[go: up one dir, main page]

WO2019013343A1 - 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス - Google Patents

表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス Download PDF

Info

Publication number
WO2019013343A1
WO2019013343A1 PCT/JP2018/026599 JP2018026599W WO2019013343A1 WO 2019013343 A1 WO2019013343 A1 WO 2019013343A1 JP 2018026599 W JP2018026599 W JP 2018026599W WO 2019013343 A1 WO2019013343 A1 WO 2019013343A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
inorganic nitride
modified inorganic
nitride
surface modified
Prior art date
Application number
PCT/JP2018/026599
Other languages
English (en)
French (fr)
Inventor
誠一 人見
慶太 高橋
林 直之
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP18831162.5A priority Critical patent/EP3653574B1/en
Priority to KR1020197038340A priority patent/KR102252723B1/ko
Priority to CN201880043393.0A priority patent/CN110799454B/zh
Priority to JP2019529812A priority patent/JP6876800B2/ja
Publication of WO2019013343A1 publication Critical patent/WO2019013343A1/ja
Priority to US16/734,908 priority patent/US11945717B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • C01B21/0648After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/064Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with boron
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B21/00Nitrogen; Compounds thereof
    • C01B21/06Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron
    • C01B21/072Binary compounds of nitrogen with metals, with silicon, or with boron, or with carbon, i.e. nitrides; Compounds of nitrogen with more than one metal, silicon or boron with aluminium
    • C01B21/0728After-treatment, e.g. grinding, purification
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/24Di-epoxy compounds carbocyclic
    • C08G59/245Di-epoxy compounds carbocyclic aromatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/50Amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/28Nitrogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/04Ingredients treated with organic substances
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/84Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by UV- or VIS- data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/22Rheological behaviour as dispersion, e.g. viscosity, sedimentation stability
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/32Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • C08K2003/382Boron-containing compounds and nitrogen
    • C08K2003/385Binary compounds of nitrogen with boron
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/13Phenols; Phenolates

