WO2022205205A1 - 带宽部分组合接收方法、带宽部分组合发送方法 - Google Patents
带宽部分组合接收方法、带宽部分组合发送方法 Download PDFInfo
- Publication number
- WO2022205205A1 WO2022205205A1 PCT/CN2021/084721 CN2021084721W WO2022205205A1 WO 2022205205 A1 WO2022205205 A1 WO 2022205205A1 CN 2021084721 W CN2021084721 W CN 2021084721W WO 2022205205 A1 WO2022205205 A1 WO 2022205205A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bwp
- combination
- terminal
- base station
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title abstract description 88
- 230000000875 corresponding effect Effects 0.000 description 116
- 238000013507 mapping Methods 0.000 description 23
- 238000004891 communication Methods 0.000 description 20
- 238000012545 processing Methods 0.000 description 17
- 230000002596 correlated effect Effects 0.000 description 16
- 230000011664 signaling Effects 0.000 description 13
- 230000004044 response Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000005516 engineering process Methods 0.000 description 10
- 239000000969 carrier Substances 0.000 description 9
- 230000002776 aggregation Effects 0.000 description 6
- 238000004220 aggregation Methods 0.000 description 6
- 230000005540 biological transmission Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000004913 activation Effects 0.000 description 4
- 230000003287 optical effect Effects 0.000 description 4
- 230000005236 sound signal Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000004590 computer program Methods 0.000 description 2
- 238000005265 energy consumption Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0053—Allocation of signalling, i.e. of overhead other than pilot signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0003—Two-dimensional division
- H04L5/0005—Time-frequency
- H04L5/0007—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT
- H04L5/001—Time-frequency the frequencies being orthogonal, e.g. OFDM(A) or DMT the frequencies being arranged in component carriers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0091—Signalling for the administration of the divided path, e.g. signalling of configuration information
- H04L5/0094—Indication of how sub-channels of the path are allocated
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/56—Allocation or scheduling criteria for wireless resources based on priority criteria
- H04W72/563—Allocation or scheduling criteria for wireless resources based on priority criteria of the wireless resources
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0453—Resources in frequency domain, e.g. a carrier in FDMA
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
Definitions
- the present disclosure relates to the field of communication technologies, and in particular, to a method and apparatus for receiving a bandwidth portion combination, a method and apparatus for sending a bandwidth portion combination, an electronic device, and a computer-readable storage medium.
- the BWP (Bandwidth Part, bandwidth part) mechanism is introduced in communication systems such as 5G.
- Multiple BWPs can be configured on a subcarrier, and one of the BWPs can be activated for the terminal to use.
- communication systems such as 5G can also aggregate multiple subcarriers together by means of carrier aggregation or dual connectivity, so as to use multiple subcarriers for information transmission at the same time.
- each subcarrier in the aggregated carrier may be referred to as a component carrier CC.
- each CC can be configured with at least one BWP, and one of the BWPs configured by each component carrier CC can be activated.
- each combination of BWPs that may be activated in the terminal includes one BWP on each CC.
- the terminal For each BWP combination that may be activated, the terminal also needs to determine the relevant information corresponding to the BWP combination, such as the DC subcarrier position.
- the terminal may enumerate all the BWP combinations that can be formed by the configured BWP, and then separately determine the relevant information corresponding to each BWP combination.
- determining relevant information for all BWP combinations is wasteful to the terminal load.
- FIG. 1 is a schematic diagram of a component carrier CC according to an embodiment of the present disclosure.
- FIG. 2 is a schematic flow chart of a method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure.
- FIG. 3 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure.
- FIG. 4 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure.
- FIG. 5 is a schematic diagram of another component carrier CC according to an embodiment of the present disclosure.
- FIG. 6 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure.
- FIG. 7 is a schematic flowchart of a method for sending bandwidth part combination according to an embodiment of the present disclosure.
- FIG. 8 is a schematic flowchart of another method for receiving and sending bandwidth parts according to an embodiment of the present disclosure.
- FIG. 9 is a schematic block diagram of an apparatus for receiving bandwidth partial combination according to an embodiment of the present disclosure.
- FIG. 10 is a schematic block diagram of an apparatus for receiving and sending bandwidth parts according to an embodiment of the present disclosure.
- FIG. 11 is a schematic block diagram of an apparatus for bandwidth part combined transmission according to an embodiment of the present disclosure.
- Fig. 12 is a schematic block diagram of an apparatus for receiving bandwidth partial combination according to an embodiment of the present disclosure.
- the embodiments of the present disclosure propose a method and apparatus for receiving bandwidth part combination, and a method and device for sending bandwidth part combination, so as to solve the technical problems in the related art.
- a method for receiving a combination of bandwidth parts is proposed, which is applied to a terminal, and the method includes:
- the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the DC subcarrier position corresponding to the at least one BWP combination; wherein,
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all the BWPs configured by the base station for the terminal.
- a method for receiving and transmitting bandwidth parts is proposed, which is applied to a base station, and the method includes:
- the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the DC subcarrier position corresponding to the at least one BWP combination;
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all the BWPs configured by the base station for the terminal.
- an apparatus for receiving bandwidth part combination which is applied to a terminal, and the apparatus includes:
- the combination receiving module is configured to receive combination information of the bandwidth part BWP sent by the base station, the combination information includes at least one BWP combination, and the type of BWP combination in the combination information is less than that of the base station for the terminal The type of combination that can be formed by all the configured BWPs.
- a bandwidth part combination receiving and sending apparatus which is applied to a base station, and the apparatus includes:
- a combination sending module configured to send the combination information of the bandwidth part BWP to the terminal, the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the DC corresponding to the at least one BWP combination Subcarrier position; wherein, the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs configured by the base station for the terminal.
- an electronic device including:
- memory for storing processor-executable instructions
- the processor is configured to implement the above-mentioned method for combining bandwidth parts and/or methods for combining bandwidth parts.
- a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the above-mentioned method for receiving a portion of a bandwidth and/or a method for sending a portion of a bandwidth. A step of.
- the terminal can receive the BWP combination information sent by the base station, so that the terminal can determine the DC subcarrier corresponding to the BWP combination based on the BWP combination information, instead of enumerating the DC sub-carriers of the BWP combination that can be formed by all BWPs
- the subcarrier location reduces the performance pressure of the terminal; further, if the terminal needs to send the DC subcarrier location to the base station, the terminal can send less data to the base station, which can save signaling overhead.
- first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
- the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
- the words "if” and “if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
- OFDM Orthogonal Frequency Division Multiplexing, orthogonal frequency division multiplexing
- the base station In a communication system, in order to avoid the influence of carrier leakage and improve the demodulation performance of the base station, the base station needs to know the DC sub-carrier position of the terminal for compensation processing.
- the system bandwidth of the terminal and the base station is the same, so the base station can directly determine the DC subcarrier position of the terminal according to the system bandwidth.
- multiple BWPs can be configured in a single carrier, so that the bandwidth of the terminal is no longer fixed, but determined by the activated BWP. Therefore, the position of the DC sub-carrier in the terminal is also different from that of the terminal.
- the activated BWP is correlated, that is, varies with the activated BWP.
- the terminal may send the location of the DC subcarrier to the base station.
- the activation state of the BWP in the terminal changes frequently. If the terminal retransmits the location of the DC subcarrier to the base station after each change of the BWP activation state, it not only wastes communication resources, but also increases the performance pressure on the terminal and the base station. .
- the terminal can send the DC sub-carrier positions corresponding to all possible activated BWPs to the base station in advance, for example, can send the mapping relationship between each BWP and the DC sub-carrier position to indicate that the BWP is activated In case of DC subcarrier position.
- the terminal can send it through the txDirectCurrentLocation message.
- the base station can directly query the mapping relationship to determine the location of the DC sub-carrier in the terminal, and does not need to obtain the location of the DC sub-carrier from the terminal separately, which not only saves communication resources, and also reduce the performance pressure on terminals and base stations.
- One or more local oscillators can be configured in the terminal, and the local oscillators and PAs are usually in one-to-one correspondence, and each local oscillator corresponds to a DC subcarrier .
- the terminal can send the position of the DC subcarrier corresponding to the local oscillator by using the above method.
- terminals can be configured with carrier aggregation (CA, Carrier Aggregation), dual connectivity (DC, Dual-Connectivity), etc., to aggregate multiple subcarriers together to utilize multiple subcarriers for information transmission at the same time.
- CA carrier aggregation
- DC Dual-Connectivity
- the subcarriers aggregated together may be called a component carrier CC (Component Carrier).
- the terminal may determine a corresponding PA for each CC.
- the CC corresponding to the PA refers to sending the CC corresponding to the PA through the PA. If the number of CCs is not greater than the number of PAs, each PA corresponds to at most one CC, and for each PA, the terminal can determine the mapping relationship between the BWPs and the DC subcarrier positions on the CC corresponding to the PA; if the number of CCs is greater than the PA , then there are PAs corresponding to multiple CCs.
- the PAs corresponding to multiple CCs are referred to as target PAs, and the DC subcarrier positions corresponding to the target PAs correspond to the multiple CCs corresponding to the target PAs.
- the BWP combination activated in .
- the terminal may, for each target PA: determine the types of BWP combinations that can be formed by all BWPs configured in all CCs on the target PA.
- one activated CC may be determined from at least one CC on each CC, that is, each CC activates one BWP.
- each BWP combination in this embodiment may include one BWP respectively belonging to different CCs on the target PA. Taking the CC corresponding to a target PA shown in FIG.
- the target PA corresponds to CC1 and CC2, wherein CC1 is configured with 4 BWPs, namely BWP11, BWP12, BWP13 and BWP14; CC2 is also configured with 4 BWPs. BWP, respectively BWP21, BWP22, BWP23 and BWP24.
- the BWP combination that can be formed consists of one BWP belonging to CC1 and one BWP belonging to CC2, that is, 16 BWP combinations can be formed.
- a target PA can correspond to multiple CCs, and each CC can also be configured with multiple BWPs, so that there are many types of BWP combinations that can be formed by all BWPs configured in all CCs on the target PA, for example, as shown in Figure 1 , the BWP configured by the CC corresponding to the target PA can form 16 different BWP combinations. As the number of CCs increases, the number of BWP combinations formed will also increase sharply. If the terminal sends the DC sub-carrier positions corresponding to all types of combinations that can be formed to the base station, the amount of information to be transmitted is large, signaling overhead is wasted, and a large performance pressure is imposed on the terminal and the base station.
- the embodiments of the present disclosure propose a BWP combined sending method and a BWP combined receiving method to solve the above technical problems.
- FIG. 2 is a schematic flow chart of a method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure.
- the method for receiving a combination of bandwidth parts shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
- the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to a 4G base station, a 5G base station, and a 6G base station.
- the base station may be a base station to which the method for transmitting bandwidth part combination described in any of the following embodiments is applicable.
- the method for receiving a combination of bandwidth parts may include the following steps:
- step S201 the combination information of the bandwidth part BWP sent by the base station is received.
- the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the DC subcarrier position corresponding to the at least one BWP combination; wherein, the type of the BWP combination in the combination information , which is less than the types of combinations that can be formed by all the BWPs configured by the base station for the terminal.
- the base station may select at least one BWP combination according to a preset method, and then the base station may form the at least one BWP combination to form BWP combination information and send it to the terminal.
- the number of types of BWP combinations determined by the base station according to the preset method is less.
- the terminal may determine the DC subcarriers corresponding to the BWP combination.
- the BWP combination may be all BWP combinations in the BWP combination information, or may be part of the BWP combination, or the terminal may determine one or more BWP combinations by itself, as long as the type of the BWP combination is less than the base station.
- the types of combinations that can be formed by all the BWPs configured for the terminal are not specifically limited in this embodiment.
- the terminal can receive the BWP combination information sent by the base station, so that the terminal can determine the DC sub-carrier corresponding to the BWP combination based on the BWP combination information, instead of enumerating the DC sub-carriers of the BWP combination that can be formed by all BWPs
- the location reduces the performance pressure of the terminal; further, if the terminal needs to send the DC subcarrier location to the base station, the terminal can send less data to the base station, which can save signaling overhead.
- FIG. 3 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure. As shown in Figure 3, the method may also include:
- step S301 a DC subcarrier position corresponding to each BWP combination in the at least one BWP combination is determined.
- the terminal determines, for each BWP combination in the combination information, that the activated BWP is the DC subcarrier of the terminal in the case of the BWP in the BWP combination. Location.
- the terminal can determine that when BWP11 is activated in CC1 and BWP22 is activated in CC2, the location of the DC subcarrier of the terminal is shown as the DC subcarrier in FIG. 1 .
- the terminal can also determine that the activated BWP is in the BWP combination In the case of BWP, the location of the DC sub-carrier in the terminal.
- the DC sub-carrier position may be expressed as a specific frequency, or may also be identified as an offset of the DC sub-carrier position relative to a preset reference frequency, or may also be expressed in other ways. Examples are not limited.
- step S302 the mapping relationship between each BWP combination and the DC subcarrier position is sent to the base station.
- the terminal may send the mapping relationship between each BWP combination and the DC subcarrier position to the base station.
- the terminal may send the identifier of the BWP combination and the corresponding DC subcarrier location.
- the terminal may send a table, in which each entry includes a BWP combination and the DC subcarrier position corresponding to the BWP combination; or, the terminal may send a key-value pair, each key-value pair includes a BWP combination and the The DC sub-carrier position corresponding to the BWP combination, and so on.
- the table and key-value pair here are only exemplary descriptions. In practical applications, the terminal may also use other forms to reflect the mapping relationship between the BWP combination and the DC subcarrier position.
- the terminal may also determine the arrangement order of the DC sub-carrier positions according to a specified order, so as to determine the BWP combination corresponding to the DC sub-carrier position through the sequence. For example, the terminal may determine the arrangement order of the positions of the DC subcarriers according to the arrangement order of the respective BWPs in the BWP combination information; or, the BWP combination information may also include the priority of each BWP, and the terminal may determine the DC subcarrier according to the priority order.
- the arrangement order of the carrier positions for example, the order of priority from high to low is used as the arrangement order of the DC sub-carrier positions.
- a default relative position of the DC sub-carrier may be preset in the terminal, for example, the frequency center point of the highest frequency and the lowest frequency in the frequency band occupied by each BWP in the BWP combination, or may exist relative to the center point. Specify the offset, such as 7.5kHz offset from the center point, etc.
- the terminal in response to that the position of the DC subcarrier corresponding to the BWP combination is inconsistent with the default relative position, the terminal sends the description information of the DC subcarrier position corresponding to the BWP combination to the base station; or, in response to the BWP The positions of the DC subcarriers corresponding to the combination are consistent with the default relative positions, and preset information is sent to the base station.
- the description information can be used for the terminal to determine the position of the DC sub-carrier, for example, the frequency of the DC sub-carrier, or the offset of the position of the DC sub-carrier relative to the preset reference frequency, or the relative position of the DC sub-carrier The offset from the frequency center point, etc.
- the terminal can no longer send the specific position of the DC sub-carrier, but directly send a preset message, indicating that the position of the DC sub-carrier is predetermined by the base station Default relative position.
- the default relative position may be specified in a protocol, or may be determined by the terminal and the base station through negotiation in advance, which is not limited in this embodiment.
