaling. Carry information.
  • the RRC dedicated signaling is sent by the node adjacent to the first type of node to the second type of node.
  • the offset in the frequency domain comprises at least one of: an offset, a left and right offset indication.
  • the offset in the frequency domain is represented by one or more of the following: a relative channel number, a relative channel group number, a relative physical resource block (PRB) number, and a relative PRB group. Number, relative subcarrier number.
  • the frequency domain location of the resource is a central location of the resource in the frequency domain; or the frequency domain location of the resource is a boundary location of the resource in the frequency domain; or the frequency domain location of the resource is The central location of the resource in the frequency domain and the bandwidth of the frequency domain resource; or the frequency domain location of the resource is the boundary location of the resource in the frequency domain and the bandwidth of the frequency domain resource; or the frequency domain location of the resource is the frequency domain The bandwidth of the resource.
  • the embodiment of the present invention further provides a method for receiving a resource location, including: receiving, by a second type of node, resource location information that is sent by a first type of node to indicate a frequency domain location of the resource; wherein the frequency domain location includes the following At least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • the frequency domain location of the first resource is a frequency domain location of the configured SS block; and the frequency domain location of the second resource is a frequency domain location of a common control resource set.
  • the method further includes: receiving, by the second type of node, a frequency domain location of the first resource indicated by the first type of node, and determining a frequency domain location of the second resource according to a predefined rule.
  • the predefined rule is a relationship between a predefined one or more factors and a frequency domain offset, wherein the factor includes at least one of: a synchronization signal block index, a physical cell identifier , system frame number, frequency band information.
  • the embodiment of the present invention further provides a resource location indication device, which is applied to a first type of node, and includes: a sending module, configured to send resource location information to a second type of node, where the resource location information is used to indicate at least a resource.
  • a frequency domain location where the frequency domain location includes at least one of: a frequency domain location of the first resource, a frequency domain location of the second resource, and the first resource or the second resource includes at least one of the following: BWP, resources occupied by PDSCH, and set of common control resources.
  • the frequency domain location of the first resource is a frequency domain location of the configured SS block; and the frequency domain location of the second resource is a frequency domain location of a common control resource set.
  • the embodiment of the present invention further provides a resource location receiving apparatus, which is applied to a second type of node, and includes: a receiving module, configured to receive resource location information sent by the first type of node to indicate a frequency domain location of the resource;
  • the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource;
  • the first resource or the second resource includes at least one of: BWP, PDSCH occupation Resources, public control resource sets.
  • the frequency domain location of the first resource is a frequency domain location of the configured SS block; and the frequency domain location of the second resource is a frequency domain location of a common control resource set.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the resource location indication method of the embodiment of the present invention.
  • An embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to perform a method for receiving a resource location according to an embodiment of the present invention.
  • the embodiment of the present invention further provides a processor, where the processor is used to run a program, where the program is executed to execute the resource location indication method of the embodiment of the present invention.
  • An embodiment of the present invention further provides a processor, where the processor is configured to run a program, where the program is executed to perform a method for receiving a resource location according to an embodiment of the present invention.
  • the embodiment of the invention further provides a base station, including:
  • a processor and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing an operation of: transmitting resource location information to a second type of node, the resource location information being used at least to indicate a resource Frequency domain location
  • the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: BWP, PDSCH occupation Resources, public control resource sets.
  • the embodiment of the invention further provides a terminal, including:
  • processors and a memory storing the processor-executable instructions, when the instructions are executed by the processor, performing an operation of: receiving resource location information sent by the first type of node for indicating a frequency domain location of the resource;
  • the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource; the first resource or the second resource includes at least one of: a bandwidth part BWP, Physical downlink shared channel PDSCH occupied resources, common control resource set.
  • the resource location indication, the receiving method, the device, the device (terminal, the base station, the processor) and the storage medium are provided by the embodiment of the present invention, and the first type of node sends the resource location information to the second type of node, where the resource location information is used for at least And indicating the frequency domain location of the resource, where the frequency domain location includes at least one of: a frequency domain location of the first resource, a frequency domain location of the second resource, and the first resource or the second resource includes at least one of One: BWP, resources occupied by PDSCH, and public control resource sets.
  • the resource location information is sent to the second type of node by the first type of node to indicate the frequency domain location of the resource, and the effective indication of the resource location of the BWP, the PDSCH, and the common CORESET(s) by the base station is implemented.
  • FIG. 1 is a schematic diagram of a terminal grid identical to a channel grid in the related art
  • FIG. 2 is a flowchart of a method for indicating a resource location according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of frequency domain positions of an SS block, a BWP, and a Common CORESET in an NR carrier according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of frequency domain positions of an SS block, a BWP, and a Common CORESET in an NR carrier according to an embodiment of the present invention (1);
  • FIG. 5 is a schematic diagram of frequency domain positions of an SS block, a BWP, and a Common CORESET in an NR carrier according to an embodiment of the present invention (2);
  • FIG. 6 is a schematic diagram of a method for indicating a resource location according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram (1) of a method for indicating a resource location according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a method for indicating a resource location according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram (3) of a method for indicating a resource location according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a method for indicating a resource location according to an embodiment of the present invention (4);
  • FIG. 11 is a schematic diagram of a method for indicating a resource location according to an embodiment of the present invention (5);
  • FIG. 12 is a structural block diagram of a resource location indication apparatus according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for receiving a resource location according to an embodiment of the present invention.
  • FIG. 14 is a diagram showing the structure of a resource location receiving apparatus according to an embodiment of the present invention.
  • FIG. 15 is a structural block diagram of a base station according to an embodiment of the present invention.
  • Figure 16 is a block diagram showing the structure of a terminal in accordance with an embodiment of the present invention.
  • FIG. 2 is a flowchart of a method for indicating a resource location according to an embodiment of the present invention. As shown in FIG. 2, the process includes the following steps:
  • Step S202 The first type of node sends the resource location information to the second type of node, where the resource location information is used to indicate the frequency domain location of the resource.
  • the frequency domain location includes at least one of the following: the frequency domain location of the first resource.
  • a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • the first type of node of the foregoing step may be a base station, such as a Transmit-Receive Point (TRP), a relay node, a macro base station, a micro base station, a pico base station, a home base station, and a radio frequency pull.
  • TRP Transmit-Receive Point
  • AP access point
  • examples of the second type of nodes are terminals, relay nodes, and the like.
  • the first type of node takes a base station as an example
  • the second type of node takes a terminal as an example, etc., but is not limited thereto.
  • step S202 a valid indication of the resource locations of the BWP, the PDSCH, and the common CORESET(s) by the base station is implemented.
  • the frequency domain location of the first resource is a frequency domain location of the configured synchronization signal block SS block; and the frequency domain location of the second resource is a frequency domain location of the common control resource set.
  • the common control resource set is included in a resource occupied by the BWP or the PDSCH; or the common control resource set overlaps with a resource part occupied by the BWP or the PDSCH; or the common control resource set and the BWP or the PDSCH The occupied resource parts do not overlap at all; or there is no fixed relationship between the common control resource set and the resources occupied by the BWP or the PDSCH.
  • the resource scheduled by the control information carried by the common control resource set is located in a resource occupied by the BWP or the PDSCH.
  • the first type of node indicating the frequency domain location of the first resource to the second type of node includes the following manner:
  • the reference point includes a center or a boundary of any one of the following: a physical carrier, a downlink synchronization signal bandwidth, and a downlink SS block.
  • the first type of node indicating the frequency domain location of the first resource to the second type of node includes the following manner:
  • the reference point includes a center or a boundary of any one of the following: a physical carrier, a downlink synchronization signal bandwidth, and a downlink synchronization signal block SS block.
  • the frequency domain location indicating the BWP includes an index indicating the BWP.
  • determining a frequency domain location of the first resource as a frequency domain location of the configured SS block includes: configuring, by the first type node, one or more SS blocks in a system bandwidth, where each SS The frequency domain location of the block corresponds to an index; the frequency domain location of the first resource is configured as one of the frequency domain locations of the one or more SS blocks.
  • indicating a frequency domain location of the configured SS block includes: indicating a frequency domain location index of the configured SS block.
  • the first type of node indicating the frequency domain location of the resource to the second type of node includes: the first type of node uses the physical broadcast channel to carry the resource location information; or the first type of node uses radio resource control RRC dedicated to carrying the resource location information; or, the first type of node uses the physical broadcast channel to carry the frequency domain location information of the first resource, and uses the RRC dedicated signaling to carry the frequency domain location information of the second resource, or the first A frequency domain location of a resource and/or a portion of frequency domain location information of the second resource is carried over a physical broadcast channel, and another portion carries information using RRC signaling.
  • RRC radio resource control
  • the RRC dedicated signaling is sent to the second type of node by a node adjacent to the first type of node.
  • the offset in the frequency domain includes at least one of the following: an offset, a left and right offset indication.
  • the offset in the frequency domain is represented by one or more of the following: a relative channel number, a relative channel group number, a relative physical resource block PRB number, a relative PRB group number, and a relative subcarrier number.
  • the frequency domain location of the resource is a central location of the resource in the frequency domain; or the frequency domain location of the resource is a boundary location of the resource in the frequency domain; or the frequency domain location of the resource is in the frequency domain.
  • the frequency location of the resource is the bandwidth of the frequency domain resource;
  • the relative channel (group) / PRB (group) / subcarrier number generally A relative channel (group) / PRB (group) / subcarrier number refers to B The number of channel rasters (groups)/PRBs (groups)/subcarriers in which the frequency domain location where A is located differs from the frequency domain location where B is located.
  • A is relative to the left and right offset on the B frequency domain: when the frequency domain position where A is located is higher than the frequency domain position where B is located, it is the right offset, and the frequency domain position where A is located is lower than the frequency domain position where B is located. shift.
  • This alternative embodiment describes the use of offsets in the frequency domain relative to a reference point to indicate frequency domain locations of the first and second resources.
  • Figure 3 shows the frequency domain locations of the SS block, BWP, and Common CORESET in the NR carrier, where n is the channel number corresponding to the center frequency of the SS block, and m is the channel number corresponding to the center frequency of the BWP, m +k is the channel number corresponding to the common CORESET center frequency.
  • the base station may use the physical downlink control channel carried by the Common CORESET to schedule a BWP or a part of the BWP resource.
  • the first resource takes the BWP as an example
  • the second resource takes the Common CORESET as an example
  • the reference point is the center of the SS block.
  • the base station indicates to the terminal the offset of the center frequency of the BWP and the Common CORESET with respect to the center frequency of the SS block and the bandwidth of the BWP and the Common CORESET, and the specific indication includes the relative channel number, the left and right offset indication, and The bandwidth is as shown in Table 1.
  • the relative channel number is the number of channel rasters in which the frequency domain location of the BWP or Common CORESET is in the frequency domain and the frequency domain location of the SS block.
  • the left and right offset indications are Whether the center frequency of the BWP or Common CORESET is the left offset or the right offset relative to the center frequency of the SS block, and the right offset of the BWP or Common CORESET is higher than the center frequency of the SS block, BWP Or when the center frequency of the Common CORESET is lower than the center frequency of the SS block, it is the left offset.
  • the base station may send the offset of the center frequency of the BWP and the Common CORESET relative to the center frequency of the SS block, the left and right offset indication, and the BWP and the Common CORESET to the terminal by using the physical broadcast channel or the RRC dedicated signaling.
  • Information such as bandwidth, or part of the physical broadcast channel, part of the RRC dedicated signaling is used to send the offset of the center frequency of the BWP and Common CORESET to the SS block center frequency point, the left and right offset indication, and the BWP and Common CORESET.
  • Information such as bandwidth.
  • the RRC dedicated signaling may also be sent by the neighboring base station to the terminal.
  • the relative channel number used to represent the offset of the center frequency of the BWP or Common CORESET relative to the center frequency of the SS block is just an example. If the frequency difference between the center frequency of the BWP or Common CORESET and the center frequency of the SS block is not an integer multiple of the channel grid, the center frequency of the BWP or Common CORESET cannot be accurately represented by the relative channel number relative to the SS block. The offset of the center frequency point, then other methods need to be considered.
  • the offset of the center frequency of the BWP or Common CORESET relative to the center frequency of the SS block can also be represented by the relative frequency of the center frequency of the BWP or Common CORESET relative to the center frequency of the SS block, where the relative subcarriers
  • the number refers to the number of subcarriers where the frequency domain location of the BWP or Common CORESET is different from the frequency domain location where the center frequency of the SS block is located.
  • the frequency domain of the center frequency of the BWP is higher than the frequency of the center frequency of the SS block (subcarriers are numbered in order from low frequency to high frequency), and the difference between the two subcarrier waves is the center frequency of the BWP.
  • the offset of the point relative to the center frequency of the SS block is the relative subcarrier number K and is the right offset; or,
  • the center frequency point is represented relative to the relative subcarrier number of the frequency domain position corresponding to the PRB number.
  • the bandwidth of the first resource and the second resource is not limited to the indication manner in Table 1. If the N1 bandwidth is predefined, the bandwidth of a certain resource may be represented by using log2 (N1) bit information, for example, four bandwidths. : 100 RBs, 50 RBs, 30 RBs, 20 RBs. Then you can use 2 bits of information to represent the bandwidth of a resource.
  • the base station does not need to indicate the bandwidth of the BWP to the terminal.
  • the bandwidth of the Common CORESET is fixed, such as 20 RBs, the base station does not need to indicate the bandwidth of the Common CORESET to the terminal. That is to say, the base station only needs to indicate to the terminal the offset of the center frequency of the BWP or Common CORESET with respect to the center frequency of the SS block.
  • the base station only needs to indicate the size of the bandwidth to the terminal, if Only the offset is fixed, just indicate whether it is left or right offset, and the size of the bandwidth.