Definitions

  • the present invention relates to surface modified inorganic nitrides, compositions, thermally conductive materials, and devices with thermally conductive layers.
  • Patent Document 1 In order to expand the application range of inorganic nitride, a method of modifying the surface has been proposed.
  • Patent Document 1 there is disclosed a method of treating the surface of aluminum nitride particles with 4-biphenylcarboxylic acid or 4-biphenylmethanol or the like.
  • an inorganic nitride mixed with an organic substance such as a resin binder a further improvement of the affinity of the inorganic nitride to the organic substance is required.
  • an inorganic nitride such as boron nitride
  • improvement of the dispersibility of the inorganic nitride in the organic substance is desired from the viewpoint of further improvement of the thermal conductivity.
  • the present inventors prepared a surface-modified inorganic nitride obtained by treating the surface of boron nitride with 4-biphenylcarboxylic acid or 4-biphenylmethanol with reference to Patent Document 1, and using this surface-modified inorganic nitride as an organic substance.
  • the heat conductive material was prepared by mixing, and the dispersibility of the surface modified inorganic nitride in the organic matter was evaluated. As a result, it was confirmed that the dispersibility was insufficient and further improvement was necessary.
  • this invention makes it a subject to provide the surface modification inorganic nitride which is excellent in dispersibility.
  • Another object of the present invention is to provide a composition containing the above-mentioned surface modified inorganic nitride, a thermally conductive material, and a device with a thermally conductive layer.
  • a surface modified inorganic nitride comprising an inorganic nitride and a compound represented by the following general formula (I) adsorbed on the surface of the inorganic nitride.
  • X is a hydroxyl group, a carboxylic acid group, a phosphonic acid group, a phosphoric acid group, a phosphinic acid group, a sulfonic acid group, or a thiol group.
  • X is a hydroxyl group, a carboxylic acid group, a phosphonic acid group, a phosphoric acid group, a phosphinic acid group, a sulfonic acid group, or a thiol group.
  • [4] The surface-modified inorganic nitride according to [3], wherein Y is a polycyclic aromatic hydrocarbon ring group containing three or more benzene rings.
  • [5] The surface modified inorganic nitride as described in [4] whose said Y is a pyrene ring group.
  • [6] The surface modified inorganic nitride according to any one of [1] to [5], wherein the inorganic nitride is at least one selected from the group consisting of boron nitride and aluminum nitride.
  • [7] The surface modified inorganic nitride according to [6], wherein the inorganic nitride is boron nitride.
  • a composition comprising the surface modified inorganic nitride as described in any one of [1] to [7] and a polymerizable monomer.
  • the composition according to [8] or [9] wherein the polymerizable monomer or the cured product thereof exhibits liquid crystallinity.
  • the composition according to any one of [8] to [10] which is used to form a heat conductive material.
  • a thermally conductive material comprising the surface modified inorganic nitride as described in any one of [1] to [7].
  • the thermally conductive material according to [12] which is in the form of a sheet.
  • a device with a thermally conductive layer comprising: a device; and a thermally conductive layer containing the thermally conductive material according to any one of [12] to [14] disposed on the device.
  • a surface-modified inorganic nitride excellent in dispersibility can be provided. Further, according to the present invention, it is possible to provide a composition containing the surface modified inorganic nitride, a thermally conductive material, and a thermally conductive layer-equipped device.
  • the ultraviolet visible absorption spectrum of the compound C-2 containing solution before and behind boron nitride addition is shown.
  • the ultraviolet visible absorption spectrum of the compound C-3 containing solution before and behind boron nitride addition is shown.
  • the ultraviolet visible absorption spectrum of the compound C-8 containing solution before and behind boron nitride addition is shown.
  • the ultraviolet visible absorption spectrum of the compound C-15 containing solution before and behind boron nitride addition is shown.
  • the ultraviolet visible absorption spectrum of the compound C-28 containing solution before and behind boron nitride addition is shown.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the description of "(meth) acryloyl group” represents the meaning of "any one or both of an acryloyl group and a methacryloyl group”.
  • the oxiranyl group is a functional group also called an epoxy group, and for example, a group in which two adjacent carbon atoms of a saturated hydrocarbon ring group are linked via an oxo group (-O-) to form an oxirane ring. Etc. are also included in the oxiranyl group.
  • the acid anhydride group is a substituent obtained by removing any hydrogen atom from an acid anhydride such as maleic anhydride, phthalic anhydride, pyromellitic anhydride and trimellitic anhydride. Good.
  • the “surface-modified inorganic nitride” means an inorganic nitride that is surface-modified with a compound represented by the general formula (I) described below (hereinafter, also referred to as “specific compound”).
  • surface modification means a state in which a specific compound described later is adsorbed on at least a part of the inorganic nitride surface. The form of adsorption is not particularly limited, but is preferably in a bound state.
  • the surface modification also includes a state in which an organic group (for example, a cationic group) obtained by partial detachment of a specific compound is bonded to the surface of the inorganic nitride.
  • the bond may be any bond such as covalent bond, coordinate bond, ionic bond, hydrogen bond, van der Waals bond, and metal bond.
  • the surface modification may be such as to form a monolayer on at least part of the inorganic nitride surface. In the present specification, the surface modification may be only a part of the inorganic nitride surface or the whole.
  • the type of substituent, the position of the substituent, and the number of substituents when "may have a substituent” are not particularly limited.
  • the number of substituents may, for example, be one, two, three or more.
  • Examples of the substituent may include monovalent nonmetallic atomic groups other than hydrogen atoms, and may be selected, for example, from the following substituent group T.