- the data amount of the preset information is less than the description information of the DC sub-carrier position, for example, the preset information may only occupy 1 bit. Therefore, according to the method of this embodiment, the amount of information sent by the terminal to the base station can be further reduced, and the signaling overhead can be reduced.
- the base station receives the mapping relationship between each BWP combination and the DC subcarrier position in the at least one BWP combination sent by the terminal.
- the base station can determine the DC subcarrier position corresponding to the BWP combination currently activated by the terminal. Therefore, the base station does not need to query the terminal for the DC sub-carrier position corresponding to the BWP combination after determining the activated BWP combination for the terminal, but directly determines the DC sub-carrier position according to the pre-received mapping relationship, reducing information This reduces the overhead and avoids the delay caused by signaling interaction.
- the base station may send the BWP combination information to all terminals.
- the base station may not send BWP combination information to all terminals, but determines whether to send BWP combination information to the terminal according to the PA capability of the terminal, which is described below with reference to FIG. 4 .
- FIG. 4 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure. As shown in Figure 4, the method may further include:
- Step S401 Report the power amplifier PA capability of the terminal to the base station.
- the PA capability is used for the base station to determine to send the combination information to the terminal, and to determine the combination information.
- the base station may receive the PA capability reported by the terminal, and based on the PA capability, determine to send the combination information to the terminal, and determine the combination information.
- the PA capability reported by the terminal may include the number of PAs of the terminal. It should be noted that, since there is a one-to-one correspondence between local oscillators and PAs in the terminal, the number of PAs is also the number of local oscillators. For the convenience of description, no distinction will be made below.
- At least one PA configured by the terminal includes at least one target PA corresponding to multiple CCs.
- the base station may not send the BWP combination information to the terminal, but the base station directly sends the correspondence between all BWPs and the DC subcarrier positions. Causes excessive signaling overhead.
- the base station may determine the number of PAs in the terminal according to the PA capability, and in response to the number of PAs being less than the number of component carrier CCs configured by the terminal, determine to send the terminal to the terminal. Combination information.
- the base station in response to the number of PAs being not less than the number of component carriers CCs configured by the terminal, the base station may determine not to send the combination information to the terminal. Thus, the base station can reduce the information to be sent and save communication resources.
- the base station when the base station determines that the BWP combination information needs to be sent to the terminal, the base station may determine the number of types of BWP combinations required to be included in the combination information according to its own load. For convenience of distinction, the number of types of BWP combinations in the BWP combination information may be recorded as the first number.
- the base station may determine that the first number is negatively correlated with the load of the base station.
- the specific method for the base station to determine the first number may be determined according to the actual situation, which is not limited in this embodiment.
- the base station when the base station determines that the BWP combination information needs to be sent to the terminal, the base station may determine the combination information according to the PA capability, that is, determine the specific type of the BWP combination in the combination information.
- the PA capabilities may include the maximum channel bandwidth supported by the PA.
- the base station may determine the maximum channel bandwidth supported by each PA in the terminal according to the PA capability, and at the same time, the base station may determine the CC corresponding to each PA according to the bandwidths of multiple CCs configured by the terminal. For example, if the terminal includes two PAs, and the terminal is configured with three CCs, the maximum bandwidth supported by one PA can only cover one of the CCs, while the maximum bandwidth supported by the other PA can cover the other two CCs. This determines the correspondence between PA and CC.
- the terminal may report the CC corresponding to each PA in the terminal to the base station, for example, may send the correspondence between the PA and the CC.
- the base station can determine the CC corresponding to each PA respectively.
- the PAs set in the terminal include at least one target PA, and the target PA corresponds to multiple component carrier CCs.
- the multiple CCs corresponding to the target PA each CC corresponds to at least one BWP.
- the BWP combination information sent by the base station to the terminal may be BWP combination information corresponding to the target PA, and in each BWP combination in the BWP combination information, each BWP belongs to a different CC in the target PA .
- the types of BWP combinations in the combination information are less than the types of all combinations that can be formed by BWPs on multiple CCs corresponding to the target PA.
- the target PA corresponds to CC1 and CC2, and CC1 and CC2 are respectively configured with 4 BWPs.
- the BWPs in each BWP combination belong to different CCs, and 16 types can be formed, namely: BWP11 BWP11 and BWP22; BWP11 and BWP23; BWP11 and BWP24; BWP12 and BWP21; BWP12 and BWP22; BWP12 and BWP23; BWP12 and BWP24; ; BWP14 and BWP22; BWP14 and BWP23; BWP14 and BWP24.
- the base station can send some types of the 16 types of BWP combinations that can be formed to the terminal, for example, there can be 5 types, 10 types,
- the terminal may receive the BWP combination information sent by the base station, such as 5 types and 10 types sent by the base station in the above example, and determine the DC subcarriers corresponding to each BWP combination respectively, and send each type of BWP combination information to the base station.
- the mapping relationship between BWP combinations and DC subcarrier positions Compared with the related art, the terminal sends the DC sub-carrier positions corresponding to all BWP combinations (for example, the above 16 types) that can be formed by BWPs on multiple CCs corresponding to the target PA to the base station.
- the method of this embodiment greatly reduces the number of terminals.
- the data volume of the information sent to the base station can not only save the signaling overhead, but also reduce the energy consumption of the terminal and the base station.
- the base station may determine the BWP combination according to the BWPs on all CCs corresponding to the target PA. For example, the BWP combination may be determined as the number of BWPs in each BWP combination corresponding to the target PA. Each CC corresponds to each other.
- CC1 includes 4 BWPs (ie BWP11, BWP12, BWP13, BWP14 in Figure 5)
- CC2 includes 4 BWPs (ie BWP21, BWP22, BWP23, BWP24 in Figure 5)
- CC3 also includes 4 BWPs (ie BWP31, BWP32, BWP33, BWP34 in Figure 5).
- the base station can select one BWP from the four BWPs on CC1, one BWP from the four BWPs on CC2, and one BWP from the four BWPs on CC3, respectively, to obtain three BWPs
- the base station can repeat the above selection process as required, and continue to obtain other different types of BWP combinations. Therefore, the BWPs in the BWP combination are in one-to-one correspondence with the three CCs corresponding to the target PA.
- the base station may also determine the BWP combination according to the BWPs on some CCs in the multiple CCs corresponding to the target PA, for example, the BWP combination may be determined as the BWP in each BWP combination Some CCs in the multiple CCs corresponding to the target PA are in one-to-one correspondence. For example, if the target PA corresponds to 3 CCs, the BWP combination may be determined according to the BWPs on 2 of the 3 CCs.
- the base station may determine the BWP combination according to the BWP on the CC with the highest frequency band and the CC with the lowest frequency band among the multiple CCs corresponding to the target PA.
- the BWP combination may be determined as the CC with the highest frequency band and the CC with the lowest frequency band among multiple CCs corresponding to the BWP in each BWP combination corresponding to the target PA.
- the base station determines the BWP combination information, it can select one BWP from the four BWPs on CC1, and one BWP from the four BWPs on CC3, and obtain two BWPs as a BWP combination, using the same method. , the base station may repeat the above selection process as required, and continue to obtain other different types of BWP combinations.
- the BWPs in the BWP combination correspond to CC1 and CC3 corresponding to the target PA.
- the position of the DC sub-carrier in the terminal is related to the activated BWP combination, and more commonly, the position of the DC sub-carrier is related to the BWP with the lowest frequency band and the BWP with the highest frequency band.
- the BWP combination can be determined according to the BWPs on the CC with the highest frequency band and the CC with the lowest frequency band, instead of the BWPs on all CCs. The combination can not only reduce the number of BWP combinations, but also reduce the amount of information in each BWP combination, thereby saving signaling overhead and reducing energy consumption of terminals and base stations.
- the terminal may send assistance information to the base station to assist the base station in determining the BWP combination information.
- the auxiliary information may include at least one of channel state information and a buffer state report of the BWP. The following description will be made with reference to FIG. 6 .
- FIG. 6 is a schematic flow chart of another method for receiving a combination of bandwidth parts according to an embodiment of the present disclosure. As shown in Figure 6, the method may further include:
- step S601 the channel state information and buffer state report of each BWP on the CC corresponding to the target PA are determined.
- the terminal may determine the BWP state required by the base station. For example, if the base station determines the BWP combination according to the BWPs on all CCs corresponding to the target PA, the terminal may determine each BWP on all CCs corresponding to the target PA. or, if the base station determines the BWP combination according to the BWPs on some CCs in the multiple CCs corresponding to the target PA, the terminal can send the status of each BWP on the partial CCs required by the base station to the base station , for example, it may be the state of each BWP on the CC with the highest frequency band and the CC with the lowest frequency band among the CCs corresponding to the target PA.
- the status of the BWP may include at least one of channel status information and a buffer status report of the BWP.
- the channel state information may include at least one of channel power RSRP, signal-to-noise ratio SNR/SINR, channel delay, etc., for indicating the channel state of the BWP.
- channel power RSRP
- signal-to-noise ratio SNR/SINR
- channel delay etc.
- the channel state information may also include other information indicating the channel state of the BWP, and this embodiment is only illustrative and not limiting.
- the buffer status report may include the amount of data to be sent in the terminal, that is, the amount of buffered data.
- the amount of buffered data the more idle the channel of the BWP, and the higher the probability of the BWP being activated.
- step S602 the channel state information and the buffer state report are reported to the base station. Wherein, the channel state information and the buffer state report are used for the base station to determine the combination information.
- the terminal may send at least one of the channel state information and the buffer state report to the base station.
- the base station may determine at least one of the channel state and the amount of buffered data of each BWP on the CC corresponding to the target PA based on at least one of the channel state information and the buffer state report; at least one of the channel state and the buffered data amount to determine the combination information.
- the base station may receive information reported by multiple terminals, and comprehensively determine the channel state of each BWP. For example, the base station may determine the state of the BWP according to the sum of the buffered data amounts of all terminals. The specific implementation of the base station may be determined according to the actual situation, which is not limited in this embodiment.
- the base station may determine the channel state threshold and the buffered data volume threshold based on the channel state and buffered data volume of each BWP on the CC corresponding to the target PA; wherein, in each BWP combination in the combination information The channel state of each BWP is better than the channel state threshold, and the amount of buffered data is less than the buffered data threshold.
- the channel state threshold and the buffered data volume threshold may be preset specific values, for example, at least one of the channel power threshold N1, the signal-to-noise ratio threshold N2, the channel delay threshold N3, and the buffered data volume threshold N4 may be preset.
- the base station can filter out all BWPs whose channel state is better than the threshold and whose buffered data volume is less than the threshold according to the channel state and buffered data volume of each BWP, and then determine the BWP combination based on the filtered BWPs.
- the channel state threshold and the buffered data amount threshold may also be preset ratios, for example, the preset ratio may be 50%. Therefore, the base station can screen out the BWPs whose channel status and buffered data volume are the top 50% of all BWPs; or the base station can also screen out the BWPs whose channel status or buffered data volume are the top 50% of all BWPs, and then based on the screening out BWP to determine the BWP combination.
- the top 50% of the channel state refers to the BWP whose channel state is better than the other 50%
- the top 50% of the cached data volume refers to the BWP whose cached data volume is less than the other 50%.
- the base station may also, for the CC corresponding to the target PA, determine the priority of each BWP among the BWPs on the CC based on the channel state and buffered data amount of each BWP on the CC; and then based on each BWP on the CC
- the priority of each BWP in each BWP on the CC to which it belongs, is determined according to the order of priority from high to low to determine at least one BWP combination.
- the priority is positively correlated with the channel state, and the priority is negatively correlated with the amount of buffered data; the combined priority of each BWP combination in the combination information is related to the priority of each BWP in the combination The levels are positively correlated, and the combination priority of each BWP combination in the combination information is higher than the priority threshold.
- the priority of the BWP can be regarded as the probability of the BWP being activated. Then it can be determined that the priority of the BWP is higher.
- the base station may determine the priority order of each BWP in the CC in the CC for the CC corresponding to the target PA, for example, all the CCs corresponding to the target PA, or a part of all the CCs corresponding to the target PA.
- the priority order of each BWP in each CC may be determined separately.
- their priority order from high to low can be BWP11, BWP12, BWP13, BWP14;
- their priority order from high to low can be BWP21, BWP22, BWP23, BWP24;
- their priority order from high to low can be BWP31, BWP32, BWP33, BWP34.
- the base station After determining the priority of each BWP, the base station can determine the BWP combination according to the priority of each BWP to form BWP combination information.
- each BWP combination corresponds to a combination priority
- the BWP combination priority The order can be determined according to the priority of each BWP in the BWP combination.
- the base station may determine the combination priority of the BWP combination according to the descending order of the sum of the priority orders of the respective BWPs in the BWP combination. For example, for the BWP with the highest priority in the CC, the BWP combination with the highest combination priority may be formed; then, the BWP combination with the lower combination priority may be determined according to the descending order of the priority of each BWP.
- the BWP combination with the highest combination priority can be BWP11, BWP21, and BWP31, and the sum of the priority orders of the BWPs in this BWP combination is 3;
- the sum of the priority order of each BWP is 4, such as one of the following three combinations: BWP12, BWP21, BWP31; BWP11, BWP22, BWP31; BWP11, BWP21, BWP32.
- the base station can determine the priority order according to the actual situation.
- the priority order can be directly determined according to the size of the serial number, or the priority order can be determined randomly, or the priority order can be determined according to the sum of the BWP buffered data volumes. Etc., this embodiment is not limited.
- the base station can continue to determine the BWP combination with a lower combination priority, which will not be repeated here.
- the base station may determine the BWP combination information according to the combination priority of the BWP combination. For example, the base station may preset a priority threshold, and then form BWP combination information by combining BWPs whose combination priorities are higher than the preset threshold. For example, the base station may preset a priority threshold as a ratio (for example, 50%), and then combine BWPs with a combination priority in the top 50% to form BWP combination information.
- a priority threshold for example, 50%
- the base station may also determine the number of BWP combination types included in the combination information.
- the number may be the first number determined by the base station according to the load.
- the base station can determine that the combination information includes the first number of BWP combinations, and the combination priority of the first number of BWP combinations is higher than other BWP combinations.
- the base station can determine the BWP combination information according to the state of the BWP, so that each BWP combination in the BWP combination information has a higher probability of being activated than other BWP combinations, so the base station needs to inquire about the location of the corresponding DC subcarrier. The probability is also higher. For a BWP combination with a lower activation probability, the base station has a lower probability of querying the position of its corresponding DC subcarrier.
- the base station may not obtain the location of the DC sub-carrier with a low query probability, so as to reduce signaling overhead and performance pressure on the premise that the basic functions are not affected;
- the storage pressure is reduced, and the speed of querying the DC sub-carrier position according to the activated BWP combination is also accelerated.
- the base station may send the priority of each BWP combination in the combination information to the terminal, so that the terminal can determine the transmission of the DC subcarrier position based on the priority order.
- the terminal may receive the priority information of the at least one BWP combination sent by the base station, and determine the sending order of the DC subcarrier positions according to the priority information. Therefore, when sending the mapping relationship between each BWP combination and the DC subcarrier position to the base station, the terminal may send the mapping relationship to the base station according to the sending sequence.