  • the position of the BWP or the Common CORESET can also be offset from the center frequency of the SS block by the boundary of the BWP or Common CORESET (for example, the left boundary, that is, the starting frequency domain position, or the right boundary, that is, the termination frequency domain position).
  • the indication may be represented by the number of RBs offset with respect to the reference point.
  • the offset 0 RB indicates coincidence with the SS block center frequency point position, and the indication method and the center frequency of the BWP or Common CORESET are relative to the SS block.
  • the indication method of the offset of the center frequency point is similar.
  • a 1-bit left and right offset indication and a Resource Indication Value may be utilized to indicate a center or a boundary of the BWP or the Common CORESET (eg, a left boundary, ie, a starting frequency domain location, or The right boundary, ie the end of the frequency domain position) is offset relative to the center frequency of the SS block and the bandwidth of the BWP or the bandwidth of the Common CORESET.
  • RIV Resource Indication Value
  • the bandwidth of the RB may be determined according to a subcarrier spacing adopted by the SS block, or may be determined by a PBCH or a minimum system information (RMSI) or a subcarrier spacing notified by an RRC dedicated signaling.
  • RMSI minimum system information
  • One RB contains 12 subcarriers in the frequency domain.
  • the manner in which the base station indicates the resource to the terminal is similar to the foregoing embodiment in the following two situations: 1) the first resource is the resource occupied by the downlink traffic channel PDSCH, the second resource is Common CORESET; 2) the first resource is Common CORESET, the second resource is the resource occupied by the BWP or the downlink traffic channel PDSCH.
  • the reference point is described by taking the center frequency of the SS block as an example.
  • the BWP may be indicated in a similar manner.
  • the offset of the center frequency of the Common CORESET relative to the reference point For example, when the reference point is the right boundary of the SS block, Table 2 gives the offset and bandwidth of the center frequency of the BWP and Common CORESET relative to the right boundary frequency of the SS block.
  • the position of the BWP or the Common CORESET is any one of the center frequency point and the boundary, and the reference point is the center or boundary of the NR carrier, the center or boundary of the downlink synchronization signal bandwidth, the center of the SS block, or any of the boundaries.
  • a method similar to the above embodiment can be used to indicate the frequency domain position of the BWP or Common CORESET.
  • the present optional embodiment describes utilizing an offset in a frequency domain relative to a reference point to indicate a frequency domain location of the first resource, using an offset in a frequency domain relative to the first resource to indicate a frequency domain location of the second resource.
  • Figure 4 shows the frequency domain positions of the SS block, the PDSCH, and the Common CORESET in the NR carrier.
  • the k1, k2, and k3 are the subcarrier numbers corresponding to the center frequency of the SS block, the PDSCH, and the Common CORESET, respectively.
  • the resources occupied by the PDSCH are scheduled by using the PDCCH carried by the Common CORESET.
  • the first resource takes the resource occupied by the PDSCH as an example
  • the second resource takes the Common CORESET as an example
  • the reference point takes the center of the SS block as an example.
  • the base station indicates to the terminal the offset of the center frequency of the PDSCH relative to the center frequency of the SS block and the bandwidth of the PDSCH, and the offset of the center frequency of the Common CORESET with respect to the center frequency of the PDSCH and the Common CORESET.
  • Bandwidth, the specific indication content includes relative subcarrier number, left and right offset indication and bandwidth, as shown in Table 3.
  • the relative subcarrier number of the center frequency of the PDSCH relative to the center frequency of the SS block refers to the number of subcarriers in which the frequency domain location of the PDSCH center frequency point is different from the frequency domain location of the SS block center frequency point, PDSCH
  • the center frequency is higher than the center frequency of the SS block, it is the right offset, and when the center frequency of the PDSCH is lower than the center frequency of the SS block, it is the left offset.
  • the relative frequency of the center frequency of the Common CORESET relative to the center frequency of the PDSCH refers to the number of subcarriers in the frequency domain where the center frequency of the Common CORESET is located and the frequency domain where the center frequency of the PDSCH is located.
  • Common CORESET When the center frequency is higher than the center frequency of the PDSCH, it is the right offset. When the center frequency of the Common CORESET is lower than the center frequency of the PDSCH, it is the left offset.
  • the base station indicates to the terminal the offset of the center frequency of the Common CORESET relative to the center frequency of the SS block and the bandwidth of the Common CORESET, and the offset of the center frequency of the PDSCH from the center frequency of the Common CORESET and the bandwidth of the PDSCH.
  • the content of the specific indication includes the relative subcarrier number, the left and right offset indication, and the bandwidth, as shown in Table 4.
  • the center frequency of the PDSCH is lower than the center frequency of the Common CORESET, when the offset of the center frequency of the PDSCH relative to the center frequency of the Common CORESET is indicated, the left and right offsets are indicated as 0, that is, the center of the PDSCH.
  • the frequency point is the left offset relative to the center frequency of the Common CORESET.
  • the bandwidth of the PDSCH is fixed, such as 50 RBs.
  • the base station does not need to indicate the bandwidth of the PDSCH to the terminal.
  • the bandwidth of the Common CORESET is fixed, such as 20 RBs. The base station does not need to indicate the bandwidth of the Common CORESET to the terminal.
  • the base station may notify the terminal of the frequency domain location of the PDSCH or the Common CORESET by using the physical broadcast channel or the RRC dedicated signaling, or notify the frequency domain location of the resource occupied by the PDSCH by using the physical broadcast channel, and notify the frequency domain of the Common CORESET by using the RRC dedicated signaling.
  • the location, or the frequency domain location of the Common CORESET is notified by the physical broadcast channel, and the frequency domain location of the PDSCH-specific resource is notified by RRC dedicated signaling.
  • the RRC dedicated signaling may also be sent by the neighboring base station to the terminal.
  • This alternative embodiment describes the use of an offset in the frequency domain relative to a reference point to indicate the frequency domain location of the first resource, and the second type of node calculates the frequency domain location of the second resource in accordance with a predefined rule.
  • the frequency domain locations of the SS block, BWP, and Common CORESET in the NR carrier are shown in Figure 5.
  • the first resource takes BWP as an example
  • the second resource takes Common CORESET as an example
  • the reference point takes the center of the SS block as an example.
  • the base station indicates to the terminal the offset of the center frequency of the BWP relative to the center frequency of the SS block and the bandwidth of the BWP, the bandwidth of the Common CORESET, and the specific indication includes the relative subcarrier number, the left and right offset indication, and the bandwidth. As shown in Table 5, where - indicates that the item does not exist.
  • the relative subcarrier number of the center frequency of the BWP relative to the center frequency of the SS block refers to the number of subcarriers in which the frequency domain position of the BWP center frequency point is different from the frequency domain position of the SS block center frequency point, BWP
  • the center frequency is higher than the center frequency of the SS block, it is the right offset
  • the center frequency of the PDSCH is lower than the center frequency of the SS block, it is the left offset.
  • the terminal calculates the offset of the center frequency of the Common CORESET relative to the center frequency of the BWP according to a predefined rule.
  • the predefined rule defines a relationship between one or more factors and an offset of a center frequency of the Common CORESET relative to a reference point or a center frequency of the BWP, the factor comprising at least one of: a sync block Index, physical cell identifier, system frame number, and frequency band information.
  • the predefined rule may be a default frequency domain offset, for example, offset by 4 RBs; or may be defined according to any one or more of timing information, physical cell identifier, and frequency band information, specifically, for example, SS block Index, physical cell identifier Cell ID, system frame number (SFN), frequency band range, and so on.
  • the SS block index is the index of the SS block where the synchronization signal is located when the terminal completes the downlink synchronization
  • the SFN is the number of the radio frame where the synchronization signal is located when the terminal completes the downlink synchronization.
  • the frequency band range is divided in advance, and each frequency band range corresponds to a unique one of the frequency band ranges.
  • the principle of determining a predefined rule is to calculate the center frequency of Common CORESET relative to BWP according to different SS block index (group), physical cell identifier Cell ID (group), system frame number SFN (group), and band range (group).
  • the offset of the center frequency is as different as possible to reduce mutual interference between adjacent cells when transmitting information using Common CORESET.
  • the predefined rule may be that SS block index N2 corresponds to a center frequency of the Common CORESET offset from the center frequency of the BWP by N2 RBs; or
  • SS block index N2 corresponds to the center frequency of the Common CORESET offset from the center frequency of the BWP by K*floor(N2/M) RBs, where floor indicates rounding; or,
  • SS block index N2 corresponds to the center frequency of the Common CORESET offset from the center frequency of the BWP by K*mod(N2,M) RBs, where mod is a modulo operation;
  • a predefined rule may be determined according to the physical cell identifier Cell ID, SFN, and frequency band range.
  • the predefined rule is an offset K*floor(X/M) or K*mod(X,M) RBs, where X may be a Cell ID, SFN, band range identifier.
  • the predefined rules may also be a combination of the above various modes, such as offset K*floor(N2/M)+L*mod(Cell ID, M) RBs.
  • N2 and X are non-negative integers
  • K and L are positive integers
  • M is an integer greater than one.
  • the SS block index of the synchronization signal in which the terminal successfully completes the downlink synchronization is 2, and according to the predefined rule SS block index N2, the center frequency of the Common CORESET is offset from the center frequency of the BWP by N2 RBs, then Common The center frequency of the CORESET is shifted by 2 RBs from the center frequency of the BWP, and then the frequency domain position of the Common CORESET can be known according to the left and right offset indication 1 and the bandwidth of the Common CORESET being 20 RBs.
  • the above offset is only an example in units of RBs, and the actual offset is not limited to RB, and may be any unit capable of measuring frequency, such as Y kHz/MHz, RB group, subcarrier, subcarrier group, channel grid, channel Grid groups, etc.
  • the manner in which the base station indicates the resource to the terminal is similar to the above embodiment in the following cases: 1) the first resource is Common CORESET, the second resource is BWP; 2) the first resource is Common CORESET, and the second resource is downlink traffic channel PDSCH occupation 3) The first resource is the resource occupied by the downlink traffic channel PDSCH, and the second resource is Common CORESET.
  • the main idea is that the first resource is an offset in the frequency domain relative to the reference point, and the second resource is an offset in the frequency domain relative to the first resource and calculated by the terminal according to a predefined rule.
  • This alternative embodiment describes indicating the frequency domain location of the BWP by indicating a BWP index.
  • the base station divides the system bandwidth (that is, the bandwidth of the physical carrier) evenly into a plurality of BWPs. As shown in FIG. 6, the base station divides the physical carrier into four BWPs, and the corresponding indexes are 0, 1, 2, and 3, respectively. Assuming that the terminal already knows the central frequency of the physical carrier and the division of the BWP in the system bandwidth, the base station can directly indicate the index of the BWP to the terminal by using the 2-bit information, for example, directly indicating to the terminal that the index of the BWP is 3, and the terminal is based on the physical The frequency domain location of the BWP3 can be obtained by the center frequency and bandwidth of the carrier and the division of the BWP.
  • the resources scheduled by the Common CORESET control information are located in the BWP3.
  • the benefit of this is that the overhead indicative of the BWP3 frequency domain location is greatly reduced compared to the offset indicating the BWP3 relative reference point and the bandwidth.
  • the base station can indicate the frequency domain location of the Common CORESET by using the methods in the foregoing embodiments, and details are not described herein.
  • the base station may use the RRC dedicated signaling to indicate the frequency domain location of the BWP index and the Common CORESET to the terminal, or notify the BWP index by using the physical broadcast channel, notify the frequency domain location of the Common CORESET by using the RRC dedicated signaling, or notify the physical broadcast channel by using the RRC dedicated signaling.
  • the frequency domain location of the Common CORESET is notified by the RRC dedicated signaling to the BWP index.
  • This alternative embodiment describes using a frequency domain location index indicating the configured SS block and an offset indicating the frequency domain location of the Common CORESET relative to the configured SS block to indicate the frequency domain location of the resource.
  • the base station configures one or more SS blocks in the system bandwidth, and the frequency domain location of each SS block corresponds to an index. As shown in FIG. 7, the base station configures two SS blocks in the system bandwidth, and the corresponding indexes are 0, 1 respectively.
  • the terminal already knows the frequency domain location of each SS block and the bandwidth of the BWP and BWP it is in.
  • the base station can directly indicate to the terminal the frequency domain location index of the configured SS block by using the 1-bit information, and the terminal can obtain the frequency domain location of the configured SS block according to the configuration information of the SS block, and can know the control information carried by the Common CORESET.
  • the scheduled resources are located in BWP2. The benefit of this is that the overhead indicating the BWP2 frequency domain location is greatly reduced compared to the offset indicating the BWP2 relative reference point and the bandwidth.
  • the base station indicates to the terminal the center frequency point of the Common CORESET or the offset of the boundary of the central frequency point or boundary of the SS block relative to the configuration, and the bandwidth of the Common CORESET, so that the terminal acquires the frequency domain position of the Common CORESET resource, and the terminal according to the Common CORESET.
  • the BWP that is, BWP2
  • BWP2 where the scheduled resource is located and the time domain location of the Common CORESET resource obtained by other methods can successfully obtain the information carried by the Common CORESET.
  • This alternative embodiment describes a method of jointly indicating the bandwidth of Common CORESET, BWP, and PDSCH using the relationship of the bandwidth of the Common CORESET resource to the bandwidth of the resources of the BWP or PDSCH.
  • the bandwidths of the first resource and the second resource may be jointly indicated. Assuming that the bandwidth of the first resource and the bandwidth of the second resource have multiple fixed relationships, the bandwidth of one of the resources may be indicated, and the relationship indicating the bandwidth of the two resources belongs to.
  • the bandwidth of the first resource and the bandwidth of the second resource have two relationships: 1) the bandwidth of the second resource is the same as the bandwidth of the first resource; 2) the second The bandwidth of a resource is half the bandwidth of the first resource.
  • the base station only needs to indicate the bandwidth of the first resource, and the relationship between the bandwidth of the first resource and the bandwidth of the second resource is the first type or the second type, and does not need to separately indicate the bandwidth of the two resources, thereby saving the indication. Resource overhead, especially when bandwidth is large.
  • This alternative embodiment describes a specific implementation method of indicating a frequency domain location of a resource by taking an example of indicating a frequency domain location of the BWP.
  • the 1 bit left and right offset indication and the resource indication value RIV may be utilized to indicate the boundary of the BWP or the offset of the center relative to the reference point and the bandwidth of the BWP, including the following cases:
  • the bandwidth of the BWP is fixed, that is, the bandwidth of the BWP is known in advance to the base station and the terminal, and the number of bits occupied by the RIV is determined by the BWP left or right boundary or the maximum offset of the center from the reference point. That is, it is determined by the number of bits required to represent the maximum offset, and the value of RIV is equal to the left or right boundary of the BWP or the offset of the center from the reference point.
  • the maximum offset is 31 RBs
  • the bandwidth of the BWP is not fixed, and the reference point is outside the BWP, indicating the method: when the BWP is located on the right side of the reference point, indicating the left boundary of the BWP and the bandwidth; when the BWP is located on the left side of the reference point, indicating the BWP
  • the right boundary and the bandwidth, specifically, the maximum offset of the boundary of the BWP relative to the reference point is a physical carrier bandwidth or a fixed value, and the base station determines the RIV value according to the offset of the boundary of the BWP with respect to the reference point and the bandwidth of the BWP.
  • the RIV value is sent to the terminal, and then the terminal inversely calculates the offset and bandwidth of the boundary of the BWP from the reference point according to the received RIV value, and then obtains the boundary position and bandwidth of the BWP according to the obtained left and right offset indication.
  • the maximum offset is the physical carrier bandwidth, it is represented by N RBs.
  • L denote that the bandwidth of the BWP is L RBs
  • S denotes that the offset of the boundary of the BWP with respect to the reference point is S RBs
  • the left boundary of the BWP is located to the right of the reference point, as shown in FIG. 8;
  • the boundary is to the left of the reference point, as shown in Figure 9.
  • the number of bits occupied by the RIV is The value of RIV is:
  • the terminal After the terminal receives the RIV, it calculates first. Value.
  • the bandwidth of the BWP is not fixed, indicating the center frequency position and bandwidth of the BWP, including: the offset of the center frequency of the BWP relative to the reference point and the left and right offset indication, the bandwidth of the BWP.
  • the specific method is as follows: the protocol predetermines the maximum offset N of the center frequency of the BWP relative to the reference point, and the base station determines the RIV value according to the offset of the center frequency of the BWP relative to the reference point and the bandwidth of the BWP, and then the terminal receives the The obtained RIV value inversely calculates the offset and bandwidth of the center frequency of the BWP relative to the reference point, and then obtains the center frequency position and bandwidth of the BWP according to the obtained left and right offset indication.
  • the maximum offset is assumed to be the physical carrier bandwidth.
  • the bandwidth of the physical carrier is N RBs
  • the bandwidth of the BWP is 2L RBs (that is, the bandwidth is an even number of RBs), that is, half of the BWP bandwidth is L.
  • RB using S to indicate that the offset of the center frequency of the BWP relative to the reference point is S RBs, the center frequency of the BWP is located to the right of the reference point, as shown in FIG. 10; the center frequency of the BWP is located at the reference point On the left side, as shown in Figure 11. Then the number of bits occupied by the RIV is The value of RIV is:
  • the corresponding method is selected according to the actual situation.
  • the base station also needs to indicate the time domain location of the Common CORESET to the terminal, so that the terminal can quickly receive the information carried by the Common CORESET.
  • the time domain location of the Common CORESET can be indicated by other methods. For example, if the Common CORESET is periodically sent, it can indicate the transmission period, the radio frame where the start position of the cycle is located, and the start of the Common CORESET in each transmission cycle. Position and number of Orthogonal Frequency Division Multiplexing (OFDM) symbols. If the Common CORESET is sent aperiodically, the time domain offset of the Common CORESET relative to a certain reference location (eg, delayed n OFDM symbols), and the number of persistent OFDM symbols may be indicated.
  • OFDM Orthogonal Frequency Division Multiplexing
  • the present embodiment provides a method for indicating a resource location, including: indicating, by a first type of node, a frequency domain location of a resource to a second type of node, including at least one of: indicating a frequency domain location of the first resource, indicating a second The frequency domain location of the resource.
  • the first resource refers to a resource occupied by the BWP or the PDSCH
  • the second resource refers to a resource of the common CORESET(s).
  • the first resource refers to the resource of the common CORESET(s)
  • the second resource refers to the resource occupied by the BWP or the PDSCH, so that the base station can indicate the resource location of the BWP, the PDSCH, and the common CORESET(s) to the terminal, and solves the base station in the related art.
  • the frequency domain location of the second resource is calculated by the terminal according to the pre-defined, the indication overhead is reduced, and the mutual interference between the neighboring cells when the indicated resource transmission information is used can be reduced to a certain extent.
  • the method of jointly indicating resource bandwidth can also reduce the overhead of resource indication.
  • a terminal device can be a mobile phone, computer, server, or network device, etc.
  • a terminal device can be a mobile phone, computer, server, or network device, etc.
  • the embodiment of the present invention further provides a resource location indication device, which is used to implement the foregoing various method embodiments, and has not been described again.
  • the term "module” may implement a combination of software and/or hardware for a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 12 is a structural block diagram of a resource location indication apparatus according to an embodiment of the present invention, applied to a base station, as shown in FIG. 12, the apparatus includes:
  • the sending module 122 is configured to send resource location information to the second type of node, where the resource location information is used to indicate at least a frequency domain location of the resource;
  • the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: BWP, PDSCH occupation Resources, public control resource sets.
  • the problem that the base station cannot indicate the resource locations of the BWP, the PDSCH, and the common CORESET(s) in the related art is solved, and the technical effect that the resource location can be effectively indicated is achieved.
  • the frequency domain location of the first resource is a frequency domain location of the configured synchronization signal block SS block; and the frequency domain location of the second resource is a frequency domain location of a common control resource set.
  • the frequency domain location of the first resource is a frequency domain location of the configured SS block; and the frequency domain location of the second resource is a frequency domain location of the common control resource set.
  • the common control resource set is included in a resource occupied by the BWP or the PDSCH; or the common control resource set overlaps with a resource part occupied by the BWP or the PDSCH; or the common control resource set and the BWP or the PDSCH
  • the occupied resource parts do not overlap at all, or there is no fixed relationship between the common control resource set and the resources occupied by the BWP or the PDSCH.
  • the resource scheduled by the control information carried by the common control resource set is located in a resource occupied by the BWP or the PDSCH.
  • the first type of node indicating the frequency domain location of the first resource to the second type of node includes the following manners:
  • the reference point includes a center or a boundary of any one of the following: a physical carrier, a downlink synchronization signal bandwidth, and a downlink synchronization signal block SS block.
  • the first type of node indicating the frequency domain location of the first resource to the second type of node includes the following manners:
  • the reference point includes a center or a boundary of any one of the following: a physical carrier, a downlink synchronization signal bandwidth, and a downlink SS block.
  • the frequency domain location indicating the BWP includes an index indicating the BWP.
  • the determining the frequency domain location of the first resource as the frequency domain location of the configured synchronization signal block SS block includes: configuring, by the first type of node, one or more SS blocks in a system bandwidth, where The frequency domain location of each SS block corresponds to an index; the frequency domain location of the first resource is configured as one of the frequency domain locations of the one or more SS blocks.
  • indicating a frequency domain location of the configured SS block includes: indicating a frequency domain location index of the configured SS block.
  • the first type of node indicating the frequency domain location of the resource to the second type of node includes: the first type of node uses the physical broadcast channel to carry the resource location information; or the first type of node uses the RRC dedicated message.
  • the first type of node is configured to carry the frequency domain location information of the first resource by using a physical broadcast channel, and the frequency domain location information of the second resource is carried by using the RRC dedicated signaling, or the first A frequency domain location of the resource and/or a portion of the frequency domain location information of the second resource is carried over the physical broadcast channel, and another portion carries information using RRC signaling.
  • the RRC dedicated signaling is sent by the node adjacent to the first type of node to the second type of node.
  • the offset in the frequency domain includes at least one of the following: an offset, a left and right offset indication.
  • the offset in the frequency domain is represented by one or more of the following: a relative channel number, a relative channel group number, a relative physical resource block PRB number, a relative PRB group number, and a relative subcarrier number.
  • the frequency domain location of the resource is a central location of the resource in the frequency domain; or the frequency domain location of the resource is a boundary location of the resource in the frequency domain; or the frequency domain location of the resource is in the frequency domain.
  • the frequency location of the resource is the bandwidth of the frequency domain resource;
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention further provides a method for receiving a resource location, which is a flowchart of a method for receiving a resource location according to an embodiment of the present invention. As shown in FIG. 13, the process includes the following steps. :
  • Step S1302 The second type of node receives the resource location information that is sent by the first type of node to indicate the frequency domain location of the resource, where the frequency domain location includes at least one of the following: a frequency domain location of the first resource, and a second resource.
  • the frequency domain location; the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • the first type of the node of the foregoing step may be a base station, such as a Transmit-Receive Point (TRP), a relay node, a macro base station, a micro base station, a pico base station, a home base station, and a radio frequency. Remote access, access point (AP), etc.
  • TRP Transmit-Receive Point
  • AP Remote access, access point
  • Examples of the second type of node are terminals, relay nodes, and the like.
  • the first type of node takes a base station as an example
  • the second type of node takes a terminal as an example, etc., but is not limited thereto.
  • step S1302 the problem that the terminal cannot acquire the resource locations of the BWP, the PDSCH, and the common CORESET(s) in the related art is solved, and the technical effect that the resource location can be effectively obtained is achieved.
  • the frequency domain location of the first resource is a frequency domain location of the configured SS block; and the frequency domain location of the second resource is a frequency domain location of the common control resource set.
  • the frequency domain location of the first resource indicated by the first type of node may also be received by the second type of node, and the frequency domain location of the second resource is determined according to a predefined rule.
  • the foregoing predefined rule is a relationship between a predefined one or more factors and a frequency domain offset, where the factor includes at least one of: a synchronization signal block index, a physical cell identifier, and a system frame. Number, band information.
  • the second type of node receives the resource location information, so as to obtain a frequency domain location of at least one of the first resource and the second resource.
  • the second type of node receives the resource location information, obtains the frequency domain location of the resource of the common CORESET(s), and the frequency domain location of the resource scheduled by the control information of the common CORESET(s), and then combines the foregoing.
  • the time domain location of the foregoing resource is obtained, so as to obtain the control information carried by the Common CORESET.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product stored in a storage medium (such as ROM/RAM, disk).
  • the optical disc includes a plurality of instructions for causing a terminal device (which may be a mobile phone, a computer, a server, or a network device, etc.) to perform the method described in various embodiments of the present invention.
  • the embodiment of the present invention further provides a device for receiving a resource location, which is used to implement the foregoing embodiments and preferred embodiments, and details are not described herein.
  • the term "module” may implement a combination of software and/or hardware of a predetermined function.
  • the devices described in the following embodiments are preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 14 is a structural block diagram of a device for receiving a resource location according to an embodiment of the present invention.
  • the device is applied to a terminal. As shown in FIG. 14, the device includes:
  • the receiving module 142 is configured to receive resource location information that is sent by the first type of node to indicate a frequency domain location of the resource;
  • the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: a bandwidth part BWP, and a physical downlink sharing The resources occupied by the channel PDSCH, the common control resource set.
  • the device shown in FIG. 14 solves the problem that the terminal cannot acquire the resource locations of the BWP, the PDSCH, and the common CORESET(s) in the related art, and achieves the technical effect that the resource location can be effectively obtained.
  • the frequency domain location of the first resource is a frequency domain location of the configured synchronization signal block SS block; the frequency domain location of the second resource is a frequency domain location of the common control resource set.
  • the frequency domain location of the first resource indicated by the first type of node may also be received by the second type of node, and the frequency domain location of the second resource is determined according to a predefined rule.
  • the foregoing predefined rule is a relationship between a predefined one or more factors and a frequency domain offset, where the factor includes at least one of: a synchronization signal block index, a physical cell identifier, and a system frame. Number, band information.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the indication method of the resource location provided by the embodiment of the present invention.
  • the above storage medium may be configured to store program code for performing the following steps:
  • the first type of node sends resource location information to the second type of node, where the resource location information is configured to at least indicate a frequency domain location of the resource, where the frequency domain location includes at least one of: a frequency domain location of the first resource And a frequency domain location of the second resource; the first resource or the second resource includes at least one of the following: a bandwidth part BWP, a resource occupied by the physical downlink shared channel PDSCH, and a common control resource set.
  • the embodiment of the present invention further provides a storage medium, where the storage medium includes a stored program, where the program is executed to execute the method for receiving a resource location provided by the embodiment of the present invention.
  • the storage medium is also arranged to store program code for performing the following steps:
  • the second type of node receives the resource location information that is sent by the first type of node to indicate the frequency domain location of the resource.
  • the frequency domain location includes at least one of the following: a frequency domain location of the first resource, and a second resource a frequency domain location; the first resource or the second resource includes at least one of the following: a bandwidth part BWP, a resource occupied by a physical downlink shared channel PDSCH, and a common control resource set.
  • the foregoing storage medium may include, but not limited to, a U disk, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, a magnetic disk, or an optical disk, and the like. Medium.
  • the embodiment of the present invention further provides a processor configured to run a program, where the program is executed to execute the indication method of the resource location provided by the embodiment of the present invention.
  • the first type of node sends the resource location information to the second type of node, where the resource location information is used to indicate at least the frequency domain location of the resource.
  • the frequency domain location includes at least one of the following: a frequency domain location of the first resource.
  • a frequency domain location of the second resource the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • the embodiment of the present invention further provides a processor configured to run a program, wherein the program is executed to perform a method for receiving a resource location provided by an embodiment of the present invention.
  • the second type of node receives the resource location information that is sent by the first type of node to indicate the frequency domain location of the resource.
  • the frequency domain location includes at least one of the following: a frequency domain location of the first resource, and a second resource a frequency domain location; the first resource or the second resource includes at least one of the following: a bandwidth part BWP, a resource occupied by a physical downlink shared channel PDSCH, and a common control resource set.
  • the embodiment of the present invention further provides a base station.
  • the base station includes: a processor 150 and a memory 152 storing processor-executable instructions.
  • the instruction is executed by the processor, the following operations are performed:
  • the second type of node sends the resource location information, where the resource location information is used to indicate the frequency domain location of the resource, where the frequency domain location includes at least one of: a frequency domain location of the first resource, and a frequency domain location of the second resource;
  • the first resource or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • the embodiment of the present invention further provides a terminal.
  • the terminal includes: a processor 160 and a memory 162 storing processor executable instructions.
  • the instruction When the instruction is executed by the processor, the following operations are performed: receiving the first Resource location information for indicating a frequency domain location of a resource, where the frequency domain location includes at least one of: a frequency domain location of the first resource, a frequency domain location of the second resource, and the first resource Or the second resource includes at least one of the following: a BWP, a resource occupied by the PDSCH, and a public control resource set.
  • modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices.
  • they may be implemented by program code executable by the computing device, such that they may be stored in the storage device for execution by the computing device, and in some cases may be performed in a different order than that illustrated herein.
  • the invention is not limited to any specific combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Warehouses Or Storage Devices (AREA)
  • Automatic Disk Changers (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