- the base station when sending the BWP combination information to the terminal, may send the BWP combination and the priority identifier corresponding to the combination; or the base station may determine the arrangement order of the BWP combination in the BWP combination information according to the priority order, such as priority
- the order of each BWP combination in the BWP combination information is determined from high to low or from low to high, so that the terminal can determine the priority of the BWP combination according to the order from the front to the rear.
- the terminal may send the DC subcarrier positions according to the priority of each BWP combination from high to low, for example, may send the identifier of the BWP combination and the corresponding DC subcarrier positions, or may directly send the DC subcarrier positions etc., for details, reference may be made to the method of the embodiment shown in FIG. 3 , which will not be repeated here.
- the base station when receiving the DC sub-carrier positions sent by the terminal, may not receive all the DC sub-carrier positions, but a part of them in sequence.
- the base station receives the combination priority in the order of combination priority from high to low.
- the DC sub-carrier position corresponding to the higher BWP combination For a BWP combination with a higher combination priority, the terminal has a higher probability of activating each BWP in the BWP combination, so the base station has a higher probability of querying the location of its corresponding DC subcarrier; for a BWP combination with a lower combination priority , the probability of the terminal activating each BWP in the BWP combination is low, so the probability that the base station needs to query the position of its corresponding DC subcarrier is also low. For the location of the DC sub-carrier with a low probability of use, the terminal may not receive, which reduces the performance pressure, and can also speed up the query of the location of the DC sub-carrier.
- the base station may determine a second number of BWP combinations to be received according to the load of the base station; and then receive the second number of the DC subcarrier positions.
- the second quantity is negatively correlated with the load of the base station. That is, the higher the load of the base station, the less the number of DC sub-carrier positions received by the base station, and the lower the load of the base station, the greater the number of DC sub-carrier positions received by the base station.
- the second number may also be the same as the number of BWP combinations in the combination information, that is, all received, for example, may also be the first number in the foregoing embodiment, etc., which is not limited in this embodiment.
- FIG. 7 is a schematic flowchart of a method for sending bandwidth part combination according to an embodiment of the present disclosure.
- the bandwidth part combination receiving and sending method shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to 4G base stations, 5G base stations, and 6G base stations.
- the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
- the terminal may be a terminal to which the method for receiving and receiving a bandwidth part combination described in any of the foregoing embodiments is applicable.
- the method for receiving and sending bandwidth parts may include the following steps:
- step S701 the combination information of the bandwidth part BWP is sent to the terminal.
- the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the DC subcarrier position corresponding to the at least one BWP combination; wherein, the type of the BWP combination in the combination information , which is less than the types of combinations that can be formed by all the BWPs configured by the base station for the terminal.
- the base station may determine at least one BWP combination according to a preset method, and then the base station may send the at least one BWP combination to form BWP combination information to the terminal. Compared with the types of combinations that can be formed by all BWPs configured by the terminal, the number of types of BWP combinations determined by the base station according to the preset method is less.
- the terminal can receive the BWP combination information sent by the base station, so that the terminal can send the DC subcarrier position to the base station based on the BWP combination information, instead of sending the BWP combination that can be formed by all configured BWPs to the base station In other words, the terminal can send less data to the base station, which can save signaling overhead on the one hand, and reduce performance pressure on the other hand.
- FIG. 8 is a schematic flowchart of another method for receiving and sending bandwidth parts according to an embodiment of the present disclosure. As shown in Figure 8, the method further includes:
- step S801 the mapping relationship between each BWP combination and the DC subcarrier position in the at least one BWP combination sent by the terminal is received.
- the terminal after receiving the BWP combination information, the terminal determines, for each BWP combination in the combination information, that the activated BWP is the DC subcarrier of the terminal in the case of the BWP in the BWP combination. position, and then the terminal can send the mapping relationship between each BWP combination and the DC subcarrier position in the combination information to the base station.
- the base station may receive the mapping relationship, for example, the base station may also save the mapping relationship, and subsequently, the base station may determine the DC subcarrier position corresponding to the BWP combination currently activated by the terminal based on the mapping relationship.
- the base station may not send the combined information of the BWP to the terminal in all cases, but determines whether to send it according to the specific situation of the terminal. For example, the base station may receive the PA capability of the power amplifier reported by the terminal; and based on the PA capability, determine to send the combination information to the terminal, and determine the combination information.
- the base station may determine the number of PAs in the terminal according to the PA capability, and in response to the number of PAs being less than the number of component carrier CCs configured by the terminal, determine to send the number of PAs to the terminal. combination information.
- the PA of the terminal includes at least one target PA corresponding to multiple CCs.
- the base station may determine BWP combination information for each target PA for the target PA, and the BWPs in each BWP combination in the BWP combination information correspond to different CCs in the target PA.
- each PA of the terminal corresponds to at most one CC. Since the number of BWPs on each CC is limited, generally up to 4 BWPs, the mapping relationship between all BWPs and DC subcarrier positions can be sent to the terminal, and the amount of information occupied is not large.
- the base station may determine the first quantity of the BWP combination based on the load of the base station; wherein the first quantity is negatively correlated with the load of the base station; wherein the BWPs in the combination information
- the number of combinations is the same as the first number.
- the PA of the terminal in response to the number of PAs being less than the number of CCs used by the terminal, it is determined that the PA of the terminal includes at least one target PA, the target PA corresponding to a plurality of component carrier CCs; wherein , each CC corresponds to at least one BWP, and the BWPs in each BWP combination in the combination information correspond to different CCs.
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs on multiple CCs corresponding to the target PA.
- the BWPs in the BWP combination are in one-to-one correspondence with multiple CCs corresponding to the target PA.
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs on the multiple CCs corresponding to the target PA.
- the base station may determine the BWP combination according to the BWPs on all CCs corresponding to the target PA.
- the BWP in the BWP combination corresponds to the CC with the highest frequency band and the CC with the lowest frequency band among the multiple CCs corresponding to the target PA.
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs on the CC with the highest frequency band and the CC with the lowest frequency band among the CCs corresponding to the target PA.
- the base station may also determine the BWP combination according to the BWPs on some CCs in the multiple CCs corresponding to the target PA. In an example, the base station may determine the BWP combination according to the BWP on the CC with the highest frequency band and the CC with the lowest frequency band among the multiple CCs corresponding to the target PA.
- the base station may receive the channel state information and buffer status report of each BWP on the CC corresponding to the target PA sent by the terminal; and determine the target based on the channel state information and the buffer status report The channel state and the buffered data amount of each BWP on the CC corresponding to the PA; the combination information is determined according to the channel state and the buffered data amount.
- the base station may obtain channel state information and buffer state reports from the terminal. In an example, the base station can also determine at least one of the channel state and the buffer state of each BWP in the terminal by itself.
- the base station determines the combination information according to the channel state and the buffered data volume, including: determining a channel state threshold based on the channel state and buffered data volume of each BWP on the CC corresponding to the target PA and a buffered data volume threshold; wherein, the channel state of each BWP in each BWP combination in the combination information is better than the channel state threshold, and the buffered data volume is less than the buffered data threshold.
- the base station may also determine only one of the channel state threshold and the buffered data volume threshold, and determine the combination information as the channel state of each BWP in each BWP combination is better than the channel state threshold, or the buffer The amount of data is less than the cached data threshold.
- the base station determining the combination information according to the channel state and the buffered data amount includes:
- the priority of each BWP in each BWP on the CC is determined based on the channel state and the buffered data amount of each BWP on the CC; wherein the priority is related to the channel state is positively correlated, and the priority is negatively correlated with the amount of cached data; based on the priority of each BWP in each BWP on the CC to which it belongs, the combination information is determined in order of priority from high to low; wherein, the The combination priority of each BWP combination in the combination information is positively correlated with the priority of each BWP combination in the combination, and the combination priority of each BWP combination in the combination information is higher than the priority threshold.
- the base station may determine the priority of each BWP on the CC to which it belongs according to at least one of the channel state of each BWP and the amount of buffered data. Then, the base station may determine the BWP combination information according to the priority of the BWPs in the BWP combination. Generally speaking, the base station may add the BWP combination whose combination priority is higher than the threshold to the BWP combination information.
- the base station can determine the BWP combination information according to the state of the BWP, so that each BWP combination in the BWP combination information has a higher probability of being activated than other BWP combinations, so the base station needs to inquire about the location of the corresponding DC subcarrier. The probability is also higher. For a BWP combination with a lower activation probability, the base station has a lower probability of querying the position of its corresponding DC subcarrier.
- the base station may not obtain the location of the DC sub-carrier with a low query probability, so as to reduce signaling overhead and performance pressure on the premise that the basic functions are not affected;
- the storage pressure is reduced, and the speed of querying the DC sub-carrier position according to the activated BWP combination is also accelerated.
- the priority of the BWP combination is determined based on the priority of each BWP in the combination; the priority of each BWP combination in the combination information is sent to the terminal. a priority, so that the terminal can determine the sending order of the DC subcarrier positions based on the priority.
- the terminal may send the DC subcarrier positions according to the priority of each BWP combination from high to low, for example, may send the identifier of the BWP combination and the corresponding DC subcarrier positions, or may directly send the DC subcarrier positions Wait.
- the base station when receiving the DC sub-carrier positions sent by the terminal, may not receive all the DC sub-carrier positions, but a part of them in sequence.
- the base station can determine the number of BWP combinations to be received according to the requirements. Since the receiving is performed according to the priority from high to low, the DC sub-unit corresponding to the BWP combination with a higher combination priority can be received first. carrier, and the probability of these DC sub-carriers being used is also higher. Therefore, the base station can reduce the received data and reduce the performance pressure.
- the receiving the DC subcarrier position corresponding to each BWP combination in the at least one BWP combination sent by the terminal includes:
- a second quantity of BWP combinations to be received is determined; wherein the second quantity is negatively correlated with the load of the base station; the DC subcarrier positions of the second quantity are received.
- the present disclosure also provides an embodiment of a bandwidth part combined receiving apparatus.
- FIG. 9 is a schematic block diagram of an apparatus for receiving bandwidth partial combination according to an embodiment of the present disclosure.
- the bandwidth part combination receiving apparatus shown in this embodiment may be applicable to terminals, and the terminals include but are not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
- the terminal may communicate with a base station as a user equipment, and the base station includes but is not limited to a 4G base station, a 5G base station, and a 6G base station.
- the base station may be a base station to which the apparatus for transmitting a combination of bandwidth parts described in any subsequent embodiment is applicable.
- the bandwidth part combination receiving apparatus may include:
- the combination receiving module 901 is configured to receive combination information of the bandwidth part BWP sent by the base station, where the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine that the at least one BWP combination corresponds to The location of the DC sub-carrier, wherein the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all the BWPs configured by the base station for the terminal.
- the apparatus may further include:
- the location sending module 902 is configured to determine the DC subcarrier location corresponding to each BWP combination in the at least one BWP combination; and send the mapping relationship between each BWP combination and the DC subcarrier location to the base station.
- the apparatus may further include:
- a capability sending module 903 configured to report the power amplifier PA capability of the terminal to the base station, wherein the PA capability is used for the base station to determine to send the combination information to the terminal, and to determine the combination information .
- the terminal is provided with at least one power amplifier PA, the at least one PA includes at least one target PA, the target PA corresponds to a plurality of component carrier CCs, and each CC corresponds to at least one BWP, the The BWPs in the BWP combination correspond to different CCs.
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs on multiple CCs corresponding to the target PA.
- the apparatus may further include:
- the state reporting module 904 is configured to determine the channel state information and the buffer state report of each BWP on the CC corresponding to the target PA; report the channel state information and the buffer state report to the base station, wherein the The channel state information and the buffer state report are used for the base station to determine the combined information.
- the BWP in the BWP combination corresponds to the CC with the highest frequency band and the CC with the lowest frequency band among the multiple CCs corresponding to the target PA.
- the location sending module 902 is specifically configured to:
- the position of the DC subcarrier corresponding to the BWP combination In response to the fact that the position of the DC subcarrier corresponding to the BWP combination is inconsistent with the default relative position, send the description information of the position of the DC subcarrier corresponding to the BWP combination to the base station; or, in response to the DC subcarrier corresponding to the BWP combination.
- the position is consistent with the default relative position, and preset information is sent to the base station.
- the apparatus may further include:
- an order determination module 905, configured to receive the priority information of the at least one BWP combination sent by the base station; determine the sending order of the DC subcarrier positions according to the priority information;
- the location sending module 902 is specifically configured to: send the mapping relationship to the base station according to the sending sequence.
- the present disclosure also provides an embodiment of the bandwidth part combined sending apparatus.
- FIG. 10 is a schematic block diagram of an apparatus for receiving and sending bandwidth parts according to an embodiment of the present disclosure.
- the apparatus for receiving and sending bandwidth parts shown in this embodiment may be applicable to base stations, and the base stations include but are not limited to 4G base stations, 5G base stations, and 6G base stations.
- the base station may communicate with a terminal that is a user equipment, and the terminal includes but is not limited to electronic devices such as mobile phones, tablet computers, wearable devices, sensors, and Internet of Things devices.
- the terminal may be a terminal to which the apparatus for receiving and receiving a bandwidth part combination described in any of the foregoing embodiments is applicable.
- the apparatus for receiving and sending bandwidth parts may include:
- the combination sending module 1001 is configured to send the combination information of the bandwidth part BWP to the terminal, where the combination information includes at least one BWP combination, and the combination information is used to instruct the terminal to determine the corresponding BWP combination of the at least one BWP combination.
- DC subcarrier position wherein, the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs configured by the base station for the terminal.
- the apparatus further comprises:
- the location receiving module 1002 is configured to receive the mapping relationship between each BWP combination and the DC subcarrier location in the at least one BWP combination sent by the terminal.
- the apparatus further includes:
- the location determining module 1003 is configured to determine, based on the mapping relationship, the location of the DC subcarrier corresponding to the BWP combination currently activated by the terminal.
- the apparatus further includes:
- the combination determining module 1004 is configured to receive the PA capability of the power amplifier reported by the terminal; based on the PA capability, determine to send the combination information to the terminal, and determine the combination information.
- the combination determining module 1004 is specifically configured to determine the number of PAs in the terminal according to the PA capabilities; in response to the number of PAs being less than the number of component carriers CCs configured by the terminal, It is determined to send the combination information to the terminal.
- the apparatus further includes:
- a quantity determination module 1005 configured to determine a first quantity of the BWP combination based on the load of the base station; wherein, the first quantity is negatively correlated with the load of the base station; wherein, the BWP in the combination information
- the number of combinations is the same as the first number.
- the apparatus further comprises:
- a target PA determination module 1006 configured to, in response to the number of the PAs being less than the number of CCs used by the terminal, determine that the PA of the terminal includes at least one target PA, and the target PA corresponds to multiple component carriers CC; wherein, each CC corresponds to at least one BWP, and the BWPs in each BWP combination in the combination information correspond to different CCs.
- the types of BWP combinations in the combination information are less than the types of combinations that can be formed by all BWPs on multiple CCs corresponding to the target PA.
- the BWPs in the BWP combination are in one-to-one correspondence with multiple CCs corresponding to the target PA.
- the BWP in the BWP combination corresponds to the CC with the highest frequency band and the CC with the lowest frequency band among the multiple CCs corresponding to the target PA.
- the combination determination module 1004 is specifically configured to:
- the combination information is determined according to the channel state and the buffered data amount.