本发明公开了一种资源位置的指示方法。其中,该方法包括:第一类节点向第二类节点发送资源位置信息,该资源位置信息至少用于指示资源的频域位置;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。本发明实施例还提供了一种资源位置的指示装置、资源位置的接收方法及装置、终端、基站、处理器及存储介质。

Description

资源位置的指示、接收方法、装置、设备及存储介质
相关申请的交叉引用
本申请基于申请号为201710687231.8、申请日为2017年08月11日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及但不限于通信领域,尤其涉及一种资源位置的指示、接收方法、装置、设备及存储介质。
背景技术
在未来无线通信系统(例如第五代移动通信技术(5G,5th-Generation))中,将会采用比第四代通信系统所采用的载波频率更高的载波频率进行通信,比如28GHz、45GHz等等,5G new无线接入技术(Radio Access Technology,RAT)系统潜在工作频段达到100GHz。由于高频通信对应的载波频率具有更短的波长,所以可以保证单位面积上能容纳更多的天线元素,而更多的天线元素意味着可以采用波束赋形的方法来提高天线增益,从而保证高频通信的覆盖性能。
采用波束赋形的方法后,发射端可以将发射能量集中在某一方向上,而在其它方向上能量很小或者没有,也就是说,每个波束具有自身的方向性,每个波束只能覆盖到一定方向上的终端,发射端即基站需要在几十个甚至上百个方向上发射波束才能完成全方位覆盖。现有技术中,倾向在终端初始接入网络的过程中进行初步波束方向的测量与识别,并集中在一个时间间隔内将基站侧发射波束轮询一遍,供终端测量识别优选的波束或端口。具体的,在一个同步信号发送周期内有多个同步信号块(SS block), 每个SS block内承载特定波束/端口(组)的同步信号,一个同步信号发送周期完成一次波束扫描,即完成所有波束/端口的发送。
在现有技术中,物理载波中心频点(即直流频率)被放置在各个信道号(channel number)对应的频域位置上。相邻信道号之间的频率间隔被称为信道栅格(channel raster)或载波栅格(carrier raster)间隔。终端搜索同步信号的频域步长被称为频率栅格(frequency raster)或终端栅格(UE raster)间隔。在LTE系统中,终端栅格间隔与信道栅格间隔相同,即终端在所有可能的信道号(即信道编号)对应的频域位置上搜索同步信号,图1是现有技术中终端栅格与信道栅格相同的示意图,如图1所示。
在NR中,为了更灵活地进行频谱部署,并降低终端频域搜索的复杂度,工业界提出使用更大的终端栅格间隔,即终端栅格间隔可以大于信道栅格间隔。在这种情况下,同步信号、广播信道或其它相关信号/信道的中心频点很可能与物理载波的中心频点不同。目前标准讨论中已经确定了最小载波带宽以及同步带宽,这就意味着确定了终端栅格间隔的最大值,而且终端栅格间隔的最小值大于或等于信道栅格间隔。如果终端栅格间隔取中间的某个值,由于NR系统带宽通常较大,因此一个物理载波带宽在频域上可能包含多个SS blocks。
另外,高频通信的工作带宽通常较高,高达几百MHz,为了减小资源调度开销,也为了让小带宽能力的终端能够正常通信,相关技术中可以将未来无线通信系统(New Radio,NR)的物理载波带宽划分成多个带宽部分(Bandwidth part,BWP),在BWP内为终端调度用于数据传输的资源,或者向终端传输广播类的信息。在NR中,公共控制信息承载在公共控制资源集common CORESET(s)中,是非常重要的信息,例如寻呼、部分UE specific的控制信息以及部分广播类型的信息都与公共控制信息有关,common CORESET(s)调度的频谱资源需要在某个BWP或者物理下行共享信道(Physical Downlink Shared Channel,PDSCH)资源内,因此基站如何 指示BWP、PDSCH以及common CORESET(s)的资源位置至关重要。
发明内容
有鉴于此,本发明实施例期望提供一种资源位置的指示、接收方法、装置、设备及存储介质,能够对BWP、PDSCH以及common CORESET(s)的资源位置进行有效的指示。
本发明实施例提供了一种资源位置的指示方法,包括:
第一类节点向第二类节点发送资源位置信息,所述资源位置信息至少配置为指示资源的频域位置;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、物理下行共享信道(Physical Downlink Shared Channel,PDSCH)占用的资源,公共控制资源集。
在一实施例中,所述第一资源的频域位置为配置的同步信号块(Synchronization Signal,SS)block的频域位置;所述第二资源的频域位置为公共控制资源集的频域位置。
在一实施例中,所述公共控制资源集包含在BWP或者PDSCH占用的资源中;或者,所述公共控制资源集与BWP或者PDSCH占用的资源部分交叠;或者,所述公共控制资源集与BWP或者PDSCH占用的资源部分完全不交叠;或者,所述公共控制资源集与BWP或者PDSCH占用的资源之间没有固定的关系。
在一实施例中,所述公共控制资源集承载的控制信息调度的资源位于BWP或者PDSCH占用的资源内。
在一实施例中,所述第一类节点向所述第二类节点指示所述第一资源的频域位置包括:指示所述第一资源相对于参考点的频域上的偏移;或者,指示所述第一资源相对于参考点的频域上的偏移,以及所述第一资源的带宽;其中,所述参考点包括以下任意一项的中心或边界:物理载波、下行 同步信号带宽、下行同步信号块SS block。
在一实施例中,所述第一类节点向所述第二类节点指示所述第二资源的频域位置包括:指示所述第二资源相对于参考点或者所述第一资源的频域上的偏移;或者,指示所述第二资源相对于参考点或者所述第一资源的频域上的偏移,以及第二资源的带宽或者第二资源的带宽与第一资源的带宽间的关系;其中,所述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行同步信号块SS block。
在一实施例中,指示所述BWP的频域位置包括指示所述BWP的索引。
在一实施例中,确定所述第一资源的频域位置为配置的同步信号块SS block的频域位置的方式包括:所述第一类节点在系统带宽内配置一个或者多个SS block,其中,每个SS block的频域位置对应一个索引;将所述第一资源的频域位置配置为所述一个或者多个SS block的频域位置中的一个。
在一实施例中,指示配置的SS block的频域位置包括:指示配置的SS block的频域位置索引。
在一实施例中,所述第一类节点向第二类节点指示资源的频域位置包括:所述第一类节点利用物理广播信道承载所述资源位置信息;或者,所述第一类节点利用无线资源控制(Radio Resource Control,RRC)专用信令承载所述资源位置信息;或者,所述第一类节点利用物理广播信道承载所述第一资源的频域位置信息,利用RRC专用信令承载所述第二资源的频域位置信息,或者,所述第一资源的频域位置和/或所述第二资源的频域位置信息的一部分用物理广播信道承载,另一部分用RRC信令承载信息。
在一实施例中,所述RRC专用信令由与所述第一类节点相邻的节点发送至所述第二类节点。
在一实施例中,所述频域上的偏移包括以下至少之一:偏移量,左右偏移指示。
在一实施例中,所述频域上的偏移量用以下一项或多项来表示:相对 信道编号、相对信道组编号、相对物理资源块(Physical Resource Block,PRB)编号、相对PRB组编号、相对子载波编号。
在一实施例中,所述资源的频域位置为频域上资源的中心位置;或者,所述资源的频域位置为频域上资源的边界位置;或者,所述资源的频域位置为频域上资源的中心位置和频域资源的带宽;或者,所述资源的频域位置为频域上资源的边界位置和频域资源的带宽;或者,所述资源的频域位置为频域资源的带宽。
本发明实施例还提供了一种资源位置的接收方法,包括:第二类节点接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
在一实施例中,所述第一资源的频域位置为配置的SS block的频域位置;所述第二资源的频域位置为公共控制资源集的频域位置。
在一实施例中,所述方法还包括:所述第二类节点接收所述第一类节点指示的第一资源的频域位置,并根据预定义规则确定所述第二资源的频域位置。
在一实施例中,所述预定义规则为预先定义的一个或多个因素和频域偏移量之间的关系,其中,所述因素包括以下至少之一:同步信号块索引、物理小区标识、系统帧号、频带信息。
本发明实施例还提供了一种资源位置的指示装置,应用于第一类节点,包括:发送模块,配置为向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
在一实施例中,所述第一资源的频域位置为配置的SS block的频域位 置;所述第二资源的频域位置为公共控制资源集的频域位置。
本发明实施例还提供了一种资源位置的接收装置,应用于第二类节点,包括:接收模块,配置为接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
在一实施例中,所述第一资源的频域位置为配置的SS block的频域位置;所述第二资源的频域位置为公共控制资源集的频域位置。
本发明实施例还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行本发明实施例的资源位置的指示方法。
本发明实施例还提供了一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行本发明实施例的资源位置的接收方法。
本发明实施例还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行本发明实施例的资源位置的指示方法。
本发明实施例还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行本发明实施例的资源位置的接收方法。
本发明实施例还提供了一种基站,包括:
处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;
其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
本发明实施例还提供了一种终端,包括:
处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:接收第一类节点发送的用于指示资源的频域 位置的资源位置信息;
其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
本发明实施例提供的资源位置的指示、接收方法、装置、设备(终端、基站、处理器)及存储介质,第一类节点向第二类节点发送资源位置信息,该资源位置信息至少用于指示资源的频域位置;其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。也就是说,通过第一类节点向第二类节点发送资源位置信息,以指示资源的频域位置,实现了基站对BWP、PDSCH以及common CORESET(s)的资源位置的有效指示。
附图说明
图1是相关技术中终端栅格与信道栅格相同的示意图;
图2是发明实施例的资源位置的指示方法流程图;
图3是本发明实施例的SS block、BWP以及Common CORESET在NR载波中的频域位置示意图;
图4是本发明实施例SS block、BWP以及Common CORESET在NR载波中的频域位置示意图(一);
图5是本发明实施例的SS block、BWP以及Common CORESET在NR载波中的频域位置示意图(二);
图6是本发明实施例的资源位置的指示方法示意图;
图7是本发明实施例的资源位置的指示方法示意图(一);
图8是本发明实施例的资源位置的指示方法示意图(二);
图9是本发明实施例的资源位置的指示方法示意图(三);
图10是本发明实施例的资源位置的指示方法示意图(四);
图11是本发明实施例的资源位置的指示方法示意图(五);
图12是本发明实施例的资源位置的指示装置的结构框图;
图13是本发明实施例的资源位置的接收方法流程图;
图14是本发明实施例的资源位置的接收装置的结构;
图15是本发明实施例的基站的结构框图;
图16是本发明实施例的终端的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
本实施例提供了一种资源位置的指示方法,图2是根据本发明实施例的资源位置的指示方法流程图,如图2所示,该流程包括如下步骤:
步骤S202,第一类节点向第二类节点发送资源位置信息,该资源位置信息至少用于指示资源的频域位置;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
在一实施例中,上述步骤的执行主体第一类节点可以为基站,如,收发节点(Transmit-Receive point,TRP),中继节点,宏基站,微基站,微微基站,家庭基站,射频拉远,接入节点(Access point,AP)等,第二类节点的例子如终端,中继节点等。在以下实施例中第一类节点以基站为例,第二类节点以终端为例等,但不限于此。
通过上述步骤S202,实现了基站对BWP、PDSCH以及common CORESET(s)的资源位置的有效指示。
在一实施例中,上述第一资源的频域位置为配置的同步信号块SS block的频域位置;该第二资源的频域位置为公共控制资源集的频域位置。
在一实施例中,上述公共控制资源集包含在BWP或者PDSCH占用的资源中;或者,该公共控制资源集与BWP或者PDSCH占用的资源部分交叠;或者,该公共控制资源集与BWP或者PDSCH占用的资源部分完全不交叠;或者,该公共控制资源集与BWP或者PDSCH占用的资源之间没有固定的关系。
在一实施例中,上述公共控制资源集承载的控制信息调度的资源位于BWP或者PDSCH占用的资源内。
在一个在一实施例中实施方式中,上述第一类节点向该第二类节点指示该第一资源的频域位置包括以下方式:
指示该第一资源相对于参考点的频域上的偏移;或者,指示该第一资源相对于参考点的频域上的偏移,以及该第一资源的带宽;
需要说明的是,上述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行SS block。
在一实施例中,上述第一类节点向该第二类节点指示该第一资源的频域位置包括以下方式:
指示该第二资源相对于参考点或者该第一资源的频域上的偏移;或者,指示该第二资源相对于参考点或者该第一资源的频域上的偏移,以及第二资源的带宽或者第二资源的带宽与第一资源的带宽间的关系;
需要说明的是,上述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行同步信号块SS block。
在一实施例中,指示该BWP的频域位置包括指示该BWP的索引。
在一个实施方式中,确定该第一资源的频域位置为配置的SS block的 频域位置的方式包括:该第一类节点在系统带宽内配置一个或者多个SS block,其中,每个SS block的频域位置对应一个索引;将该第一资源的频域位置配置为该一个或者多个SS block的频域位置中的一个。
在一实施例中,指示配置的SS block的频域位置包括:指示配置的SS block的频域位置索引。
在一个实施方式中,上述第一类节点向第二类节点指示资源的频域位置包括:该第一类节点利用物理广播信道承载上述资源位置信息;或者,该第一类节点利用无线资源控制RRC专用承载上述资源位置信息;或者,该第一类节点利用物理广播信道承载该第一资源的频域位置信息,利用RRC专用信令承载该第二资源的频域位置信息,或者,该第一资源的频域位置和/或该第二资源的频域位置信息的一部分用物理广播信道承载,另一部分用RRC信令承载信息。
在一实施例中,上述RRC专用信令由与该第一类节点相邻的节点发送至该第二类节点。
在一实施例中,上述频域上的偏移包括以下至少之一:偏移量,左右偏移指示。
在一实施例中,上述频域上的偏移量用以下一项或多项来表示:相对信道编号、相对信道组编号、相对物理资源块PRB编号、相对PRB组编号、相对子载波编号。
在一个实施方式中,该资源的频域位置为频域上资源的中心位置;或者,该资源的频域位置为频域上资源的边界位置;或者,该资源的频域位置为频域上资源的中心位置和频域资源的带宽;或者,该资源的频域位置为频域上资源的边界位置和频域资源的带宽;或者,该资源的频域位置为频域资源的带宽。
下面结合具体示例,对本实施例进行举例说明。
需要说明的是,在下述可选实施例中,相对信道(组)/PRB(组)/子 载波编号:一般地A相对于B的相对信道(组)/PRB(组)/子载波编号指A所在的频域位置与B所在的频域位置相差的信道栅格(组)数/PRB(组)数/子载波数。
A相对于B频域上的左右偏移:A所在的频域位置高于B所在的频域位置时是右偏移,A所在的频域位置低于B所在的频域位置时是左偏移。
可选实施例1
本可选实施例描述利用相对于参考点的频域上的偏移指示第一和第二资源的频域位置。
如图3给出了SS block、BWP以及Common CORESET在NR载波中的频域位置,其中,n为SS block的中心频点对应的信道编号,m为BWP的中心频点对应的信道编号,m+k为Common CORESET中心频点对应的信道编号。