- the combination determination module 1004 is specifically configured to:
- the channel state threshold and the buffered data volume threshold are determined; wherein the channel state of each BWP in each BWP combination in the combination information is optimal at the channel state threshold, and the amount of buffered data is less than the buffered data threshold.
- the combination determination module 1004 is specifically configured to:
- the priority of each BWP in each BWP on the CC is determined based on the channel state and the buffered data amount of each BWP on the CC; wherein the priority is related to the channel state is positively correlated, and the priority is negatively correlated with the amount of cached data;
- the combination information is determined in descending order of priority; wherein, the combination priority of each BWP combination in the combination information is the same as that of each BWP combination in the combination.
- the priorities of BWPs are positively correlated, and the combination priority of each BWP combination in the combination information is higher than the priority threshold.
- the apparatus further comprises:
- the sequential sending module 1007 is configured to, for each BWP combination in the combination information, determine the priority of the BWP combination based on the priority of each BWP in the combination; send each BWP combination in the combination information to the terminal
- the combined priority is used for the terminal to determine the transmission order of the DC subcarrier positions based on the priority.
- the location receiving module 1002 is specifically configured to:
- a second quantity of BWP combinations to be received is determined; wherein the second quantity is negatively correlated with the load of the base station; the DC subcarrier positions of the second quantity are received.
- Embodiments of the present disclosure also provide an electronic device, including:
- processor configured to implement the above-mentioned method for receiving a bandwidth portion combination and/or a method for sending a bandwidth portion combination.
- Embodiments of the present disclosure also provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, implements the steps in the above-mentioned method for receiving a combination of bandwidth parts and/or a method for transmitting a combination of bandwidth parts.
- FIG. 11 is a schematic block diagram of an apparatus 1100 for combining bandwidth parts according to an embodiment of the present disclosure.
- the apparatus 1100 may be provided as a base station. 11, the apparatus 1100 includes a processing component 1122, a wireless transmit/receive component 1124, an antenna component 1126, and a signal processing portion specific to a wireless interface, and the processing component 1122 may further include at least one processor.
- One of the processors in the processing component 1122 can be configured to implement the bandwidth portion combining sending method.
- FIG. 12 is a schematic block diagram of a receiving apparatus 1200 for bandwidth partial combination according to an embodiment of the present disclosure.
- apparatus 1200 may be a mobile phone, computer, digital broadcast terminal, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
- apparatus 1200 may include at least one of the following components: processing component 1202, memory 1204, power supply component 1206, multimedia component 1208, audio component 1210, input/output (I/O) interface 1212, sensor component 1214, and communication Component 1216.
- the processing component 1202 generally controls the overall operation of the device 1200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
- the processing component 1202 may include at least one processor 1220 to execute the instructions to complete all or part of the steps of the above-mentioned method for receiving the bandwidth partial combination.
- processing component 1202 may include at least one module that facilitates interaction between processing component 1202 and other components.
- processing component 1202 may include a multimedia module to facilitate interaction between multimedia component 1208 and processing component 1202.
- Memory 1204 is configured to store various types of data to support operations at device 1200 . Examples of such data include instructions for any application or method operating on device 1200, contact data, phonebook data, messages, pictures, videos, and the like. Memory 1204 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
- SRAM static random access memory
- EEPROM electrically erasable programmable read only memory
- EPROM erasable Programmable Read Only Memory
- PROM Programmable Read Only Memory
- ROM Read Only Memory
- Magnetic Memory Flash Memory
- Magnetic or Optical Disk Magnetic Disk
- Power component 1206 provides power to various components of device 1200.
- Power components 1206 may include a power management system, at least one power source, and other components associated with generating, managing, and distributing power to device 1200 .
- Multimedia component 1208 includes a screen that provides an output interface between the device 1200 and the user.
- the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
- the touch panel includes at least one touch sensor to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
- the multimedia component 1208 includes a front-facing camera and/or a rear-facing camera. When the apparatus 1200 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
- Audio component 1210 is configured to output and/or input audio signals.
- audio component 1210 includes a microphone (MIC) that is configured to receive external audio signals when device 1200 is in operating modes, such as call mode, recording mode, and voice recognition mode.
- the received audio signal may be further stored in memory 1204 or transmitted via communication component 1216 .
- audio component 1210 also includes a speaker for outputting audio signals.
- the I/O interface 1212 provides an interface between the processing component 1202 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
- Sensor assembly 1214 includes at least one sensor for providing status assessment of various aspects of device 1200 .
- the sensor assembly 1214 can detect the open/closed state of the device 1200, the relative positioning of components, such as the display and keypad of the device 1200, and the sensor assembly 1214 can also detect a change in the position of the device 1200 or a component of the device 1200 , the presence or absence of user contact with the device 1200 , the orientation or acceleration/deceleration of the device 1200 and the temperature change of the device 1200 .
- Sensor assembly 1214 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
- Sensor assembly 1214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
- the sensor assembly 1214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
- Communication component 1216 is configured to facilitate wired or wireless communication between apparatus 1200 and other devices.
- Device 1200 may access wireless networks based on communication standards, such as WiFi, 2G or 3G, 4G LTE, 5G NR, or a combination thereof.
- the communication component 1216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
- the communication component 1216 also includes a near field communication (NFC) module to facilitate short-range communication.
- the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
- RFID radio frequency identification
- IrDA infrared data association
- UWB ultra-wideband
- Bluetooth Bluetooth
- apparatus 1200 may be implemented by at least one application specific integrated circuit (ASIC), digital signal processor (DSP), digital signal processing device (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), a controller, a microcontroller, a microprocessor, or other electronic components to implement the above-mentioned bandwidth part combination receiving method.
- ASIC application specific integrated circuit
- DSP digital signal processor
- DSPD digital signal processing device
- PLD programmable logic device
- FPGA field programmable gate array
- controller a microcontroller, a microprocessor, or other electronic components to implement the above-mentioned bandwidth part combination receiving method.
- a non-transitory computer-readable storage medium including instructions such as a memory 1204 including instructions, is also provided, and the instructions can be executed by the processor 1220 of the apparatus 1200 to implement the above-mentioned method for receiving a combination of bandwidth components.
- the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
- the single-carrier reporting method cannot meet the requirement of DC sub-carrier reporting when the number of PAs is less than the number of CCs, which will cause the base station to demodulate and cannot determine the sub-carriers. Compensation processing is performed depending on the location, thereby affecting the uplink demodulation performance.
- the method according to the present disclosure can not only solve the above problems, but also can reduce the problem of excessive signaling overhead caused by DC subcarrier reporting due to the way of setting priorities by the base station.