在一实施例中,基站可以利用Common CORESET承载的物理下行控制信道调度BWP或者调度BWP资源的一部分,第一资源以BWP为例,第二资源以Common CORESET为例,参考点以SS block的中心为例。在本实施例中基站向终端指示BWP和Common CORESET的中心频点相对于SS block中心频点的偏移和以及BWP和Common CORESET的带宽,具体指示的内容包括相对信道编号、左右偏移指示和带宽,如表1所示,其中相对信道编号就是BWP或者Common CORESET的中心频点所在的频域位置与SS block的中心频点所在的频域位置相差的信道栅格数,左右偏移指示就是BWP或者Common CORESET的中心频点相对于SS block的中心频点是左偏移还是右偏移的指示,BWP或者Common CORESET的中心频点高于SS block的中心频点时是右偏移,BWP或者Common CORESET的中心频点低于SS block的中心频点时是左偏移。
表1
Figure PCTCN2018098377-appb-000001
在一实施例中,基站可以利用物理广播信道或者RRC专用信令向终端发送BWP和Common CORESET的中心频点相对于SS block中心频点的偏移量、左右偏移指示以及BWP和Common CORESET的带宽等信息,或者,一部分利用物理广播信道,一部分利用RRC专用信令向终端发送BWP和Common CORESET的中心频点相对于SS block中心频点的偏移量、左右偏移指示以及BWP和Common CORESET的带宽等信息。
在一实施例中,所述RRC专用信令也可以由相邻基站发送给终端。
用相对信道编号来表示BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移仅仅是一个示例。如果BWP或者Common CORESET的中心频点与SS block的中心频点之间的频率差不是信道栅格的整数倍,则仅仅用相对信道编号无法准确表示BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移,这时需要考虑其它的方法。
BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移还可以用BWP或者Common CORESET的中心频点相对于SS block的中心频点的相对子载波编号来表示,其中相对子载波编号指BWP或者Common CORESET的中心频点所在频域位置与SS block的中心频点所在的频域位置相差的子载波数,BWP或者Common CORESET的中心频点高于 SS block的中心频点时是右偏移,BWP或者Common CORESET的中心频点低于SS block的中心频点时是左偏移。比如BWP的中心频点所在的频域高于SS block的中心频点所在的频率(子载波按照由低频到高频递增的顺序编号),且两者相差K个子载波波,则BWP的中心频点相对于SS block的中心频点的偏移为相对子载波编号为K,且为右偏移;或者,
用BWP或者Common CORESET的中心频点相对于SS block的中心频点的相对PRB编号来表示;或者,
用BWP或者Common CORESET的中心频点相对于SS block的中心频点的相对PRB编号,以及BWP或者Common CORESET的中心频点相对于相对PRB编号对应的频域位置的相对子载波编号来表示;或者,
用BWP或者Common CORESET的中心频点相对于SS block的中心频点的相对信道编号以及BWP或者Common CORESET的中心频点相对于相对信道编号对应的频域位置的相对子载波编号来表示;或者,
用BWP或者Common CORESET的中心频点相对于SS block的中心频点的相对信道编号以及BWP或者Common CORESET的中心频点相对于相对信道编号对应的频域位置的相对PRB编号来表示;或者,
用BWP或者Common CORESET的中心频点相对于SS block的中心频点相对信道编号以及BWP或者Common CORESET的中心频点相对于相对信道编号对应的频域位置的相对PRB编号,以及BWP或者Common CORESET的中心频点相对于相对PRB编号对应的频域位置的相对子载波编号来表示。
对于第一资源和第二资源的带宽不限于表1中的指示方式,也可以预定义N1种带宽,则只需用log2(N1)比特信息就可以表示某个资源的带宽,比如4种带宽:100个RB,50RB,30个RB,20个RB。则只需用2比特信息就可以表示某个资源的带宽。
如果BWP的带宽是固定的,比如50个RB,则基站无需向终端指示 BWP的带宽。同样地,如果Common CORESET的带宽是固定的,比如20个RB,则基站无需向终端指示Common CORESET的带宽。也就是说基站只需向终端指示BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移就可以了。
另外,如果BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移是固定的,例如偏移量和左右偏移是固定的,则基站只需向终端指示带宽的大小,如果仅仅偏移量固定,则只需指示是左偏移还是右偏移,以及带宽的大小。
另外,BWP或者Common CORESET的位置也可以用BWP或者Common CORESET的边界(例如左边界,即起始频域位置,或者右边界,即终止频域位置)相对于SS block的中心频点的偏移来指示,可以用相对于参考点偏移的RB数来表示,例如偏移0个RB表示与SS block中心频点位置重合,指示方法与用BWP或者Common CORESET的中心频点相对于SS block的中心频点的偏移的指示方法类似。
在一实施例中,可以利用1比特的左右偏移指示以及资源指示值(Resource Indication Value,RIV),来指示BWP或者Common CORESET的中心或者边界(例如左边界,即起始频域位置,或者右边界,即终止频域位置)相对于SS block的中心频点的偏移量和BWP的带宽或者Common CORESET的带宽。
所述RB的带宽可以是根据SS block采用的子载波间隔确定的,也可以是PBCH或者最小系统信息(RMSI)或者RRC专用信令通知的子载波间隔确定的。一个RB在频域上包含12个子载波。
另外需要说明的是:如下两种情况基站向终端指示资源的方式与上述实施例类似:1)第一资源是下行业务信道PDSCH占用的资源,第二资源是Common CORESET;2)第一资源是Common CORESET,第二资源是BWP或者下行业务信道PDSCH占用的资源。
上述实施例中,参考点以SS block的中心频点为例进行说明,参考点为NR载波的中心或者边界、下行同步信号带宽的中心或者边界、SS block边界时可以采用类似的方式指示BWP或者Common CORESET的中心频点相对于参考点的偏移。例如参考点为SS block的右边界时,表2给出了BWP和Common CORESET的中心频点相对SS block的右边界频点的偏移和带宽。
表2
Figure PCTCN2018098377-appb-000002
综上,BWP或者Common CORESET的位置是中心频点、边界中任意一个,参考点是NR载波的中心或者边界、下行同步信号带宽的中心或者边界、SS block的中心或者边界中任意一个时,都可以采用上述实施例类似的方法来指示BWP或者Common CORESET的频域位置。
可选实施例2
本可选实施例描述利用相对于参考点的频域上的偏移指示第一资源的频域位置,利用相对于第一资源的频域上的偏移指示第二资源的频域位置。
如图4给出了SS block、PDSCH以及Common CORESET在NR载波中的频域位置,其中,k1、k2和k3分别为SS block、PDSCH以及Common CORESET的中心频点对应的子载波编号,基站可以利用Common CORESET承载的PDCCH调度PDSCH占用的资源。第一资源以PDSCH 占用的资源为例,第二资源以Common CORESET为例,参考点以SS block的中心为例。在本实施例中基站向终端指示PDSCH的中心频点相对于SS block中心频点的偏移和PDSCH的带宽,以及Common CORESET的中心频点相对于PDSCH的中心频点的偏移和Common CORESET的带宽,具体指示的内容包括相对子载波编号、左右偏移指示和带宽,如表3所示。
其中,PDSCH的中心频点相对于SS block的中心频点的相对子载波编号指PDSCH的中心频点所在频域位置与SS block的中心频点所在的频域位置相差的子载波数,PDSCH的中心频点高于SS block的中心频点时是右偏移,PDSCH的中心频点低于SS block的中心频点时是左偏移。
其中,Common CORESET的中心频点相对于PDSCH的中心频点的相对子载波编号指Common CORESET的中心频点所在频域位置与PDSCH的中心频点所在的频域位置相差的子载波数,Common CORESET的中心频点高于PDSCH的中心频点时是右偏移,Common CORESET的中心频点低于PDSCH的中心频点时是左偏移。
表3
Figure PCTCN2018098377-appb-000003
对于第一资源是Common CORESET、第二资源是PDSCH占用的资源的情况,可以采用类似的方式来指示。具体地,基站向终端指示Common CORESET的中心频点相对于SS block中心频点的偏移和Common  CORESET的带宽,以及PDSCH的中心频点相对于Common CORESET的中心频点的偏移和PDSCH的带宽,具体指示的内容包括相对子载波编号、左右偏移指示和带宽,如表4所示。需要注意的是由于PDSCH的中心频点低于Common CORESET的中心频点,因此指示PDSCH的中心频点相对于Common CORESET的中心频点的偏移时,左右偏移指示为0,即PDSCH的中心频点相对于Common CORESET的中心频点是左偏移。
表4
Figure PCTCN2018098377-appb-000004
如果PDSCH的带宽是固定的,比如50个RB。则基站无需向终端指示PDSCH的带宽。同样地,如果Common CORESET的带宽是固定的,比如20个RB。则基站无需向终端指示Common CORESET的带宽。
基站可以利用物理广播信道或者RRC专用信令向终端通知PDSCH、Common CORESET的频域位置,或者,利用物理广播信道通知PDSCH占用的资源的频域位置,利用RRC专用信令通知Common CORESET的频域位置,或者,利用物理广播信道通知Common CORESET的频域位置,利用RRC专用信令通知PDSCH专用的资源的频域位置。其中所述RRC专用信令也可以由相邻基站发送给终端。
可选实施例3
本可选实施例描述利用相对于参考点的频域上的偏移指示第一资源的 频域位置,第二类节点根据预定义规则计算第二资源的频域位置。
如图5给出了SS block、BWP以及Common CORESET在NR载波中的频域位置。第一资源以BWP为例,第二资源以Common CORESET为例,参考点以SS block的中心为例。在本实施例中基站向终端指示BWP的中心频点相对于SS block中心频点的偏移和BWP的带宽,Common CORESET的带宽,具体指示的内容包括相对子载波编号、左右偏移指示和带宽,如表5所示,其中-表示所述项不存在。
其中,BWP的中心频点相对于SS block的中心频点的相对子载波编号指BWP的中心频点所在频域位置与SS block的中心频点所在的频域位置相差的子载波数,BWP的中心频点高于SS block的中心频点时是右偏移,PDSCH的中心频点低于SS block的中心频点时是左偏移。
终端根据预定义规则计算Common CORESET的中心频点相对于BWP的中心频点的偏移。
所述预定义规则定义了一个或多个因素和Common CORESET的中心频点相对于参考点或者BWP的中心频点的偏移量之间的关系,所述因素包括如下至少一项:同步信号块索引、物理小区标识、系统帧号、频带信息。
所述预定义规则可以是一个默认频域偏移量,例如偏移4个RB;也可以根据定时信息、物理小区标识、频带信息中任意一项或多项来定义,具体地例如:SS block index,物理小区标识Cell ID,系统帧号(System Frame Number,SFN),频带范围等。其中SS block index是终端完成下行同步时同步信号所在的SS block的Index,SFN是终端完成下行同步时同步信号所在的无线帧的编号。频带范围是提前划分好的,每个频带范围对应唯一一个频带范围标识。确定预定义规则的原则是根据不同的SS block index(组)、物理小区标识Cell ID(组)、系统帧号SFN(组)、频带范围(组)计算的Common CORESET的中心频点相对于BWP的中心频点的偏移尽可能不同,以减小使用Common CORESET传输信息时相邻小区间的相互干扰。
例如,预定义规则可以是SS block index N2对应Common CORESET的中心频点相对于BWP的中心频点偏移N2个RB;或者,
SS block index N2对应Common CORESET的中心频点相对于BWP的中心频点偏移K*floor(N2/M)个RB,其中floor表示下取整;或者,
SS block index N2对应Common CORESET的中心频点相对于BWP的中心频点偏移K*mod(N2,M)个RB,其中mod是取模运算;或者,
也可以采用类似的方式,根据物理小区标识Cell ID,SFN,频带范围确定预定义规则。
例如,预定义规则是偏移K*floor(X/M)或者K*mod(X,M)个RB,其中X可以是Cell ID,SFN,频带范围标识。
预定义规则也可以是上述各种方式的组合,例如偏移K*floor(N2/M)+L*mod(Cell ID,M)个RB。
在上述公式中,N2和X是非负整数,K和L是正整数,M是大于1的整数。
例如以终端成功完成下行同步的同步信号所在的SS block index为2为例,按照预定义规则SS block index N2对应Common CORESET的中心频点相对于BWP的中心频点偏移N2个RB,则Common CORESET的中心频点相对于BWP的中心频点偏移2个RB,然后再根据左右偏移指示1和Common CORESET的带宽为20个RB,就可以知道Common CORESET的频域位置。
上述偏移量以RB为单位仅仅是举例,实际偏移量不限于RB,可以是任何能够度量频率的单位,例如Y kHz/MHz,RB组,子载波,子载波组,信道栅格,信道栅格组等。
如下几种情况基站向终端指示资源的方式与上述实施例类似:1)第一资源是Common CORESET,第二资源是BWP;2)第一资源是Common CORESET,第二资源是下行业务信道PDSCH占用的资源;3)第一资源是 下行业务信道PDSCH占用的资源,第二资源是Common CORESET。主要思想都是第一资源是相对于参考点指示的频域上的偏移,第二资源是相对于第一资源且由终端根据预定义规则计算的频域上的偏移。
表5
Figure PCTCN2018098377-appb-000005
可选实施例4
本可选实施例描述通过指示BWP索引来指示BWP的频域位置。
基站将系统带宽(即物理载波的带宽)均匀划分若干个BWP,如图6所示基站将物理载波划分成4个BWP,对应索引分别为0,1,2,3。假设终端已经知道了物理载波的中心频点以及系统带宽内BWP的划分方式,则基站可以利用2比特信息,直接向终端指示BWP的索引,例如直接向终端指示BWP的索引为3,终端根据物理载波的中心频率和带宽以及BWP的划分方式就可以获得BWP3的频域位置,就可以知道Common CORESET承载的控制信息调度的资源位于BWP3内。这样做的好处是与指示BWP3相对参考点的偏移以及带宽相比大大地降低了指示BWP3频域位置的开销。
另外,基站可以通过上述各实施例中的方法指示Common CORESET的频域位置,这里就不在赘述。
基站可以利用RRC专用信令向终端指示BWP索引、Common  CORESET的频域位置,或者,利用物理广播信道通知BWP索引,利用RRC专用信令通知Common CORESET的频域位置,或者,利用物理广播信道通知Common CORESET的频域位置,利用RRC专用信令通知BWP索引。
可选实施例5
本可选实施例描述利用指示配置的SS block的频域位置索引,以及指示Common CORESET相对配置的SS block的频域位置的偏移,来指示资源的频域位置。
基站在系统带宽内配置一个或者多个SS block,每个SS block的频域位置对应一个索引,如图7所示,基站在系统带宽内配置了两个SS block,对应索引分别为0,1,假设终端已经知道了每个SS block的频域位置,以及它所在的BWP和BWP的带宽。则基站可以利用1比特信息,直接向终端指示配置的SS block的频域位置索引,终端根据SS block的配置信息就可以获得配置的SS block的频域位置,就可以知道Common CORESET承载的控制信息调度的资源位于BWP2内。这样做的好处是与指示BWP2相对参考点的偏移以及带宽相比大大地降低了指示BWP2频域位置的开销。
然后基站向终端指示Common CORESET的中心频点或者边界相对配置的SS block的中心频点或者边界的偏移,以及Common CORESET的带宽,以便终端获取Common CORESET资源的频域位置,终端再根据Common CORESET调度的资源所在的BWP(即BWP2)以及用其他方法获取的Common CORESET资源的时域位置,就可以成功地获得Common CORESET携带的信息。
可选实施例6
本可选实施例描述了利用Common CORESET资源的带宽与BWP或者PDSCH的资源的带宽的关系联合指示Common CORESET、BWP和PDSCH的带宽的方法。