- the base station determines whether it needs to transmit the BWP combination priority to the terminal according to the PA capability (such as 1PA or 2PA) reported by the terminal, and the terminal feeds back the position of each BWP combined DC subcarrier to the base station according to the priority .
- the PA capability such as 1PA or 2PA
- the base station determines whether it needs to transmit BWP combined priority to the terminal according to the PA capability (such as 1PA or 2PA) reported by the terminal, and the terminal feeds back DC subcarriers to the terminal according to the received priority information Location.
- the PA capability such as 1PA or 2PA
- the base station may determine the PA capability according to the PA capability reported by the terminal, for example, in an embodiment, the base station may determine the PA capability according to the dualPA-Architecture reported by the terminal in the existing protocol.
- the base station determines whether the BWP combination priority needs to be transmitted to the terminal according to the PA capability (such as 1PA or 2PA) reported by the terminal. Equal to determine whether the BWP combined priority needs to be transmitted to the terminal. If the judgment is equal, it is not required, and if the judgment is not equal, it is required.
- the PA capability such as 1PA or 2PA
- the BWP combination priority refers to the preferred BWP combination on the configured CC.
- the priority combination from high to low is: BWP11-BWP22-BWP31, BWP11-BWP21-BWP34 , BWP14-BWP21-BWP-34,....
- the determination of the priority and the number of combinations are determined according to the channel state reported by the terminal, the buffered data and the load situation scheduled by the base station.
- the terminal feeds back the DC subcarrier position to the terminal according to the received priority information, and the terminal feeds back the position of each BWP combined DC subcarrier according to the above priority combination: BWP11-BWP22, BWP11-BWP21, BWP14-BWP21, ....
- the DC sub-carrier follows a preset rule, for example, in one embodiment, the DC sub-carrier is on the center sub-carrier of the BWP combination, the position information of the combined DC sub-carrier may not be reported, but only needs to be reported.
- the DC subcarriers of the BWP combination that do not meet the preset rules are reported.
- the DC sub-carrier is on the center sub-carrier of the BWP combination, which refers to taking the center positions of the two outermost BWP edges in the frequency domain.
- the base station After receiving the DC subcarrier position, the base station determines the terminal DC self-carrier position according to the activated BWP combination, and performs certain processing during demodulation to ensure demodulation performance.
- the BWP combination when the base station notifies the terminal of the BWP combination priority, the BWP combination does not include BWP indications on all CCs, but only needs to include BWP combination indications on the two outermost CCs, such as high to
- the order of low priority is: BWP12-BWP33, BWP14-BWP34, ...
- the determination of the priority and the number of combinations are determined according to the channel state reported by the terminal, the buffered data and the load situation scheduled by the base station.
- the base station determines whether it needs to transmit BWP combined priority to the terminal according to the PA capability (such as 1PA or 2PA) reported by the terminal, and the terminal feeds back DC subcarriers to the terminal according to the received priority information Location.
- the PA capability such as 1PA or 2PA
- the base station can determine the number of PAs according to the PA capability reported by the terminal. In another embodiment, the base station can not only determine the number of PAs according to the dualPA-Architecture reported by the terminal in the existing protocol, but also include the maximum bandwidth supported by the two PAs reported by the terminal. information. For example, taking the terminal configured with 3 CCs as an example, the maximum channel bandwidth supported by PA1 can cover two CCs, such as CC1 and CC2, while the maximum channel bandwidth supported by PA2 can only cover one CC, such as CC3.
- the base station determines, according to the PA capability reported by the terminal, the combined priority of the BWP that needs to be transmitted to the terminal.
- the reported priority combination only includes CC1 and CC2, such as: BWP11-BWP22, BWP11-BWP21, BWP14-BWP21,....
- the determination of the priority and the number of combinations are determined according to the channel state reported by the terminal, the buffered data and the load situation scheduled by the base station.
- the above method is not only applicable to multi-uplink CA, but also applicable to dual link system, ie DC.
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本公开涉及带宽部分组合接收方法和装置、带宽部分组合发送方法和装置。其中,所述带宽部分组合接收方法包括:接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置,其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。根据本公开,终端可以接收基站发送的该BWP组合信息,从而终端可以基于该BWP组合信息来确定BWP组合对应的直流子载波,而不是枚举全部BWP所能形成的BWP组合的直流子载波位置,减少了终端的性能压力。
Description
本公开涉及通信技术领域,具体而言,涉及带宽部分组合接收方法和装置、带宽部分组合发送方法和装置,电子设备和计算机可读存储介质。
5G等通信系统中引入了BWP(Bandwidth Part,带宽部分)机制,可以在一个子载波上配置多个BWP,并激活其中一个BWP供终端使用。同时,5G等通信系统还可以通过载波聚合或双连接等方式,将多个子载波聚合在一起,以同时利用多个子载波来进行信息传输。其中,聚合后的载波中的每个子载波,可以称为分量载波CC。一般的,每一个CC都可以配置至少一个BWP,且每个分量载波CC所配置的BWP中有一个可以被激活。由此,终端中可能被激活的每种BWP组合包括每个CC上的一个BWP。
针对可能被激活的每种BWP组合,终端还需要确定BWP组合对应的相关信息,例如直流子载波位置。相关技术中,终端可以枚举所配置的BWP所能形成的全部BWP组合,再分别确定与每个BWP组合对应的相关信息。然而,由于BWP组合的种类数量多,为全部BWP组合确定相关信息对终端负载造成浪费。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是根据本公开的实施例示出的一种分量载波CC的示意图。
图2是根据本公开的实施例示出的一种带宽部分组合接收方法的示意流程图。
图3是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。
图4是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。
图5是根据本公开的实施例示出的另一种分量载波CC的示意图。
图6是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。
图7是根据本公开的实施例示出的一种带宽部分组合发送方法的示意流程图。
图8是根据本公开的实施例示出的另一种带宽部分组合接发送方法的示意流程图。
图9是根据本公开的实施例示出的一种带宽部分组合接收装置的示意框图。
图10是根据本公开的实施例示出的一种带宽部分组合接发送装置的示意框图。
图11是根据本公开的实施例示出的一种用于带宽部分组合发送的装置的示意框图。
图12是根据本公开的实施例示出的一种用于带宽部分组合接收的装置的示意框图。
发明内容
有鉴于此,本公开的实施例提出了带宽部分组合接收方法和装置、带宽部分组合发送方法和装置,以解决相关技术中的技术问题。
根据本公开实施例的第一方面,提出一种带宽部分组合接收方法,应用于终端,所述方法包括:
接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
根据本公开实施例的第二方面,提出一种带宽部分组合接发送方法,应用于基站,所述方法包括:
向终端发送带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载 波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
根据本公开实施例的第三方面,提出一种带宽部分组合接收装置,应用于终端,所述装置包括:
组合接收模块,被配置为接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,且所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
根据本公开实施例的第四方面,提出一种带宽部分组合接发送装置,应用于基站,所述装置包括:
组合发送模块,被配置为向终端发送带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
根据本公开实施例的第五方面,提出一种电子设备,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为实现上述带宽部分组合接收方法和/或带宽部分组合发送方法。
根据本公开实施例的第六方面,提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述的带宽部分组合接收方法和/或带宽部分组合发送方法中的步骤。
根据本公开的实施例,终端可以接收基站发送的该BWP组合信息,从而终端可以基于该BWP组合信息来确定BWP组合对应的直流子载波,而不是枚举全部BWP所能形成的BWP组合的直流子载波位置,减少了终端的性能压力;进一步的,若终端需要向基站发送直流子载波位置,终端可以向基站发送更少的数据,可以节约信令开销。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
随着移动通信技术和芯片处理能力的发展,为FFT(fast Fourier transform,快速傅里叶变换)和OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)技术提供了硬件支持,也成为了4G、5G等通信技术的重要基础。OFDM是以正交子载波为基础的技术,终端或者基站在发射信号时,由于本振的相位噪声,会在载频处产生一个较大的噪声,可以称为载波泄露,从而使得本振所在的子载波上信号会产生失真。通常可以将该本振所在的子载波称为直流子载波(DC subcarrier)。
在通信系统中,为了避免载波泄露的影响,提升基站的解调性能,基站需要知 道终端的直流子载波位置,以进行补偿处理等。
在4G系统中,终端与基站的系统带宽一致,因此基站可以直接根据系统带宽来确定终端的直流子载波位置。
在5G等通信系统中,一个单载波内可以配置多个BWP,使得该终端的带宽不再是固定不变的,而是由激活的BWP来决定,从而,终端中直流子载波的位置也与所激活的BWP相关,即随着激活的BWP不同而发生变化。
在相关技术中,终端可以在确定被激活的BWP后,向基站发送直流子载波的位置。然而,终端中BWP的激活状态变更频率较高,如果每次变更BWP激活状态后,终端都重新向基站发送直流子载波的位置,既浪费了通信资源,也增大了终端和基站的性能压力。
为了避免上述相关技术中的问题,终端可以预先向基站发送所有可能的激活BWP所对应的直流子载波位置,例如可以发送各BWP与直流子载波位置的映射关系,以指示在该BWP被激活的情况下直流子载波位置。例如终端可以通过txDirectCurrentLocation消息来发送。在这种方法中,基站可以在确定终端所激活的BWP后,可以直接查询该映射关系来确定终端中直流子载波的位置,而不需要再单独向终端获取直流子载波位置,既节约了通信资源,也减轻了终端和基站的性能压力。
终端中可以配置一个或多个本地振荡器(简称本振)和功率放大器(简称功放,PowerAmplifier,PA),且本振和PA通常是一一对应的,每个本振都对应一个直流子载波。一般的,终端可以针对每个本振,可通过上述方法来发送该本振对应的直流子载波位置。
在5G等通信系统中,终端可以配置载波聚合(CA,Carrier Aggregation)、双连接(DC,Dual-Connectivity)等,将多个子载波聚合在一起,以同时利用多个子载波来进行信息传输。其中,聚合在一起的子载波,可以称为分量载波CC(Component Carrier)。
终端在配置多个CC的情况下,可以为每个CC确定一个对应的PA。这里,PA对应CC是指通过PA来发送该PA所对应的CC。若CC的数量不大于PA的数量,则每个PA至多对应一个CC,针对每个PA,终端可以确定该PA对应的CC上各BWP与直流子载波位置的映射关系;若CC的数量大于PA的数量,则存在与多个CC对应的PA,为方便描述,这里将与多个CC对应的PA称为目标PA,该目标PA对应的直 流子载波位置与该目标PA所对应的多个CC中所激活的BWP组合相关。
在这种情况下,终端可以针对每个目标PA:确定出该目标PA上所有CC中所配置的全部BWP所能形成的BWP组合的种类。按照BWP的相关技术,可以从每个CC上的至少一个CC中确定一个被激活的CC,也就是每个CC激活一个BWP。基于此,本实施例中的每个BWP组合中,可以包括分别属于该目标PA上不同CC的一个BWP。以图1所示的一个目标PA所对应的CC为例,该目标PA对应于CC1和CC2,其中,CC1配置有4个BWP,分别为BWP11、BWP12、BWP13和BWP14;CC2也配置有4个BWP,分别为BWP21、BWP22、BWP23和BWP24。对于该目标PA,其所能形成的BWP组合由属于CC1的一个BWP、以及属于CC2的一个BWP组成,即可以形成16种BWP组合。
然而,一个目标PA可以对应多个CC,每个CC也可以配置多个BWP,使得该目标PA上所有CC中所配置的全部BWP所能形成的BWP组合的种类数量众多,例如图1所示,该目标PA对应的CC所配置的BWP可以形成16种不同的BWP组合。而随着CC的数量增多,所形成的BWP组合的数量也会急剧增加。若终端将所能形成组合的所有种类对应的直流子载波位置均发送给基站,则需要传输的信息量较大,浪费了信令开销,也给终端和基站造成了较大的性能压力。
有鉴于此,本公开的实施例提出了BWP组合发送方法和BWP组合接收方法,以解决上述技术问题。
图2是根据本公开的实施例示出的一种带宽部分组合接收方法的示意流程图。本实施例所示的带宽部分组合接收方法可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站。在一个实施例中,所述基站可以是后续任一实施例所述的带宽部分组合发送方法所适用的基站。
如图2所示,所述带宽部分组合接收方法可以包括以下步骤:
在步骤S201中,接收基站发送的带宽部分BWP的组合信息。
其中,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