如果第一资源的带宽和第二资源的带宽有固定的关系,则可以联合指 示第一资源和第二资源的带宽。假设第一资源的带宽和第二资源的带宽有多种固定关系,可以指示其中一个资源的带宽,以及指示两个资源的带宽属于哪种关系。
例如第一资源为BWP,第二资源为Common CORESET,则第一资源的带宽和第二资源的带宽有2种关系:1)第二资源的带宽与第一资源的带宽相同;2)第二资源的带宽是第一资源的带宽的一半。基站只需指示第一资源的带宽,以及第一资源的带宽和第二资源的带宽间的关系是第一种或者第二种即可,而不必分别指示两个资源的带宽,从而节省指示的资源开销,尤其是带宽较大时。
可选实施例7
本可选实施例以指示BWP的频域位置为例,描述了指示资源的频域位置的具体实现方法。
可以利用1比特的左右偏移指示以及资源指示值RIV,来指示BWP的边界或者中心相对于参考点的偏移和BWP的带宽,包括以下几种情况:
1)BWP的带宽是固定的,也就是说BWP的带宽对于基站和终端是事先知道的,则RIV占用的比特数由BWP左边界或者右边界或者中心相对于参考点的最大偏移量确定,即由表示最大偏移量需要的比特数来确定,RIV的取值等于BWP的左边界或者右边界或者中心相对于参考点的偏移量。例如,最大偏移量为31个RB,BWP中心相对于参考点的偏移量为12个RB,因为表示最大偏移量至少需要5比特信息,因此RIV占用的比特数为5,RIV=12,用二进制表示RIV=01100。
2)BWP的带宽不是固定的,且参考点在BWP的外面,指示方法:当BWP位于参考点的右侧时,指示BWP的左边界以及带宽;当BWP位于参考点的左侧时,指示BWP的右边界以及带宽,具体地,BWP的边界相对于参考点的最大偏移量为物理载波带宽或者固定值,基站根据BWP的边界相对于参考点的偏移量、BWP的带宽确定RIV值,将RIV值发送给终端, 然后终端根据收到的RIV值反计算出BWP的边界相对于参考点的偏移量以及带宽,再根据获取的左右偏移指示,从而获得BWP的边界位置以及带宽。假设最大偏移量为物理载波带宽,用N个RB表示。用L表示BWP的带宽为L个RB,用S表示BWP的边界相对于参考点的偏移量为S个RB,BWP的左边界位于参考点的右侧,如图8所示;BWP的右边界位于参考点的左侧,如图9所示。则RIV占用的比特数为
Figure PCTCN2018098377-appb-000006
RIV的取值为:
如果
Figure PCTCN2018098377-appb-000007
则RIV=N(L-1)+S          公式1
否则RIV=N(N-L+1)+N-1-S                公式2
终端接收到RIV后先计算
Figure PCTCN2018098377-appb-000008
的值。
对于公式1,
Figure PCTCN2018098377-appb-000009
对于公式2,
Figure PCTCN2018098377-appb-000010
其中%表示取余运算,由于L+S≤N(否则BWP就会超出物理载波的带宽范围),因此对于公式1,
Figure PCTCN2018098377-appb-000011
而对于公式2,
Figure PCTCN2018098377-appb-000012
因此终端根据
Figure PCTCN2018098377-appb-000013
的值与N的大小关系就可以知道RIV的计算采用的是公式1还是公式2。
如果采用的是公式1,则
Figure PCTCN2018098377-appb-000014
S=RIV%N;如果采用的是公式2,则
Figure PCTCN2018098377-appb-000015
S=N-1-RIV%N。终端获得了S和L的值,也就获得了BWP的边界相对于参考点的偏移量和带宽,再加上左右偏移指示,从而确定是左边界还是右边界,从而获得了BWP的频域位置,即BWP的边界位置和带宽。
3)BWP的带宽不是固定的,指示BWP的中心频点位置以及带宽,包括:BWP的中心频点相对于参考点的偏移量以及左右偏移指示,BWP的带宽。具体方法如下:协议预先确定BWP的中心频点相对于参考点的最大偏 移量N,基站根据BWP的中心频点相对于参考点的偏移量、BWP的带宽确定RIV值,然后终端根据收到的RIV值反计算出BWP的中心频点相对于参考点的偏移量以及带宽,再根据获取的左右偏移指示,从而获得BWP的中心频点位置以及带宽。假设最大偏移量为物理载波带宽,用N表示物理载波的带宽为N个RB,用2L表示BWP的带宽为2L个RB(也就是说带宽为偶数个RB),即BWP带宽的一半为L个RB,用S表示BWP的中心频点相对于参考点的偏移量为S个RB,BWP的中心频点位于参考点的右侧,如图10所示;BWP的中心频点位于参考点的左侧,如图11所示。则RIV占用的比特数为
Figure PCTCN2018098377-appb-000016
RIV的取值为:
RIV=N(L-1)+S              公式5
终端收到RIV后,计算L和S的值,即
Figure PCTCN2018098377-appb-000017
S=RIV%N;因此终端根据RIV就可以获得BWP的带宽为
Figure PCTCN2018098377-appb-000018
偏移量为S=RIV%N,终端获得了S和2L的值,也就获得了BWP的中心频点相对于参考点的偏移量和带宽,再加上左右偏移指示,从而获得了BWP的频域位置。
在实现时,根据实际情况选择对应的方法。
在上述所有实施例中,基站还需要向终端指示Common CORESET的时域位置,以便终端快速接收Common CORESET所承载的信息。所述Common CORESET的时域位置可用其他方法指示,例如,如果Common CORESET是周期发送的,则可以指示发送周期,周期的起始位置所在的无线帧,以及每个发送周期内Common CORESET的起始位置以及持续正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号数。如果是Common CORESET是非周期发送的,则可以指示Common CORESET相对于某个参考位置的时域偏移(例如延迟n个OFDM符号), 以及持续OFDM符号数。
本实施例给出了一种指示资源位置的方法,包括:第一类节点向第二类节点指示资源的频域位置,包括以下至少一项:指示第一资源的频域位置,指示第二资源的频域位置。其中,第一资源指BWP或者PDSCH占用的资源,第二资源指common CORESET(s)的资源。或者,第一资源指common CORESET(s)的资源,第二资源指BWP或者PDSCH占用的资源,使得基站能够向终端指示BWP、PDSCH以及common CORESET(s)的资源位置,解决了相关技术中基站无法指示BWP、PDSCH以及common CORESET(s)的资源位置的问题。另外,第二资源的频域位置由终端根据预定义则计算,减小了指示开销,且在一定程度上能够减小使用指示的资源传输信息时相邻小区间的相互干扰。另外,联合指示资源带宽的方法也可以降低资源指示的开销。
上述各个实施例中的技术特征,在不冲突的情况下,可以组合在一个实施例中使用。每个实施例仅仅是本申请的最优实施方式。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如随机存取存储器(RAM,Random Access Memory)/只读存储器(ROM,Read-Only Memory)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明实施例还提供了一种资源位置的指示装置,该装置用于实现上述各个方法实施例,已经进行过说明的不再赘述。如以下所使用的,术语 “模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图12是根据本发明实施例的资源位置的指示装置的结构框图,应用于基站,如图12所示,该装置包括:
1)发送模块122,配置为向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;
其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
通过图12所示的装置,解决了相关技术中基站无法指示BWP、PDSCH以及common CORESET(s)的资源位置的问题,达到了可以对资源位置进行有效指示的技术效果。
在一实施例中,所述第一资源的频域位置为配置的同步信号块SS block的频域位置;所述第二资源的频域位置为公共控制资源集的频域位置。
在一实施例中,上述第一资源的频域位置为配置的SS block的频域位置;该第二资源的频域位置为公共控制资源集的频域位置。
在一实施例中,上述公共控制资源集包含在BWP或者PDSCH占用的资源中;或者,该公共控制资源集与BWP或者PDSCH占用的资源部分交叠;或者,该公共控制资源集与BWP或者PDSCH占用的资源部分完全不交叠,或者,该公共控制资源集与BWP或者PDSCH占用的资源之间没有固定的关系。
在一实施例中,上述公共控制资源集承载的控制信息调度的资源位于BWP或者PDSCH占用的资源内。
在一个实施方式中,上述第一类节点向该第二类节点指示该第一资源的频域位置包括以下方式:
指示该第一资源相对于参考点的频域上的偏移;或者,指示该第一资源相对于参考点的频域上的偏移,以及该第一资源的带宽。
需要说明的是,上述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行同步信号块SS block。
在一个实施方式中,上述第一类节点向该第二类节点指示该第一资源的频域位置包括以下方式:
指示该第二资源相对于参考点或者该第一资源的频域上的偏移;或者,指示该第二资源相对于参考点或者该第一资源的频域上的偏移,以及第二资源的带宽或者第二资源的带宽与第一资源的带宽间的关系。
需要说明的是,上述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行SS block。
在一实施例中,指示该BWP的频域位置包括指示该BWP的索引。
在一个实施方式中,确定该第一资源的频域位置为配置的同步信号块SS block的频域位置的方式包括:该第一类节点在系统带宽内配置一个或者多个SS block,其中,每个SS block的频域位置对应一个索引;将该第一资源的频域位置配置为该一个或者多个SS block的频域位置中的一个。
在一实施例中,指示配置的SS block的频域位置包括:指示配置的SS block的频域位置索引。
在一个实施方式中,上述第一类节点向第二类节点指示资源的频域位置包括:该第一类节点利用物理广播信道承载上述资源位置信息;或者,该第一类节点利用RRC专用信令承载上述资源位置信息;或者,该第一类节点利用物理广播信道承载上述第一资源的频域位置信息,利用RRC专用信令承载上述第二资源的频域位置信息,或者,该第一资源的频域位置和/或该第二资源的频域位置信息的一部分用物理广播信道承载,另一部分用RRC信令承载信息。
在一实施例中,上述RRC专用信令由与该第一类节点相邻的节点发送 至该第二类节点。
在一实施例中,上述频域上的偏移包括以下至少之一:偏移量,左右偏移指示。
在一实施例中,上述频域上的偏移量用以下一项或多项来表示:相对信道编号、相对信道组编号、相对物理资源块PRB编号、相对PRB组编号、相对子载波编号。
在一个实施方式中,该资源的频域位置为频域上资源的中心位置;或者,该资源的频域位置为频域上资源的边界位置;或者,该资源的频域位置为频域上资源的中心位置和频域资源的带宽;或者,该资源的频域位置为频域上资源的边界位置和频域资源的带宽;或者,该资源的频域位置为频域资源的带宽。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明实施例还提供了一种资源位置的接收方法,与图2所示的方案对应,是根据本发明实施例的资源位置的接收方法流程图,如图13所示,该流程包括如下步骤:
步骤S1302,第二类节点接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
在一实施例中,上述步骤的执行主体第一类节点可以为基站,具体如,收发节点(Transmit-Receive point,TRP),中继节点,宏基站,微基站,微微基站,家庭基站,射频拉远,接入节点(Access point,AP)等,第二类节点的例子如终端,中继节点等。在以下实施例中第一类节点以基站为例, 第二类节点以终端为例等,但不限于此。
通过上述步骤S1302,解决了相关技术中终端无法获取BWP、PDSCH以及common CORESET(s)的资源位置的问题,达到了可以有效获取资源位置的技术效果。
在一实施例中,上述第一资源的频域位置为配置的SS block的频域位置;上述第二资源的频域位置为公共控制资源集的频域位置。
在一个实施方式中,也可以通过第二类节点接收该第一类节点指示的第一资源的频域位置,并根据预定义规则确定该第二资源的频域位置。
需要说明的是,上述预定义规则为预先定义的一个或多个因素和频域偏移量之间的关系,其中,该因素包括以下至少之一:同步信号块索引、物理小区标识、系统帧号、频带信息。
在一实施例中,第二类节点接收到上述资源位置信息,从而获取第一资源、第二资源至少之一的频域位置。
在一实施例中,第二类节点接收到上述资源位置信息,获取common CORESET(s)的资源的频域位置以及common CORESET(s)的控制信息调度的资源的频域位置,再结合上述可选实施方式中获取上述资源的时域位置,从而获取Common CORESET所承载的控制信息。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对相关技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
本发明实施例还提供了一种资源位置的接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图14是根据本发明实施例的资源位置的接收装置的结构框图,应用于终端,如图14所示,该装置包括:
1)接收模块142,配置为接收第一类节点发送的用于指示资源的频域位置的资源位置信息;
其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
通过图14所示的装置,解决了相关技术中终端无法获取BWP、PDSCH以及common CORESET(s)的资源位置的问题,达到了可以有效获取资源位置的技术效果。
在一实施例中,该第一资源的频域位置为配置的同步信号块SS block的频域位置;该第二资源的频域位置为公共控制资源集的频域位置。
在一个实施方式中,也可以通过第二类节点接收该第一类节点指示的第一资源的频域位置,并根据预定义规则确定该第二资源的频域位置。
需要说明的是,上述预定义规则为预先定义的一个或多个因素和频域偏移量之间的关系,其中,该因素包括以下至少之一:同步信号块索引、物理小区标识、系统帧号、频带信息。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
本发明实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行本发明实施例提供的资源位置的指示方法。
相应的,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,第一类节点向第二类节点发送资源位置信息,所述资源位置信息至少配置为指示资源的频域位置;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
本发明实施例还提供了一种存储介质,该存储介质包括存储的程序,其中,上述程序运行时执行本发明实施例提供的资源位置的接收方法。
相应的,存储介质还被设置为存储用于执行以下步骤的程序代码:
S2,第二类节点接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
上述存储介质可以包括但不限于:U盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
本发明的实施例还提供了一种处理器,该处理器配置为运行程序,其中,该程序运行时执行本发明实施例提供的资源位置的指示方法。
相应的,上述程序用于执行以下步骤:
S1,第一类节点向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
本发明的实施例还提供了一种处理器,该处理器配置为运行程序,其中,该程序运行时执行本发明实施例提供的资源位置的接收方法。
相应的,上述程序用于执行以下步骤:
S2,第二类节点接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
本发明实施例还提供了一种基站,如图15所示,该基站包括:处理器150以及存储有处理器可执行指令的存储器152,当指令被处理器执行时,执行如下操作:向第二类节点发送资源位置信息,该资源位置信息至少用于指示资源的频域位置;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
本发明实施例还提供了一种终端,如图16所示,该终端包括:处理器160以及存储有处理器可执行指令的存储器162,当指令被处理器执行时,执行如下操作:接收第一类节点发送的用于指示资源的频域位置的资源位置信息;其中,该频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;该第一资源或该第二资源包括以下至少之一:BWP、PDSCH占用的资源,公共控制资源集。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤 制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (28)