在一个实施例中,基站可以按照预设方法来选择至少一种BWP组合,然后, 基站可以将该至少一种BWP组合形成BWP组合信息发送给终端。相较于终端配置的全部BWP所能形成组合的种类,基站按照预设方法所确定的BWP组合的种类数量更少。
在一个实施例中,终端可以确定BWP组合对应的直流子载波。其中,BWP组合可以是BWP组合信息中的全部BWP组合,或者也可以是部分BWP组合,或者终端也可以自行确定一种或多种BWP组合等,只要该BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类,本实施例不进行具体限定。
根据上述实施例,终端可以接收基站发送的该BWP组合信息,从而终端可以基于该BWP组合信息来确定BWP组合对应的直流子载波,而不是枚举全部BWP所能形成的BWP组合的直流子载波位置,减少了终端的性能压力;进一步的,若终端需要向基站发送直流子载波位置,终端可以向基站发送更少的数据,可以节约信令开销。
图3是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。如图3所示,所述方法还可以包括:
在步骤S301中,确定所述至少一种BWP组合中每种BWP组合对应的直流子载波位置。
在一个实施例中,终端在接收到BWP的组合信息后,针对该组合信息中的每一种BWP组合,分别确定激活的BWP为在该BWP组合中的BWP的情况下,终端的直流子载波位置。
以图1为例,针对BWP组合为BWP11和BWP22,终端可以确定在CC1中激活BWP11、在CC2激活BWP22的情况下,终端的直流子载波的位置如图1中的直流子载波所示。
需要说明的是,这里只是以图1为例示出了一种BWP组合的情况,若BWP组合包括其他BWP(例如BWP组合为BWP12和BWP22),终端也可以确定在激活的BWP为该BWP组合中的BWP的情况下,终端中直流子载波的位置。
在一个实施例中,直流子载波位置可以表示为具体的频率,或者也可以标识为该直流子载波位置相对于预设的基准频率的偏移量,或者还可以通过其他方式来表示,本实施例不进行限定。
在步骤S302中,向所述基站发送每种BWP组合与直流子载波位置的映射关系。
在一个实施例中,终端在确定BWP组合信息中每种BWP组合对应的直流子载波位置后,可以向基站发送每种BWP组合与直流子载波位置的映射关系。
在一个例子中,终端可以发送BWP组合的标识、以及对应的直流子载波位置。例如,终端可以发送表格,其中每个表项包括一种BWP组合和该BWP组合对应的直流子载波位置;或者,终端可以发送键值对,每个键值对中包括一种BWP组合和该BWP组合对应的直流子载波位置等等。这里表格和键值对只是示例性说明,在实际应用中,终端还可以通过其它形式来体现BWP组合与直流子载波位置的映射关系。
在一个例子中,终端也可以按照指定的顺序来确定直流子载波位置的排列顺序,从而通过顺序确定该直流子载波位置对应的BWP组合。例如,终端可以按照BWP组合信息中各个BWP的排列顺序,确定直流子载波位置的排列顺序;或者,BWP组合信息中还可以包括各BWP的优先级,则终端可以根据该优先级顺序确定直流子载波位置的排列顺序,例如按照优先级从高到低的顺序作为该直流子载波位置的排列顺序。
在一个例子中,终端中可以预先为直流子载波设置一个默认相对位置,例如可以BWP组合中各BWP所占的频段中最高频率和最低频率的频率中心点,或者也可以是相对于中心点存在指定偏移量,比如相对于中心点偏移7.5kHz等。
在一个例子中,终端响应于所述BWP组合对应的直流子载波位置与默认相对位置不一致,向所述基站发送所述BWP组合对应的直流子载波位置的描述信息;或者,响应于所述BWP组合对应的直流子载波位置与默认相对位置一致,向所述基站发送预设信息。
其中,描述信息可以用于供终端确定直流子载波位置,例如可以是直流子载波的频率,或者可以是直流子载波位置相对于预设基准频率的偏移量,或者可以是直流子载波位置相对于频率中心点的偏移量等。
而当直流子载波位置与默认相对位置一致时,为了减少数据量,终端可以不再发送具体的直流子载波位置,而是直接发送一个预设信息,指示基站该直流子载波位置为预先确定的默认相对位置。其中,默认相对位置可以是协议规定,或者也可以是终端与基站预先协商确定的等,本实施例不进行限定。一般来说,预设信息的数据量比直流子载波位置的描述信息少,例如预设信息可以仅占1个比特位。由此,根据本实施例的方法,可以进一步减少终端向基站发送的信息量,减少信令开销。
需要说明的是,上述终端发送映射关系的方法只是示例性说明,在实际应用中还可以包括其他方法,本实施例不进行限定。
在一个实施例中,基站接收终端发送的所述至少一种BWP组合中每种BWP组合与直流子载波位置的映射关系。
根据该映射关系,基站可以确定终端当前激活的BWP组合对应的直流子载波位置。由此,基站不需要在为终端确定激活的BWP组合后,再向终端查询该BWP组合对应的直流子载波位置,而是直接根据预先收到的映射关系来确定直流子载波位置,减少了信令开销,避免了信令交互导致的时延。
在一个实施例中,基站可以向所有终端均发送BWP组合信息。
在一个实施例中,基站也可以不向所有的终端均发送BWP组合信息,而是根据终端的PA能力,来确定是否需要向该终端发送BWP组合信息,下面结合图4进行说明。
图4是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。如图4所示,所述方法还可以包括:
步骤S401:向所述基站上报所述终端的功放PA能力。其中,所述PA能力用于供所述基站确定向所述终端发送所述组合信息,以及确定所述组合信息。
在一个实施例中,基站可以接收终端上报的PA能力,并基于所述PA能力,确定向终端发送所述组合信息、以及确定所述组合信息。
在一个实施例中,终端上报的PA能力中可以包括终端的PA数量。需要说明的是,由于终端中本振与PA为一一对应,因此该PA数量也就是本振数量,为方便描述,下文不再进行区分。
在一个实施例中,若PA的数量少于终端所配置的CC数量,则终端所配置的至少一个PA中包括至少一个对应多个CC的目标PA。针对对应于一个CC的PA,由于一个CC最多配置4个BWP,而为了简化方案,基站可以不向终端发送BWP组合信息,而由基站直接发送所有BWP与直流子载波位置的对应关系,不会造成过大的信令开销。
针对对应于多个CC的目标PA,该PA对应的多个CC中的BWP所能形成的BWP组合数量较多,若发送所有BWP与直流子载波位置的对应关系会造成过大的信 令开销。基于此,在一个实施例中,基站可以根据PA能力确定终端中PA的数量,响应于所述PA的数量少于所述终端所配置的分量载波CC的数量,确定向所述终端发送所述组合信息。
在一个实施例中,响应于所述PA的数量不少于所述终端所配置的分量载波CC的数量,基站可以确定不向所述终端发送所述组合信息。由此,基站可以减少所需发送的信息,节约通信资源。
在一个实施例中,基站在确定需要向终端发送BWP组合信息的情况下,可以根据自身的负载来确定该组合信息中所需要的包括的BWP组合的种类数量。为便于区分,可以将BWP组合信息中BWP组合的种类数量记为第一数量。
例如,基站可以确定第一数量与基站的负载成负相关,基站的负载越高,则BWP组合信息中所包含的BWP组合的种类越少;基站的负载越低,则BWP组合信息中所包含的BWP组合的种类越多。基站确定第一数量的具体方法可以根据实际情况而定,本实施例在此不进行限定。
在一个实施例中,基站在确定需要向终端发送BWP组合信息的情况下,可以根据PA能力来确定组合信息,即确定组合信息中BWP组合的具体种类。
在一个例子中,PA能力可以包括PA所支持的最大信道带宽。
基于此,在一个实施例中,基站可以根据PA能力确定终端中各PA所支持的最大信道带宽,同时,基站可以根据终端所配置的多个CC的带宽,确定每个PA所对应的CC。例如,终端中包括两个PA,终端配置有三个CC,其中一个PA所支持的最大带宽仅能覆盖其中一个CC,而另一个PA所支持的最大带宽可以覆盖另外两个CC,则基站可以据此确定PA与CC的对应关系。
在一个实施例中,若终端配置的PA数量和终端配置的CC数量较多,例如大于2个,则基站较难根据PA所支持的最大带宽和每个CC的带宽来确定PA与CC的对应关系。为了避免误差,终端可以向基站上报终端中每个PA所对应的CC,例如可以发送PA与CC的对应关系。由此,基站可以确定每个PA分别所对应的CC。
在一个实施例中,若终端中PA的数量少于终端所配置的CC数量,可以确定该终端中所设置的PA中包括至少一个目标PA,所述目标PA对应多个分量载波CC。在目标PA所对应的多个CC中,每个CC对应至少一个BWP。
在一个实施例中,基站向终端发送的BWP组合信息,可以是与目标PA对应 的BWP组合信息,而该BWP组合信息中的每种BWP组合中,每个BWP属于该目标PA中的不同CC。在一个实施例中,该组合信息中BWP组合的种类,少于目标PA对应的多个CC上的BWP所能形成的全部组合的种类。
以图1为例,若目标PA对应于CC1和CC2,且CC1和CC2分别配置有4个BWP。对于该目标PA,该目标PA对应的两个CC上的BWP所能形成的BWP组合中,每种BWP组合中的BWP分别属于不同CC,则所能形成的种类为16种,分别为:BWP11和BWP21;BWP11和BWP22;BWP11和BWP23;BWP11和BWP24;BWP12和BWP21;BWP12和BWP22;BWP12和BWP23;BWP12和BWP24;BWP13和BWP21;BWP13和BWP22;BWP13和BWP23;BWP13和BWP24;BWP14和BWP21;BWP14和BWP22;BWP14和BWP23;BWP14和BWP24。根据本实施例所述的方法,基站可以向终端发送上述所能形成的16种BWP组合中的部分种类,例如可以是其中5种、10种等,只要少于16种即可,本实施例不进行限定。
在一个实施例中,终端可以接收到基站发送的BWP组合信息,例如上述示例中基站发送的5种、10种等,并分别确定每种BWP组合对应的直流子载波,并向基站发送每种BWP组合与直流子载波位置的映射关系。相较于相关技术中终端将目标PA对应的多个CC上的BWP所能形成的所有BWP组合(例如上述16种)对应的直流子载波位置均发送给基站,本实施例方法大大减少了终端向基站发送的信息的数据量,既可以节省信令开销,也可以减少终端和基站的能耗。
在一个实施例中,基站在确定BWP组合信息时,可以根据目标PA对应的所有CC上的BWP来确定BWP组合,例如可以将BWP组合确定为每种BWP组合中的BWP与目标PA对应的多个CC一一对应。
如图5所示,以目标PA对应三个CC(即图5中的CC1、CC2和CC3)为例,其中,CC1上包括4个BWP(即图5中的BWP11、BWP12、BWP13、BWP14),CC2上包括4个BWP(即图5中的BWP21、BWP22、BWP23、BWP24)、CC3上也包括4个BWP(即图5中的BWP31、BWP32、BWP33、BWP34)。
基站在确定BWP组合信息时,可以分别从CC1上的4个BWP中选择一个BWP、从CC2上的4个BWP中选择一个BWP、从CC3上的4个BWP中选择一个BWP,得到3个BWP作为一种BWP组合,采用同样的方法,基站可以按照需求多次上述选择过程,继续得到其他不同种类的BWP组合。由此,BWP组合中的BWP与目标PA对应的3个CC一一对应。
在一个实施例中,基站在确定BWP组合信息时,也可以根据目标PA对应的多个CC中的部分CC上的BWP来确定BWP组合,例如可以将BWP组合确定为每种BWP组合中的BWP与目标PA对应的多个CC中的部分CC一一对应。例如,若目标PA对应3个CC,则可以根据该3个CC中的其中2个CC上的BWP来确定BWP组合。
在一个例子中,基站可以根据目标PA对应的多个CC中,所属频段最高的CC和所述频段最低的CC上的BWP来确定BWP组合。例如可以将BWP组合确定为每种BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。
仍以图5为例,目标PA对应的CC1、CC2和CC3中,所属频段最高的CC为CC3,所属频段最低的CC为CC1。从而,基站在确定BWP组合信息时,可以分别从CC1上的4个BWP中选择一个BWP,从CC3上的4个BWP中选择一个BWP,得到2个BWP作为一种BWP组合,采用同样的方法,基站可以按照需求多次上述选择过程,继续得到其他不同种类的BWP组合。由此,BWP组合中的BWP与目标PA对应的CC1和CC3对应。
需要说明的是,终端中的直流子载波位置与被激活的BWP组合相关,而比较常见的,直流子载波位置与所属频段最低的BWP和所属频段最高的BWP相关。根据本实施例中的方法,在目标PA对应超过2个CC时,可以根据所属频段最高的CC和所属频段最低的CC上的BWP来确定BWP组合,而不是根据所有CC上的BWP来确定BWP组合,既可以减少BWP组合的数量,也可以减少了每个BWP组合中的信息量,从而可以节省信令开销、以及减少终端和基站的能耗。
在一个实施例中,终端可以向基站发送辅助信息来辅助基站确定BWP组合信息。例如,该辅助信息可以包括BWP的信道状态信息和缓存状态报告中的至少一个。下面结合图6进行说明。
图6是根据本公开的实施例示出的另一种带宽部分组合接收方法的示意流程图。如图6所示,所述方法还可以包括:
在步骤S601中,确定所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告。
在一个实施例中,终端可以确定基站所需要的BWP状态,例如,若基站根据 目标PA对应的所有CC上的BWP来确定BWP组合,则终端可以将目标PA对应的所有CC上的每个BWP的状态发送给基站;或者,若基站根据目标PA对应的多个CC中的部分CC上的BWP来确定BWP组合,则终端可以将基站所需要的部分CC上的每个BWP的状态发送给基站,比如可以是目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC上的每个BWP的状态。
在一个实施例中,BWP的状态可以包括BWP的信道状态信息和缓存状态报告中的至少一个。
其中,信道状态信息可以包括信道功率RSRP、信噪比SNR/SINR、信道时延等中的至少一种,用于指示BWP的信道状态。一般来说,信道功率越大,BWP的信道状态越优;信噪比越大,BWP的信道状态越优;信道时延越小,BWP的信道状态越优。而BWP的信道状态越优,该BWP被激活的概率越高。当然,信道状态信息还可以包括其他指示BWP的信道状态的信息,本实施例只是示例性说明,并不进行限定。
其中,缓存状态报告中可以包括终端中待发送的数据量,即缓存数据量。一般来说,缓存数据量越小,BWP的信道越空闲,BWP被激活的概率越高。
在步骤S602中,向所述基站上报所述信道状态信息和所述缓存状态报告。其中,所述信道状态信息和所述缓存状态报告用于供所述基站确定所述组合信息。
在一个实施例中,终端可以将信道状态信息和缓存状态报告中的至少一个发送给基站。
在一个实施例中,基站可以基于所述信道状态信息和缓存状态报告中的至少一个,确定所述目标PA对应的CC上每个BWP的信道状态和缓存数据量中的至少一个;并根据所述信道状态和所述缓存数据量中的至少一个来确定所述组合信息。
在一个实施例中,基站可以接收多个终端上报的信息,并综合起来确定每个BWP的信道状态。举例来说,基站可以根据所有终端的缓存数据量之和来确定该BWP的状态。具体实现基站可以根据实际情况确定,本实施例不进行限定。
在一个实施例中,基站可以基于所述目标PA对应的CC上每个BWP的信道状态和缓存数据量,确定信道状态阈值和缓存数据量阈值;其中,所述组合信息中每个BWP组合中的每个BWP的信道状态优于所述信道状态阈值、且缓存数据量少于所述缓存数据阈值。
在一个例子中,信道状态阈值和缓存数据量阈值可以是预设的具体数值,例如可以预设信道功率阈值N1、信噪比阈值N2、信道时延阈值N3、缓存数据量阈值N4中的至少一个。基于此,基站可以根据每个BWP的信道状态和缓存数据量,筛选出信道状态优于阈值,缓存数据量少于阈值的所有BWP,然后基于筛选出的BWP来确定BWP组合。
在一个例子中,信道状态阈值和缓存数据量阈值也可以是预设比例,例如可以预设比例为50%。从而,基站可以将信道状态和缓存数据量均为所有BWP中前50%的BWP筛选出来;或者基站也可以将信道状态或缓存数据量为所有BWP中前50%的BWP筛选出来,然后基于筛选出的BWP来确定BWP组合。其中,信道状态前50%是指信道状态优于其他50%的BWP;缓存数据量前50%是指缓存数据量少于其他50%的BWP。
在一个例子中,基站也可以针对所述目标PA对应的CC,基于该CC上每个BWP的信道状态和缓存数据量,确定每个BWP在该CC上各BWP中的优先级;然后基于每个BWP在所属CC上各BWP中的优先级,按照优先级从高到低的顺序确定至少一个BWP组合。
其中,所述优先级与所述信道状态成正相关、所述优先级与所述缓存数据量成负相关;所述组合信息中每个BWP组合的组合优先级与该组合中每个BWP的优先级成正相关,且所述组合信息中每个BWP组合的组合优先级高于优先级阈值。
需要说明的是,本实施例中BWP优先级的高低实质上可以视为该BWP被激活的概率,BWP的信道状态越优,BWP的缓存数据量越少,该BWP被激活的概率越高,则可以确定该BWP优先级越高。
举例来说,基站可以针对目标PA对应的CC,例如目标PA对应的所有CC,或目标PA对应的所有CC中的部分,分别确定该CC中每个BWP在该CC中的优先级顺序。
例如对于图5中的CC1-CC3,可以分别确定每个CC中各BWP的优先级顺序。例如,对于CC1上的4个BWP,其优先级顺序从高到低可以是BWP11、BWP12、BWP13、BWP14;对于CC2上的4个BWP,其优先级顺序从高到低可以是BWP21、BWP22、BWP23、BWP24;对于CC3上的4个BWP,其优先级顺序从高到低可以是BWP31、BWP32、BWP33、BWP34。
在确定每个BWP的优先级后,基站可以根据每个BWP的优先级,确定BWP组合,形成BWP组合信息,该BWP组合信息中,每种BWP组合对应一个组合优先级,该BWP组合优先级的顺序可以根据该BWP组合中每个BWP的优先级来确定。
举例来说,基站可以根据BWP组合中各个BWP的优先级顺序之和从小到大的顺序,确定BWP组合的组合优先级。例如,对于CC中优先级最高的BWP,可以形成组合优先级最高的BWP组合;然后可以按照每个BWP优先级降低的顺序,确定组合优先级降低的BWP组合。例如图5中的CC1-CC3,组合优先级最高的BWP组合可以是BWP11、BWP21、BWP31,该BWP组合中各BWP优先级顺序之和为3;然后可以确定组合优先级次之的BWP组合可以是各BWP优先级顺序之和为4,比如以下三种组合中的其中一个:BWP12、BWP21、BWP31;BWP11、BWP22、BWP31;BWP11、BWP21、BWP32。当然,对于上述三种组合的优先级顺序,基站可以根据实际情况进行确定,例如可以直接按照序号大小确定优先级顺序,或者随机确定优先级顺序,或者根据BWP缓存数据量之和确定优先级顺序等等,本实施例不进行限定。采用相同的方法,基站可以继续确定组合优先级更低的BWP组合,这里不再进行赘述。
在一个例子中,基站可以根据BWP组合的组合优先级,来确定BWP组合信息。例如,基站可以预设一个优先级阈值,然后由组合优先级高于预设阈值的BWP组合形成BWP组合信息。举例来说,基站可以预设优先级阈值为比例(例如50%),然后将组合优先级在前50%的BWP组合形成BWP组合信息。
或者,基站也可以确定组合信息中所包含的BWP组合种类的数量,在一个例子中,该数量可以是基站根据负载所确定的第一数量。由此,基站可以确定组合信息中包括该第一数量的BWP组合,且该第一数量的BWP组合的组合优先级高于其他BWP组合。
根据上述实施例,基站可以按照BWP的状态来确定BWP组合信息,从而BWP组合信息中的各BWP组合相对于其他BWP组合被激活的概率较高,从而基站需要查询其对应的直流子载波位置的概率也较高。对于被激活概率较低的BWP组合,基站查询其对应的直流子载波位置的概率也较低。因此,基站可以不获取该查询概率较低的直流子载波位置,在保证不影响基本功能的前提下,减少信令开销,降低性能压力;同时,基站所需要保存的映射关系也较少,既减少了存储压力,也加快了后续根据激活的BWP组合查询直流子载波位置的速度。
在一个实施例中,基站在确定BWP组合的优先级后,可以向终端发送所述组 合信息中每个BWP组合的优先级,以供所述终端基于所述优先级确定直流子载波位置的发送顺序。
在一个实施例中,终端可以接收所述基站发送的所述至少一种BWP组合的优先级信息,并根据所述优先级信息确定所述直流子载波位置的发送顺序。由此,终端在向所述基站发送每种BWP组合与直流子载波位置的映射关系时,可以根据所述发送顺序,向所述基站发送所述映射关系。
在一个例子中,基站在向终端发送BWP组合信息时,可以发送BWP组合以及该组合对应的优先级标识;或者基站可以按照优先级顺序确定BWP组合在BWP组合信息中的排列顺序,例如优先级从高到低或从低到高确定BWP组合信息中各BWP组合从前到后的顺序,由此终端可以根据该从前到后的顺序确定BWP组合的优先级。
在一个例子中,终端可以根据各BWP组合优先级从高到低的顺序来发送直流子载波位置,例如可以发送BWP组合的标识以及对应的直流子载波位置,或者也可以直接发送直流子载波位置等,具体可以参见图3所示实施例的方法,这里不再赘述。
在一个实施例中,基站在接收终端发送的直流子载波位置时,可以不是接收所有的直流子载波位置,而是按顺序接收其中的一部分。
需要说明的是,由于终端在发送直流子载波位置时,是根据直流子载波位置对应的BWP组合的组合优先级来发送的,因此,基站按组合优先级从高到低的顺序接收组合优先级较高的BWP组合对应的直流子载波位置。对于组合优先级较高的BWP组合,终端激活该BWP组合中各BWP的概率较高,从而基站需要查询其对应的直流子载波位置的概率也较高;而对于组合优先级较低的BWP组合,终端激活该BWP组合中各BWP的概率较低,从而基站需要查询其对应的直流子载波位置的概率也较低。对于使用概率较低的直流子载波位置,终端可以不进行接收,降低性能压力,也可以加快查询直流子载波位置的速度。