  1. 一种资源位置的指示方法,包括:
    第一类节点向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
  2. 根据权利要求1所述的方法,其中,
    所述第一资源的频域位置为配置的同步信号块SS block的频域位置;
    所述第二资源的频域位置为公共控制资源集的频域位置。
  3. 根据权利要求1所述的方法,其中,
    所述公共控制资源集包含在BWP或者PDSCH占用的资源中;或者,
    所述公共控制资源集与BWP或者PDSCH占用的资源部分交叠;或者,
    所述公共控制资源集与BWP或者PDSCH占用的资源部分完全不交叠;或者,
    所述公共控制资源集与BWP或者PDSCH占用的资源之间没有固定的关系。
  4. 根据权利要求1所述的方法,其中,
    所述公共控制资源集承载的控制信息调度的资源位于BWP或者PDSCH占用的资源内。
  5. 根据权利要求1所述的方法,其中,所述第一类节点向所述第二类节点指示所述第一资源的频域位置包括:
    指示所述第一资源相对于参考点的频域上的偏移;或者,
    指示所述第一资源相对于参考点的频域上的偏移,以及所述第一资源的带宽;
    其中,所述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行同步信号块SS block。
  6. 根据权利要求1所述的方法,其中,所述第一类节点向所述第二类节点指示所述第二资源的频域位置包括:
    指示所述第二资源相对于参考点或者所述第一资源的频域上的偏移;或者,
    指示所述第二资源相对于参考点或者所述第一资源的频域上的偏移,以及第二资源的带宽或者第二资源的带宽与第一资源的带宽间的关系;
    其中,所述参考点包括以下任意一项的中心或边界:物理载波、下行同步信号带宽、下行同步信号块SS block。
  7. 根据权利要求1所述的方法,其中,指示所述BWP的频域位置包括指示所述BWP的索引。
  8. 根据权利要求2所述的方法,其中,确定所述第一资源的频域位置为配置的同步信号块SS block的频域位置的方式包括:
    所述第一类节点在系统带宽内配置一个或者多个SS block,其中,每个SS block的频域位置对应一个索引;
    将所述第一资源的频域位置配置为所述一个或者多个SS block的频域位置中的一个。
  9. 根据权利要求2所述的方法,其中,
    指示配置的SS block的频域位置包括:指示配置的SS block的频域位置索引。
  10. 根据权利要求1所述的方法,其中,所述第一类节点向第二类节点指示资源的频域位置包括:
    所述第一类节点利用物理广播信道承载所述资源位置信息;或者,
    所述第一类节点利用无线资源控制RRC专用信令承载所述资源位置信息;或者,
    所述第一类节点利用物理广播信道承载所述第一资源的频域位置信息,利用RRC专用信令承载所述第二资源的频域位置信息,或者,
    所述第一资源的频域位置和/或所述第二资源的频域位置信息的一部分用物理广播信道承载,另一部分用RRC信令承载信息。
  11. 根据权利要求10所述的方法,其中,
    所述RRC专用信令由与所述第一类节点相邻的节点发送至所述第二类节点。
  12. 根据权利要求5或6所述的方法,其中,所述频域上的偏移包括以下至少之一:偏移量,左右偏移指示。
  13. 根据权利要求5或6所述的方法,其中,所述频域上的偏移量用以下一项或多项来表示:
    相对信道编号、相对信道组编号、相对物理资源块PRB编号、相对PRB组编号、相对子载波编号。
  14. 根据权利要求1所述的方法,其中,
    所述资源的频域位置为频域上资源的中心位置;或者,
    所述资源的频域位置为频域上资源的边界位置;或者,
    所述资源的频域位置为频域上资源的中心位置和频域资源的带宽;或者,
    所述资源的频域位置为频域上资源的边界位置和频域资源的带宽;或者,
    所述资源的频域位置为频域资源的带宽。
  15. 一种资源位置的接收方法,包括:
    第二类节点接收第一类节点发送的用于指示资源的频域位置的资源位置信息;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽 部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
  16. 根据权利要求15所述的方法,其中,
    所述第一资源的频域位置为配置的同步信号块SS block的频域位置;
    所述第二资源的频域位置为公共控制资源集的频域位置。
  17. 根据权利要求15所述的方法,其中,所述方法还包括:
    所述第二类节点接收所述第一类节点指示的第一资源的频域位置,并根据预定义规则确定所述第二资源的频域位置。
  18. 根据权利要求17所述的方法,其中,
    所述预定义规则为预先定义的一个或多个因素和频域偏移量之间的关系,其中,所述因素包括以下至少之一:同步信号块索引、物理小区标识、系统帧号、频带信息。
  19. 一种资源位置的指示装置,应用于第一类节点,包括:
    发送模块,配置为向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
  20. 根据权利要求19所述装置,其中,
    所述第一资源的频域位置为配置的同步信号块SS block的频域位置;
    所述第二资源的频域位置为公共控制资源集的频域位置。
  21. 一种资源位置的接收装置,应用于第二类节点,包括:
    接收模块,配置为接收第一类节点发送的用于指示资源的频域位置的资源位置信息;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
  22. 根据权利要求21所述的装置,其中,
    所述第一资源的频域位置为配置的同步信号块SS block的频域位置;
    所述第二资源的频域位置为公共控制资源集的频域位置。
  23. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至14中任一项所述的资源位置的指示方法。
  24. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求15至18中任一项所述的资源位置的接收方法。
  25. 一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行权利要求1至14中任一项所述的资源位置的指示方法。
  26. 一种处理器,所述处理器配置为运行程序,其中,所述程序运行时执行权利要求15至18中任一项所述的资源位置的接收方法。
  27. 一种基站,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:向第二类节点发送资源位置信息,所述资源位置信息至少用于指示资源的频域位置;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
  28. 一种终端,包括:
    处理器以及存储有所述处理器可执行指令的存储器,当所述指令被处理器执行时,执行如下操作:接收第一类节点发送的用于指示资源的频域位置的资源位置信息;
    其中,所述频域位置包括以下至少之一:第一资源的频域位置、第二资源的频域位置;所述第一资源或所述第二资源包括以下至少之一:带宽部分BWP、物理下行共享信道PDSCH占用的资源,公共控制资源集。
PCT/CN2018/098377 2017-08-11 2018-08-02 资源位置的指示、接收方法、装置、设备及存储介质 WO2019029434A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
DK18843089.6T DK3667980T3 (da) 2017-08-11 2018-08-02 Indikation og modtagelse af ressourceposition
EP18843089.6A EP3667980B1 (en) 2017-08-11 2018-08-02 Indicating and receiving resource location
KR1020227029359A KR102655572B1 (ko) 2017-08-11 2018-08-02 자원 위치를 표시 및 수신하기 위한 방법, 디바이스, 장치 및 저장 매체
EP23180813.0A EP4266620A3 (en) 2017-08-11 2018-08-02 Indicating and receiving resource location
RU2020110051A RU2749096C1 (ru) 2017-08-11 2018-08-02 Способ, устройство, аппаратное устройство и носитель информации для указания и приема местоположения ресурса
MX2020001645A MX2020001645A (es) 2017-08-11 2018-08-02 Método, dispositivo, aparato y medio de almacenamiento para indicar y recibir ubicación de recurso.
JP2020507641A JP7206023B2 (ja) 2017-08-11 2018-08-02 リソース場所を示し、それを受信するための方法、デバイス、装置、および記憶媒体
KR1020207007250A KR102437699B1 (ko) 2017-08-11 2018-08-02 자원 위치를 표시 및 수신하기 위한 방법, 디바이스, 장치 및 저장 매체
US16/785,072 US11617173B2 (en) 2017-08-11 2020-02-07 Method, device, apparatus, and storage medium for indicating and receiving resource location
JP2022166134A JP7627673B2 (ja) 2017-08-11 2022-10-17 リソース場所を示し、それを受信するための方法、デバイス、装置、および記憶媒体
US18/126,192 US20230247608A1 (en) 2017-08-11 2023-03-24 Method, device, apparatus, and storage medium for indicating and receiving resource location