在一个例子中,基站可以根据基站的负载,确定所需接收的BWP组合的第二数量;然后接收所述第二数量的所述直流子载波位置。
其中,所述第二数量与所述基站的负载成负相关。也就是说,基站的负载越高,基站所接收的直流子载波位置的数量越少,基站的负载越低,基站所接收的直流子载波位置的数量越多。
在一个例子中,该第二数量也可以与组合信息中BWP组合的数量相同,即全 部接收,例如也可以是上述实施例中的第一数量等,本实施例不进行限定。
图7是根据本公开的实施例示出的一种带宽部分组合发送方法的示意流程图。本实施例所示的带宽部分组合接发送方法可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。在一个实施例中,所述终端可以是上述任一实施例所述带宽部分组合接接收方法所适用的终端。
如图7所示,所述带宽部分组合接发送方法可以包括以下步骤:
在步骤S701中,向终端发送带宽部分BWP的组合信息。
其中,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
在一个实施例中,基站可以按照预设方法来确定至少一种BWP组合,然后,基站可以将该至少一种BWP组合形成BWP组合信息发送给终端。相较于终端配置的全部BWP所能形成组合的种类,基站按照预设方法所确定的BWP组合的种类数量更少。
根据上述实施例中,终端可以接收基站发送的该BWP组合信息,从而终端可以基于该BWP组合信息来向基站发送直流子载波位置,而不是向基站发送所配置的全部BWP所能形成的BWP组合的直流子载波位置,也就是说,终端可以向基站发送更少的数据,一方面可以节约信令开销,另一方面也减轻了性能压力。
图8是根据本公开的实施例示出的另一种带宽部分组合接发送方法的示意流程图。如图8所示,所述方法还包括:
在步骤S801中,接收所述终端发送的所述至少一种BWP组合中每种BWP组合与直流子载波位置的映射关系。
在一个实施例中,终端在接收到BWP的组合信息后,针对该组合信息中的每一种BWP组合,分别确定激活的BWP为在该BWP组合中的BWP的情况下,终端的直流子载波位置,然后终端可以将组合信息中各BWP组合与直流子载波位置的映射关系发送给基站。
在一个实施例中,基站可以接收该映射关系,例如,基站也可以保存该映射关系,后续,基站可以基于所述映射关系,确定终端当前激活的BWP组合对应的直流子载波位置。
在一个实施例中,基站可以不是在所有情况下都向终端发送BWP的组合信息,而是根据终端的具体情况来确定是否发送。举例来说,基站可以接收所述终端上报的功放PA能力;并基于所述PA能力,确定向终端发送所述组合信息、以及确定所述组合信息。
在一个实施例中,基站可以根据所述PA能力确定所述终端中PA的数量,响应于所述PA的数量少于所述终端所配置的分量载波CC的数量,确定向所述终端发送所述组合信息。
需要说明的是,若PA的数量少于终端所配置的CC数量,则终端的PA中包括至少一个对应多个CC的目标PA。
在一个实施例中,基站可以针对每个目标PA,为该目标PA确定BWP组合信息,且该BWP组合信息中每种BWP组合中的BWP对应目标PA中不同的CC。
在一个实施例中,若PA的数量不少于终端所配置的CC数量,则终端的每个PA最多对应一个CC。由于每个CC上的BWP的数量是有限的,一般最多为4个BWP,因此,可以将所有BWP与直流子载波位置的映射关系发送给终端,所占用的信息量不大。
在一个实施例中,基站可以基于所述基站的负载,确定所述BWP组合的第一数量;其中,所述第一数量与所述基站的负载成负相关;其中,所述组合信息中BWP组合的数量与所述第一数量相同。
在一个实施例中,响应于所述PA的数量少于所述终端所使用的CC的数量,确定所述终端的PA中包括至少一个目标PA,所述目标PA对应多个分量载波CC;其中,每个CC对应至少一个BWP,所述组合信息中每个BWP组合中的BWP对应不同的CC。
在一个实施例中,所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所有BWP所能形成组合的种类。
在一个实施例中,所述BWP组合中的BWP与所述目标PA对应的多个CC一一对应。所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所 有BWP所能形成组合的种类。
基站在确定BWP组合信息时,可以根据目标PA对应的所有CC上的BWP来确定BWP组合。
在一个实施例中,所述BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC上,所有BWP所能形成组合的种类。
基站在确定BWP组合信息时,也可以根据目标PA对应的多个CC中的部分CC上的BWP来确定BWP组合。在一个例子中,基站可以根据目标PA对应的多个CC中,所属频段最高的CC和所述频段最低的CC上的BWP来确定BWP组合。
在一个实施例中,基站可以接收所述终端发送的所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告;基于所述信道状态信息和缓存状态报告,确定所述目标PA对应的CC上每个BWP的信道状态和缓存数据量;根据所述信道状态和所述缓存数据量确定所述组合信息。
在一个例子中,基站可以从终端获取信道状态信息和缓存状态报告。在一个例子中,基站也可以自行确定终端中各个BWP的信道状态和缓存状态中的至少一种。
在一个实施例中,基站根据所述信道状态和所述缓存数据量确定所述组合信息,包括:基于所述目标PA对应的CC上每个BWP的信道状态和缓存数据量,确定信道状态阈值和缓存数据量阈值;其中,所述组合信息中每个BWP组合中的每个BWP的信道状态优于所述信道状态阈值、且缓存数据量少于所述缓存数据阈值。
在一个例子中,基站也可以仅确定信道状态阈值和缓存数据量阈值中的一个,并将组合信息确定为每个BWP组合中的每个BWP的信道状态优于所述信道状态阈值、或缓存数据量少于所述缓存数据阈值。
在一个实施例中,基站所述根据所述信道状态和所述缓存数据量确定所述组合信息,包括:
针对所述目标PA对应的CC,基于该CC上每个BWP的信道状态和缓存数据量,确定每个BWP在该CC上各BWP中的优先级;其中,所述优先级与所述信道状态成正相关、所述优先级与所述缓存数据量成负相关;基于各BWP在所属CC上各BWP中的优先级,按照优先级从高到低的顺序确定所述组合信息;其中,所述组合信 息中每个BWP组合的组合优先级与该组合中每个BWP的优先级成正相关,且所述组合信息中每个BWP组合的组合优先级高于优先级阈值。
在一个例子中,基站可以根据每个BWP的信道状态和缓存数据量中的至少一个,来确定每个BWP的在所属CC上的优先级。然后,基站可以再根据BWP组合中的BWP的优先级,确定BWP组合信息,一般来说,基站可以将组合优先级高于阈值的BWP组合添加到BWP组合信息。
根据上述实施例,基站可以按照BWP的状态来确定BWP组合信息,从而BWP组合信息中的各BWP组合相对于其他BWP组合被激活的概率较高,从而基站需要查询其对应的直流子载波位置的概率也较高。对于被激活概率较低的BWP组合,基站查询其对应的直流子载波位置的概率也较低。因此,基站可以不获取该查询概率较低的直流子载波位置,在保证不影响基本功能的前提下,减少信令开销,降低性能压力;同时,基站所需要保存的映射关系也较少,既减少了存储压力,也加快了后续根据激活的BWP组合查询直流子载波位置的速度。
在一个实施例中,针对所述组合信息中每个BWP组合,基于该组合中每个BWP的优先级确定该BWP组合的优先级;向所述终端发送所述组合信息中每个BWP组合的优先级,以供所述终端基于所述优先级确定直流子载波位置的发送顺序。
在一个例子中,终端可以根据各BWP组合优先级从高到低的顺序来发送直流子载波位置,例如可以发送BWP组合的标识以及对应的直流子载波位置,或者也可以直接发送直流子载波位置等。
在一个例子中,基站在接收终端发送的直流子载波位置时,可以不是接收所有的直流子载波位置,而是按顺序接收其中的一部分。
根据上述实施例,基站可以根据需求来确定所需接收的BWP组合的数量,由于是按照优先级从高到低进行接收,因此,可以先接收到组合优先级更高的BWP组合对应的直流子载波,而这些直流子载波被使用的概率也越高。因此,基站可以减少接收的数据,降低性能压力。
在一个实施例中,所述接收所述终端发送的所述至少一种BWP组合中每种BWP组合对应的直流子载波位置,包括:
基于所述基站的负载,确定所需接收的BWP组合的第二数量;其中,所述第二数量与所述基站的负载成负相关;接收所述第二数量的所述直流子载波位置。
对于基站侧的相关实施例,可以参见上述终端侧的实施例,这里只是简要说明。
与前述的带宽部分组合接收方法的实施例相对应,本公开还提供了带宽部分组合接收装置的实施例。
图9是根据本公开的实施例示出的一种带宽部分组合接收装置的示意框图。本实施例所示的带宽部分组合接收装置可以适用于终端,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。所述终端可以作为用户设备与基站通信,所述基站包括但不限于4G基站、5G基站、6G基站。在一个实施例中,所述基站可以是后续任一实施例所述的带宽部分组合发送装置所适用的基站。
如图9所示,所述带宽部分组合接收装置可以包括:
组合接收模块901,被配置为接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置,其中,且所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
在一个实施例中,该装置还可以包括:
位置发送模块902,被配置为确定所述至少一种BWP组合中每种BWP组合对应的直流子载波位置;向所述基站发送每种BWP组合与直流子载波位置的映射关系。
在一个实施例中,该装置还可以包括:
能力发送模块903,被配置为向所述基站上报所述终端的功放PA能力,其中,所述PA能力用于供所述基站确定向所述终端发送所述组合信息,以及确定所述组合信息。
在一个实施例中,所述终端中设置有至少一个功放PA,所述至少一个PA包括至少一个目标PA,所述目标PA对应多个分量载波CC,且每个CC对应至少一个BWP,所述BWP组合中的BWP对应不同的CC。
在一个实施例中,所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所有BWP所能形成组合的种类。
在一个实施例中,该装置还可以包括:
状态上报模块904,被配置为确定所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告;向所述基站上报所述信道状态信息和所述缓存状态报告, 其中,所述信道状态信息和所述缓存状态报告用于供所述基站确定所述组合信息。
在一个实施例中,所述BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。
在一个实施例中,位置发送模块902,具体被配置为:
响应于所述BWP组合对应的直流子载波位置与默认相对位置不一致,向所述基站发送所述BWP组合对应的直流子载波位置的描述信息;或者,响应于所述BWP组合对应的直流子载波位置与默认相对位置一致,向所述基站发送预设信息。
在一个实施例中,该装置还可以包括:
顺序确定模块905,被配置为接收所述基站发送的所述至少一种BWP组合的优先级信息;根据所述优先级信息确定所述直流子载波位置的发送顺序;
其中,所述位置发送模块902,具体被配置为:根据所述发送顺序,向所述基站发送所述映射关系。
与前述的带宽部分组合发送方法的实施例相对应,本公开还提供了带宽部分组合发送装置的实施例。
图10是根据本公开的实施例示出的一种带宽部分组合接发送装置的示意框图。本实施例所示的带宽部分组合接发送装置可以适用于基站,所述基站包括但不限于4G基站、5G基站、6G基站。所述基站可以与作为用户设备的终端进行通信,所述终端包括但不限于手机、平板电脑、可穿戴设备、传感器、物联网设备等电子设备。在一个实施例中,所述终端可以是上述任一实施例所述带宽部分组合接接收装置所适用的终端。
如图10所示,所述带宽部分组合接发送装置可以包括:
组合发送模块1001,被配置为向终端发送带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
在一个实施例中,所述装置还包括:
位置接收模块1002,被配置为接收所述终端发送的所述至少一种BWP组合中每种BWP组合与直流子载波位置的映射关系。
在一个实施例中,所述装置还包括:
位置确定模块1003,被配置为基于所述映射关系,确定终端当前激活的BWP组合对应的直流子载波位置。
在一个实施例中,所述装置还包括:
组合确定模块1004,被配置为接收所述终端上报的功放PA能力;基于所述PA能力,确定向终端发送所述组合信息、以及确定所述组合信息。
在一个实施例中,组合确定模块1004,具体被配置为根据所述PA能力确定所述终端中PA的数量;响应于所述PA的数量少于所述终端所配置的分量载波CC的数量,确定向所述终端发送所述组合信息。
在一个实施例中,所述装置还包括:
数量确定模块1005,被配置为基于所述基站的负载,确定所述BWP组合的第一数量;其中,所述第一数量与所述基站的负载成负相关;其中,所述组合信息中BWP组合的数量与所述第一数量相同。
在一个实施例中,所述装置还包括:
目标PA确定模块1006,被配置为响应于所述PA的数量少于所述终端所使用的CC的数量,确定所述终端的PA中包括至少一个目标PA,所述目标PA对应多个分量载波CC;其中,每个CC对应至少一个BWP,所述组合信息中每个BWP组合中的BWP对应不同的CC。
在一个实施例中,所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所有BWP所能形成组合的种类。
在一个实施例中,所述BWP组合中的BWP与所述目标PA对应的多个CC一一对应。
在一个实施例中,所述BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。
在一个实施例中,所述组合确定模块1004,具体被配置为:
接收所述终端发送的所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告;
基于所述信道状态信息和缓存状态报告,确定所述目标PA对应的CC上每个BWP的信道状态和缓存数据量;
根据所述信道状态和所述缓存数据量确定所述组合信息。
在一个实施例中,所述组合确定模块1004,具体被配置为:
基于所述目标PA对应的CC上每个BWP的信道状态和缓存数据量,确定信道状态阈值和缓存数据量阈值;其中,所述组合信息中每个BWP组合中的每个BWP的信道状态优于所述信道状态阈值、且缓存数据量少于所述缓存数据阈值。
在一个实施例中,所述组合确定模块1004,具体被配置为:
针对所述目标PA对应的CC,基于该CC上每个BWP的信道状态和缓存数据量,确定每个BWP在该CC上各BWP中的优先级;其中,所述优先级与所述信道状态成正相关、所述优先级与所述缓存数据量成负相关;
基于各BWP在所属CC上各BWP中的优先级,按照优先级从高到低的顺序确定所述组合信息;其中,所述组合信息中每个BWP组合的组合优先级与该组合中每个BWP的优先级成正相关,且所述组合信息中每个BWP组合的组合优先级高于优先级阈值。
在一个实施例中,所述装置还包括:
顺序发送模块1007,被配置为针对所述组合信息中每个BWP组合,基于该组合中每个BWP的优先级确定该BWP组合的优先级;向所述终端发送所述组合信息中每个BWP组合的优先级,以供所述终端基于所述优先级确定直流子载波位置的发送顺序。
在一个实施例中,所述位置接收模块1002,具体被配置为:
基于所述基站的负载,确定所需接收的BWP组合的第二数量;其中,所述第二数量与所述基站的负载成负相关;接收所述第二数量的所述直流子载波位置。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在相关方法的实施例中进行了详细描述,此处将不做详细阐述说明。
对于装置实施例而言,由于其基本对应于方法实施例,所以相关之处参见方法实施例的部分说明即可。以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的模块可以是或者也可以不是物理上分开的,作为模块显示的部件可以是 或者也可以不是物理模块,即可以位于一个地方,或者也可以分布到多个网络模块上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开的实施例还提出一种电子设备,包括:
处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为实现上述带宽部分组合接收方法和/或带宽部分组合发送方法。
本公开的实施例还提出一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述带宽部分组合接收方法和/或带宽部分组合发送方法中的步骤。
如图11所示,图11是根据本公开的实施例示出的一种用于带宽部分组合发送装置1100的示意框图。装置1100可以被提供为一基站。参照图11,装置1100包括处理组件1122、无线发射/接收组件1124、天线组件1126、以及无线接口特有的信号处理部分,处理组件1122可进一步包括至少一个处理器。处理组件1122中的其中一个处理器可以被配置为实现带宽部分组合发送方法。
图12是根据本公开的实施例示出的一种用于带宽部分组合接收装置1200的示意框图。例如,装置1200可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图12,装置1200可以包括以下至少一个组件:处理组件1202,存储器1204,电源组件1206,多媒体组件1208,音频组件1210,输入/输出(I/O)的接口1212,传感器组件1214,以及通信组件1216。
处理组件1202通常控制装置1200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件1202可以包括至少一个处理器1220来执行指令,以完成上述的带宽部分组合接收方法的全部或部分步骤。此外,处理组件1202可以包括至少一个模块,便于处理组件1202和其他组件之间的交互。例如,处理组件1202可以包括多媒体模块,以方便多媒体组件1208和处理组件1202之间的交互。
存储器1204被配置为存储各种类型的数据以支持在装置1200的操作。这些数据的示例包括用于在装置1200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器1204可以由任何类型的易失性或非易失性存 储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件1206为装置1200的各种组件提供电力。电源组件1206可以包括电源管理系统,至少一个电源,及其他与为装置1200生成、管理和分配电力相关联的组件。
多媒体组件1208包括在所述装置1200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括至少一个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件1208包括一个前置摄像头和/或后置摄像头。当装置1200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件1210被配置为输出和/或输入音频信号。例如,音频组件1210包括一个麦克风(MIC),当装置1200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器1204或经由通信组件1216发送。在一些实施例中,音频组件1210还包括一个扬声器,用于输出音频信号。
I/O接口1212为处理组件1202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件1214包括至少一个传感器,用于为装置1200提供各个方面的状态评估。例如,传感器组件1214可以检测到装置1200的打开/关闭状态,组件的相对定位,例如所述组件为装置1200的显示器和小键盘,传感器组件1214还可以检测装置1200或装置1200一个组件的位置改变,用户与装置1200接触的存在或不存在,装置1200方位或加速/减速和装置1200的温度变化。传感器组件1214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件1214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例 中,该传感器组件1214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件1216被配置为便于装置1200和其他设备之间有线或无线方式的通信。装置1200可以接入基于通信标准的无线网络,如WiFi,2G或3G,4G LTE、5G NR或它们的组合。在一个示例性实施例中,通信组件1216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件1216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置1200可以被至少一个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述带宽部分组合接收方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器1204,上述指令可由装置1200的处理器1220执行以完成上述带宽部分组合接收方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