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710687231.8 2017-08-11
CN201710687231.8A CN109391426B (zh) 2017-08-11 2017-08-11 资源位置的指示、接收方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/785,072 Continuation US11617173B2 (en) 2017-08-11 2020-02-07 Method, device, apparatus, and storage medium for indicating and receiving resource location

Publications (1)

Publication Number Publication Date
WO2019029434A1 true WO2019029434A1 (zh) 2019-02-14

Family

ID=65273371

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098377 WO2019029434A1 (zh) 2017-08-11 2018-08-02 资源位置的指示、接收方法、装置、设备及存储介质

Country Status (10)

Country Link
US (2) US11617173B2 (zh)
EP (2) EP4266620A3 (zh)
JP (2) JP7206023B2 (zh)
KR (2) KR102437699B1 (zh)
CN (2) CN114143885A (zh)
DK (1) DK3667980T3 (zh)
MX (1) MX2020001645A (zh)
PT (1) PT3667980T (zh)
RU (1) RU2749096C1 (zh)
WO (1) WO2019029434A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615197A (zh) * 2019-04-30 2020-09-01 维沃移动通信有限公司 资源调整方法及设备
JP7490680B2 (ja) 2020-01-27 2024-05-27 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392140B (zh) 2017-08-11 2020-07-28 维沃移动通信有限公司 一种用于监听pdcch的方法、终端及网络设备
US11102736B2 (en) 2017-10-24 2021-08-24 Qualcomm Incorporated Channel and synchronization raster
JP7092195B2 (ja) * 2017-11-16 2022-06-28 日本電気株式会社 制御リソース領域のリソース割り当てのための方法及びデバイス
CN110365461B (zh) * 2017-12-18 2020-08-07 华为技术有限公司 一种信号发送、接收方法及设备
EP3723315B1 (en) * 2018-01-09 2022-02-09 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Bwp frequency hopping configuration method, network device and terminal
CN110248411B (zh) * 2018-03-07 2021-03-26 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
EP4185053A1 (en) * 2018-09-18 2023-05-24 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Resource allocation method and terminal device
CN112399587B (zh) * 2019-08-16 2023-06-20 华为技术有限公司 通信方法及装置
WO2021031002A1 (zh) * 2019-08-16 2021-02-25 华为技术有限公司 用于指示控制信息的方法和装置
CN112423391B (zh) * 2019-08-23 2022-07-26 华为技术有限公司 资源指示方法及装置
CN114208323A (zh) * 2019-08-29 2022-03-18 华为技术有限公司 一种资源共享的方法和装置
KR102688475B1 (ko) * 2019-09-27 2024-07-26 삼성전자 주식회사 네트워크 협력통신을 위한 데이터 송수신 방법 및 장치
CN113271675B (zh) * 2020-02-17 2023-03-28 中国移动通信有限公司研究院 信息传输方法、装置、相关设备及存储介质
CN115428547A (zh) * 2020-04-14 2022-12-02 捷开通讯(深圳)有限公司 上行处理方法及装置
US11968634B2 (en) * 2020-04-24 2024-04-23 Qualcomm Incorporated Synchronization signal block (SSB) in full-duplex
US12063604B2 (en) 2020-04-24 2024-08-13 Qualcomm Incorporated Synchronization signal block (SSB) in full-duplex
WO2022205205A1 (zh) * 2021-03-31 2022-10-06 北京小米移动软件有限公司 带宽部分组合接收方法、带宽部分组合发送方法
CN115696591A (zh) * 2021-07-31 2023-02-03 华为技术有限公司 一种资源确定方法及通信装置
WO2023050350A1 (zh) * 2021-09-30 2023-04-06 北京小米移动软件有限公司 Cfr的确定方法、装置、通信设备及存储介质
US20230156672A1 (en) * 2021-11-15 2023-05-18 Qualcomm Incorporated Flexible bandwidth part frequency offset configuration
CN118805363A (zh) * 2022-09-13 2024-10-18 北京小米移动软件有限公司 部分带宽的确定方法、配置方法、装置、介质及程序产品

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099196A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
CN106961315A (zh) * 2016-01-11 2017-07-18 电信科学技术研究院 一种窄带pbch传输方法及装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102325119B (zh) * 2011-09-19 2014-03-19 武汉邮电科学研究院 一种时偏和频偏的联合估计方法
CN102883449B (zh) * 2012-09-21 2016-08-03 腾讯科技(深圳)有限公司 一种实现数据共享的方法、相关终端及系统
CN103716841A (zh) * 2012-09-29 2014-04-09 中兴通讯股份有限公司 信息传输方法及装置
ES2749515T3 (es) * 2012-11-02 2020-03-20 Ericsson Telefon Ab L M Soporte del espectro flexible en comunicaciones inalámbricas celulares
CN104092636B (zh) * 2014-07-31 2017-08-29 北京北方烽火科技有限公司 一种基于cp的频偏估计方法及装置
US9801081B2 (en) * 2014-10-28 2017-10-24 Massachusetts Institute Of Technology Adaptive communication for mobile router systems
CN105635018B (zh) * 2014-11-07 2020-02-07 中兴通讯股份有限公司 功能指示的方法、装置及系统
CN106031230B (zh) * 2015-01-27 2020-03-20 华为技术有限公司 一种确定资源块的方法、装置及系统
CN107925499B (zh) * 2015-09-02 2019-11-05 Lg电子株式会社 用于在无线通信系统中为窄带ue指示中心频率偏移的方法和设备
CN106559206B (zh) * 2015-09-30 2019-04-23 中兴通讯股份有限公司 同步信号的传输方法及装置
EP3361687B1 (en) * 2015-11-06 2021-01-06 Huawei Technologies Co., Ltd. Method of indicating or acquiring interval between uplink and downlink channels, and device utilizing same
CN106961734B (zh) * 2016-01-11 2023-05-30 中兴通讯股份有限公司 信息的传输方法及装置
CN108141871A (zh) * 2016-02-02 2018-06-08 日本电气株式会社 用于执行上行链路调度和ul传输的方法和装置
WO2017136068A1 (en) * 2016-02-03 2017-08-10 Intel Corporation Csi (channel state information)-rs (reference signal) overhead reduction for class b fd (full dimensional)-mimo (multiple input multiple output) systems
US10477537B2 (en) * 2016-02-11 2019-11-12 Qualcomm Incorporated Multi-PRB operation for narrowband systems
US10299269B2 (en) * 2016-08-30 2019-05-21 Verizon Patent And Licensing Inc. Flexible multicarrier NB-IoT operation in a network
WO2018048187A1 (en) * 2016-09-06 2018-03-15 Lg Electronics Inc. Method and apparatus for configuring resource block structure for nr in wireless communication system
MX387975B (es) * 2016-11-01 2025-03-19 Lg Electronics Inc Método y aparato para configurar la agregación de sub-bandas en el portador nr en un sistema de comunicación inalámbrico.
WO2018128427A1 (en) 2017-01-04 2018-07-12 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in wireless communication system
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
CN110603778B (zh) * 2017-05-05 2022-09-16 苹果公司 用于新无线电(nr)宽带用户设备(ue)的带宽部分配置和操作
GB2563454A (en) * 2017-06-16 2018-12-19 Nec Corp Communication system
EP4236175A3 (en) * 2017-08-10 2023-10-25 Samsung Electronics Co., Ltd. Method and apparatus of determining frequency resources in next generation cellular networks

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016099196A1 (ko) * 2014-12-18 2016-06-23 엘지전자 주식회사 단말 간 (device-to-device, d2d) 통신을 지원하는 무선 통신 시스템에서 전송 자원을 할당하는 방법
CN106961315A (zh) * 2016-01-11 2017-07-18 电信科学技术研究院 一种窄带pbch传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Common Control Resource Set and UE-Specific Control Resource Set", 3GPP TSG-RAN WGI NR ADHOC R1-1700816, 10 January 2017 (2017-01-10), XP051203129 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111615197A (zh) * 2019-04-30 2020-09-01 维沃移动通信有限公司 资源调整方法及设备
JP7490680B2 (ja) 2020-01-27 2024-05-27 株式会社Nttドコモ 端末、無線通信方法、基地局及びシステム

Also Published As

Publication number Publication date
CN109391426B (zh) 2021-11-16
PT3667980T (pt) 2023-10-26
MX2020001645A (es) 2020-08-03
JP2020533833A (ja) 2020-11-19
US11617173B2 (en) 2023-03-28
RU2749096C1 (ru) 2021-06-04
JP7206023B2 (ja) 2023-01-17
CN114143885A (zh) 2022-03-04
JP2023002658A (ja) 2023-01-10
CN109391426A (zh) 2019-02-26
DK3667980T3 (da) 2023-10-09
KR20220121923A (ko) 2022-09-01
EP3667980A4 (en) 2021-04-14
KR102437699B1 (ko) 2022-08-26
KR102655572B1 (ko) 2024-04-05
US20230247608A1 (en) 2023-08-03
JP7627673B2 (ja) 2025-02-06
EP4266620A2 (en) 2023-10-25
KR20200047578A (ko) 2020-05-07
EP3667980A1 (en) 2020-06-17
EP4266620A3 (en) 2023-12-06
US20200314845A1 (en) 2020-10-01
EP3667980B1 (en) 2023-09-06

Similar Documents

Publication Publication Date Title
WO2019029434A1 (zh) 资源位置的指示、接收方法、装置、设备及存储介质
CN110808820B (zh) 一种定位参考信号传输方法及装置
US11665752B2 (en) Method and apparatus for transmitting and receiving data in wireless communication system
US12238656B2 (en) Rate matching indication method and apparatus, and device and storage medium
WO2019029348A1 (zh) 数据传输方法、终端和基站
JP6833988B2 (ja) ダウンリンク制御信号を伝送する方法及び装置
CN104754742A (zh) 一种资源分配方法及装置
EP3179778B1 (en) Method and apparatus for reporting and processing proximity service capability information
CN114175697A (zh) 使用比特图的长期演进-m资源预留
EP3501134B1 (en) Distinguishing reference signals in a beam-based communication system
US11758581B2 (en) Clear channel listening method and apparatus, and device
CN106162816B (zh) 网络发现方法、站点及接入点
JP2023543758A (ja) インターレースulキャンセルインジケーションのue処理
US20220278783A1 (en) Base station, method, program, and recording medium
WO2024250731A1 (zh) 通信方法、通信装置以及计算机可读存储介质
CN117641391A (zh) 通信方法及装置
JP2014011775A (ja) 基地局及び通信方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18843089

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020507641

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207007250

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018843089

Country of ref document: EP

Effective date: 20200311