下面结合特定的技术细节,概括地示例性说明根据本公开的带宽部分组合发送方法和带宽部分组合接收方法,如下:
在相关技术中,在上行同带载波据聚合时,单载波单独上报的方法无法满足当PA的个数小于CC个数时的DC子载波上报的要求,这样会导致基站解调无法判断子载波位置而进行补偿处理,从而影响上行解调性能。根据本公开的方法不仅可以解决上述问题,而且由于通过基站设定优先级的方式可以减小DC子载波上报带来信令开销过大的问题。
当终端被配置为上行多载波载波聚合时,基站根据终端上报的PA能力(如1PA或者2PA)确定是否需要向终端发射BWP组合优先级,终端根据优先级向基站反馈各BWP组合DC子载波位置。
当终端被配置为上行多载波载波聚合时,基站根据终端上报的PA能力(如1PA或者2PA)确定是否需要向终端发射BWP组合优先级,终端根据收到的优先级信息 向终端反馈DC子载波位置。
所述基站根据终端上报的PA能力,在一个实施例中如基站可根据现有协议中终端上报的dualPA-Architecture来确定PA能力。
所述基站根据终端上报的PA能力(如1PA或者2PA)确定是否需要向终端发射BWP组合优先级,在一个实施例中,基站通过判断同频段载波聚合时,PA个数与CC的个数是否相等来确定是否需要向终端发射BWP组合优先级。如果判断相等,则不需要,如果判断不相等,则需要。
所述BWP组合优先级,指的是在配置的CC上优选的BWP组合,如下图所示,一个实施例中,从高到低优选级组合为:BWP11-BWP22-BWP31,BWP11-BWP21-BWP34,BWP14-BWP21-BWP-34,…。优先级的确定和组合的个数,根据终端上报的信道状态,缓存数据以及基站调度的负载情况决定。
所述终端根据收到的优先级信息向终端反馈DC子载波位置,终端根据上述优选级组合:BWP11-BWP22,BWP11-BWP21,BWP14-BWP21,…,反馈各BWP组合DC子载波的位置。在一个实施例中,如果DC子载波按照预设的规则,如在一个实施例中,DC子载波处于BWP组合的中心子载波上,该组合的DC子载波位置信息可以不上报,而只需上报不满足预设规则的BWP组合的DC子载波。
所述DC子载波处于BWP组合的中心子载波上,指的是在频域上取两个最外层的BWP边沿中心位置。
基站收到DC子载波位置后,根据激活BWP组合确定终端DC自载波位置,在解调时进行一定的处理保证解调性能。
在另一个实施例中,所述基站向终端通知BWP组合优先级时,BWP组合并不包含所有CC上的BWP指示,而只需要包含最外层两个CC上的BWP组合指示,如高到低优选级顺序为:BWP12-BWP33,BWP14-BWP34,…优先级的确定和组合的个数,根据终端上报的信道状态,缓存数据以及基站调度的负载情况决定。
当终端被配置为上行多载波载波聚合时,基站根据终端上报的PA能力(如1PA或者2PA)确定是否需要向终端发射BWP组合优先级,终端根据收到的优先级信息向终端反馈DC子载波位置。
所述基站根据终端上报的PA能力,在另一个实施例中基站不仅可根据现有协议中终端上报的dualPA-Architecture来确定PA个数,同时还包含根据终端上报的两 个PA支持的最大带宽信息。例如以终端被配置为3个CC为例,PA1支持的最大信道带宽可覆盖两个CC,例如CC1和CC2,而PA2支持最大的信道带宽只可覆盖一个CC,例如CC3。
在这种情况下,CC个数为3,而PA个数为2,因此所述基站根据终端上报的PA能力确定需要向终端发射BWP组合优先级。
同时根据PA的带宽信息,确定在PA1上的两个CC上需要向终端发射BWP组合优先级,而不需要考虑CC3。即上报的优先级组合只包含CC1和CC2,如:BWP11-BWP22,BWP11-BWP21,BWP14-BWP21,…。优先级的确定和组合的个数,根据终端上报的信道状态,缓存数据以及基站调度的负载情况决定。
在一个实施例中,上述方法不仅适用于多上行CA,而且可适用于双链接系统即DC。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本 公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
Claims (29)
- 一种带宽部分组合接收方法,其特征在于,应用于终端,所述方法包括:接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:确定所述至少一种BWP组合中每种BWP组合对应的直流子载波位置;向所述基站发送每种BWP组合与直流子载波位置的映射关系。
- 根据权利要求1所述的方法,其特征在于,所述方法还包括:向所述基站上报所述终端的功放PA能力,其中,所述PA能力用于供所述基站确定向所述终端发送所述组合信息,以及确定所述组合信息。
- 根据权利要求1所述的方法,其特征在于,所述终端中设置有至少一个功放PA,所述至少一个PA包括至少一个目标PA,所述目标PA对应多个分量载波CC,且每个CC对应至少一个BWP,所述BWP组合中的BWP对应不同的CC。
- 根据权利要求4所述的方法,其特征在于,所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所有BWP所能形成组合的种类。
- 根据权利要求4所述的方法,其特征在于,所述方法还包括:确定所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告;向所述基站上报所述信道状态信息和所述缓存状态报告,其中,所述信道状态信息和所述缓存状态报告用于供所述基站确定所述组合信息。
- 根据权利要求4所述的方法,其特征在于,所述BWP组合中的BWP与所述目标PA对应的多个CC一一对应。
- 根据权利要求4所述的方法,其特征在于,所述BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。
- 根据权利要求2所述的方法,其特征在于,所述向所述基站发送每种BWP组合与直流子载波位置的映射关系,包括:响应于所述BWP组合对应的直流子载波位置与默认相对位置不一致,向所述基站发送所述BWP组合对应的直流子载波位置的描述信息;或者,响应于所述BWP组合对应的直流子载波位置与默认相对位置一致,向所述基站发送预设信息。
- 根据权利要求2所述的方法,其特征在于,所述方法还包括:接收所述基站发送的所述至少一种BWP组合的优先级信息;根据所述优先级信息确定所述直流子载波位置的发送顺序;其中,所述向所述基站发送每种BWP组合与直流子载波位置的映射关系,包括:根据所述发送顺序,向所述基站发送所述映射关系。
- 一种带宽部分组合接发送方法,其特征在于,应用于基站,所述方法包括:向终端发送带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:接收所述终端发送的所述至少一种BWP组合中每种BWP组合与直流子载波位置的映射关系。
- 根据权利要求12所述的方法,其特征在于,所述方法还包括:基于所述映射关系,确定终端当前激活的BWP组合对应的直流子载波位置。
- 根据权利要求11所述的方法,其特征在于,所述方法还包括:接收所述终端上报的功放PA能力;基于所述PA能力,确定向终端发送所述组合信息、以及确定所述组合信息。
- 根据权利要求14所述的方法,其特征在于,所述基于所述功放PA能力,确定向所述终端发送所述组合信息,包括:根据所述PA能力确定所述终端中PA的数量;响应于所述PA的数量少于所述终端所配置的分量载波CC的数量,确定向所述终端发送所述组合信息。
- 根据权利要求15所述的方法,其特征在于,所述方法还包括:基于所述基站的负载,确定所述BWP组合的第一数量;其中,所述第一数量与所述基站的负载成负相关;其中,所述组合信息中BWP组合的数量与所述第一数量相同。
- 根据权利要求15所述的方法,其特征在于,所述方法还包括:响应于所述PA的数量少于所述终端所使用的CC的数量,确定所述终端的PA中 包括至少一个目标PA,所述目标PA对应多个分量载波CC;其中,每个CC对应至少一个BWP,所述组合信息中每个BWP组合中的BWP对应不同的CC。
- 根据权利要求17所述的方法,其特征在于,所述组合信息中BWP组合的种类,少于所述目标PA对应的多个CC上的所有BWP所能形成组合的种类。
- 根据权利要求17所述的方法,其特征在于,所述BWP组合中的BWP与所述目标PA对应的多个CC一一对应。
- 根据权利要求17所述的方法,其特征在于,所述BWP组合中的BWP对应所述目标PA对应的多个CC中所属频段最高的CC和所属频段最低的CC。
- 根据权利要求17所述的方法,其特征在于,所述方法还包括:接收所述终端发送的所述目标PA对应的CC上的每个BWP的信道状态信息和缓存状态报告;基于所述信道状态信息和缓存状态报告,确定所述目标PA对应的CC上每个BWP的信道状态和缓存数据量;根据所述信道状态和所述缓存数据量确定所述组合信息。
- 根据权利要求21所述的方法,其特征在于,所述根据所述信道状态和所述缓存数据量确定所述组合信息,包括:基于所述目标PA对应的CC上每个BWP的信道状态和缓存数据量,确定信道状态阈值和缓存数据量阈值;其中,所述组合信息中每个BWP组合中的每个BWP的信道状态优于所述信道状态阈值、且缓存数据量少于所述缓存数据阈值。
- 根据权利要求21所述的方法,其特征在于,所述根据所述信道状态和所述缓存数据量确定所述组合信息,包括:针对所述目标PA对应的CC,基于该CC上每个BWP的信道状态和缓存数据量,确定每个BWP在该CC上各BWP中的优先级;其中,所述优先级与所述信道状态成正相关、所述优先级与所述缓存数据量成负相关;基于每个BWP在所属CC上各BWP中的优先级,按照优先级从高到低的顺序确定所述组合信息;其中,所述组合信息中每个BWP组合的组合优先级与该组合中每个BWP的优先级成正相关,且所述组合信息中每个BWP组合的组合优先级高于优先级阈值。
- 根据权利要求21所述的方法,其特征在于,所述方法还包括:针对所述组合信息中每个BWP组合,基于该组合中每个BWP的优先级确定该BWP组合的优先级;向所述终端发送所述组合信息中每个BWP组合的优先级,以供所述终端基于所述优先级确定直流子载波位置的发送顺序。
- 根据权利要求24所述的方法,其特征在于,所述接收所述终端发送的所述至少一种BWP组合中每种BWP组合对应的直流子载波位置,包括:基于所述基站的负载,确定所需接收的BWP组合的第二数量;其中,所述第二数量与所述基站的负载成负相关;接收所述第二数量的所述直流子载波位置。
- 一种带宽部分组合接收装置,其特征在于,应用于终端,所述装置包括:组合接收模块,被配置为接收基站发送的带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
- 一种带宽部分组合接发送装置,其特征在于,应用于基站,所述装置包括:组合发送模块,被配置为向终端发送带宽部分BWP的组合信息,所述组合信息中包括至少一种BWP组合,所述组合信息用于指示所述终端确定所述至少一种BWP组合对应的直流子载波位置;其中,所述组合信息中BWP组合的种类,少于所述基站为所述终端配置的全部BWP所能形成组合的种类。
- 一种电子设备,其特征在于,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为实现权利要求1至25中任一项所述的带宽部分组合接收方法和/或带宽部分组合发送方法。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至25中任一项所述的带宽部分组合接收方法和/或带宽部分组合发送方法中的步骤。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/084721 WO2022205205A1 (zh) | 2021-03-31 | 2021-03-31 | 带宽部分组合接收方法、带宽部分组合发送方法 |
US18/551,767 US20240178980A1 (en) | 2021-03-31 | 2021-03-31 | Method for receiving bandwidth part combination and method for sending bandwidth part combination |
CN202180000998.3A CN115486014A (zh) | 2021-03-31 | 2021-03-31 | 带宽部分组合接收方法、带宽部分组合发送方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/084721 WO2022205205A1 (zh) | 2021-03-31 | 2021-03-31 | 带宽部分组合接收方法、带宽部分组合发送方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022205205A1 true WO2022205205A1 (zh) | 2022-10-06 |
Family
ID=83457681
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/084721 WO2022205205A1 (zh) | 2021-03-31 | 2021-03-31 | 带宽部分组合接收方法、带宽部分组合发送方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240178980A1 (zh) |
CN (1) | CN115486014A (zh) |
WO (1) | WO2022205205A1 (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111819810A (zh) * | 2019-01-28 | 2020-10-23 | 华为技术有限公司 | 一种直流载波的处理方法和装置 |
US20200359362A1 (en) * | 2016-11-01 | 2020-11-12 | Lg Electronics Inc. | Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system |
CN111954994A (zh) * | 2018-04-10 | 2020-11-17 | 高通股份有限公司 | 新无线电(nr)中的直流(dc)频调位置的上行链路信令 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114143885A (zh) * | 2017-08-11 | 2022-03-04 | 中兴通讯股份有限公司 | 资源位置的指示、接收方法及装置 |
US10785804B2 (en) * | 2018-02-17 | 2020-09-22 | Ofinno, Llc | Bandwidth part configuration information |
CN111294803B (zh) * | 2019-04-26 | 2023-01-24 | 展讯通信(上海)有限公司 | 直流分量的频域位置的确定方法及装置、存储介质、终端、基站 |
US11477613B2 (en) * | 2019-09-25 | 2022-10-18 | Qualcomm Incorporated | Direct current (DC) tone signaling |
-
2021
- 2021-03-31 WO PCT/CN2021/084721 patent/WO2022205205A1/zh active Application Filing
- 2021-03-31 US US18/551,767 patent/US20240178980A1/en active Pending
- 2021-03-31 CN CN202180000998.3A patent/CN115486014A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20200359362A1 (en) * | 2016-11-01 | 2020-11-12 | Lg Electronics Inc. | Method and apparatus for configuring subband aggregation in nr carrier in wireless communication system |
CN111954994A (zh) * | 2018-04-10 | 2020-11-17 | 高通股份有限公司 | 新无线电(nr)中的直流(dc)频调位置的上行链路信令 |
CN111819810A (zh) * | 2019-01-28 | 2020-10-23 | 华为技术有限公司 | 一种直流载波的处理方法和装置 |
Non-Patent Citations (2)
Title |
---|
NOKIA, NOKIA SHANGHAI BELL: "Signalling of UL CA DC location", 3GPP DRAFT; R2-2100955, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974015 * |
VIVO: "Discussion on DC location Reporting", 3GPP DRAFT; R2-2100938, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20210125 - 20210205, 15 January 2021 (2021-01-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051974005 * |
Also Published As
Publication number | Publication date |
---|---|
CN115486014A (zh) | 2022-12-16 |
US20240178980A1 (en) | 2024-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109314972A (zh) | 带宽部分的切换触发方法及装置、信息配置方法及装置 | |
CN108886788B (zh) | 传输信息的方法和装置、基站及用户设备 | |
WO2018086063A1 (zh) | 配置工作带宽的方法及装置 | |
WO2021163857A1 (zh) | 配置信息确定方法、装置及计算机可读存储介质 | |
WO2019095304A1 (zh) | 混合自动重传请求反馈指示、反馈方法及装置和基站 | |
WO2019024039A1 (zh) | 指示多业务数据复用传输的方法及装置、终端和基站 | |
WO2018195904A1 (zh) | 用于信道载波配置的方法、装置、用户设备及基站 | |
WO2021203363A1 (zh) | 信道状态信息报告配置方法、装置及计算机可读存储介质 | |
WO2019024037A1 (zh) | 指示多业务数据复用传输的方法及装置、终端和基站 | |
WO2018227569A1 (zh) | 传输信息的方法及装置 | |
WO2023151093A1 (zh) | 一种传输终端能力的方法、装置及可读存储介质 | |
WO2024000986A1 (zh) | 调度确定、指示确定、关联关系指示方法和装置 | |
WO2019047168A1 (zh) | 寻呼配置方法及装置、寻呼消息接收方法及装置和基站 | |
WO2021000323A1 (zh) | 缓存状态报告发送方法和装置 | |
WO2024020886A1 (zh) | 信息监听、信息发送方法及装置、存储介质 | |
WO2022198459A1 (zh) | 一种搜索空间监测方法、搜索空间监测装置及存储介质 | |
WO2019127109A1 (zh) | 调度方法、基站、终端及存储介质 | |
WO2022205205A1 (zh) | 带宽部分组合接收方法、带宽部分组合发送方法 | |
WO2021007822A1 (zh) | Pusch接收方法和装置、pusch发送方法和装置 | |
US11799705B2 (en) | Message transmission method and device | |
WO2024092460A1 (zh) | 信息处理、信息发送方法及装置、存储介质 | |
WO2022165773A1 (zh) | 天线切换配置的切换方法、装置及存储介质 | |
WO2020082278A1 (zh) | 网络参数配置方法、装置及计算机可读存储介质 | |
WO2022082349A1 (zh) | 激活指示方法和装置、激活确定方法和装置 | |
WO2023115271A1 (zh) | 上行传输指示、确定方法和装置、通信装置和存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21933868 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18551767 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21933868 Country of ref document: EP Kind code of ref document: A1 |