  • Substituent group T halogen atom (-F, -Br, -Cl, -I), hydroxyl group, alkoxy group, aryloxy group, thiol group, alkylthio group, arylthio group, alkyldithio group, aryldithio group, amino group, N -Alkylamino group, N, N-dialkylamino group, N-arylamino group, N, N-diarylamino group, N-alkyl-N-arylamino group, acyloxy group, carbamoyloxy group, N-alkylcarbamoyloxy group , N-arylcarbamoyloxy group, N, N-dialkylcarbamoyloxy group, N, N-diarylcarbamoyloxy group, N-alkyl-N-arylcarbamoyloxy group, alkylsulfoxy group, arylsulfoxy group
  • the surface modified inorganic nitride of the present invention comprises an inorganic nitride and a compound (specific compound) represented by the following general formula (I) adsorbed on the surface of the inorganic nitride.
  • the surface modified inorganic nitride of the present invention is a surface modified inorganic nitride formed by modifying the surface of the inorganic nitride with a specific compound described later.
  • the compound (specific compound) represented by general formula (I) mentioned later is used as a surface modifier of inorganic nitride.
  • a group having an aromatic hydrocarbon ring group or an aromatic heterocyclic group Y having a hydrogen bonding group X as a substituent (* -L in the general formula (I) 1 or more each having a group represented by 1- X) and a group having Z as an adsorptive group (a group represented by *-L 2- Z in the general formula (I)) Can be mentioned.
  • a plurality of specific compounds are easily linked by hydrogen bonding interaction due to the presence of the hydrogen bonding group.
  • the specific compounds are linked to form a planar structure having a plurality of aromatic hydrocarbon ring groups or aromatic heterocyclic groups (corresponding to Y), and it becomes easy to be adsorbed on the surface of the inorganic nitride. Conceivable.
  • the inorganic nitride is boron nitride, it is confirmed that the adsorptivity is more excellent.
  • the surface-modified inorganic nitride formed by modifying the surface of the inorganic nitride with the specific compound according to the above mechanism is excellent in dispersibility.
  • the material containing the surface-modified inorganic nitride is presumed to be excellent in the thermal conductivity because the surface-modified inorganic nitride is well dispersed and present in the material without being unevenly distributed.
  • the specific compound has a polymerizable group
  • the cured product obtained from the composition containing the surface-modified inorganic nitride and the polymerizable monomer has conductivity between the surface-modified inorganic nitrides through the polymerizable monomer. It is considered that the thermal conductivity is further improved because a path is easily formed.
  • the obtained surface modified inorganic nitride is considered to also have a function of orienting the polymerizable monomer.
  • the polymerizable monomer or the cured product thereof exhibits liquid crystallinity
  • the polymerizable monomer or the cured product is oriented (vertical alignment) on the surface modified inorganic nitride surface, and between the surface modified inorganic nitrides. It is presumed that the oriented liquid crystal component intervenes, the thermal conductivity between the surface-modified inorganic nitrides is further improved, and as a result, the thermal conductivity of the entire material is further improved.
  • inorganic nitride The type of inorganic nitride is not particularly limited.
  • examples of inorganic nitrides include boron nitride (BN), carbon nitride (C 3 N 4 ), silicon nitride (Si 3 N 4 ), gallium nitride (GaN), indium nitride (InN), aluminum nitride (AlN), Chromium nitride (Cr 2 N), copper nitride (Cu 3 N), iron nitride (Fe 4 N or Fe 3 N), lanthanum nitride (LaN), lithium nitride (Li 3 N), magnesium nitride (Mg 3 N 2 ) Molybdenum nitride (Mo 2 N), niobium nitride (NbN), tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (W
  • the above inorganic nitrides may be used alone or in combination of two or more.
  • the inorganic nitride preferably contains at least one selected from the group consisting of a boron atom, an aluminum atom, and a silicon atom in that the thermal conductivity of the obtained surface modified inorganic nitride is more excellent. More specifically, the inorganic nitride is more preferably at least one selected from the group consisting of boron nitride, aluminum nitride and silicon nitride, and is selected from the group consisting of boron nitride and aluminum nitride More preferably, it is at least one, particularly preferably boron nitride.
  • the shape of the inorganic nitride is not particularly limited, and may be in the form of particles, films, or plates.
  • the particulate form for example, it may be rice grain, sphere, cube, spindle, scaly, aggregate, or indeterminate.
  • the size of the inorganic nitride is not particularly limited, but the average particle diameter of the inorganic nitride is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and still more preferably 200 ⁇ m or less, in that the dispersibility of the surface modified inorganic nitride is more excellent. .
  • the lower limit is not particularly limited, but is preferably 10 nm or more, and more preferably 100 nm or more in terms of handleability.
  • 100 inorganic nitrides are randomly selected using an electron microscope, and the particle diameter (long diameter) of each inorganic nitride is measured, and they are arithmetically averaged. Ask. In addition, when using a commercial item, you may use a catalog value.
  • the compound (specific compound) represented by general formula (I) is a component which adsorb
  • specific compounds will be described.
  • m and n each independently represent an integer of 1 or more.
  • the upper limits of m and n are not particularly limited, but are each 10 or less, for example.
  • the amino group is not particularly limited, and may be any of primary, secondary and tertiary.
  • -N (R A) 2 R A are each independently a hydrogen atom, or an alkyl group (linear, none of branched and cyclic include.) Can be mentioned.
  • Alkyl group The carbon number therein is, for example, 1 to 10, preferably 1 to 6, and more preferably 1 to 3.
  • the alkyl group further has a substituent (for example, the group exemplified in the substituent group T). And the amino group represented by this.
  • a hydroxyl group, a carboxylic acid group, a phosphonic acid group, a phosphoric acid group, a phosphinic acid group, a sulfonic acid group, or a thiol group is preferable at the point which the dispersibility is more excellent.
  • the plurality of X's may be the same or different.
  • the aromatic hydrocarbon ring group may be any of a monocyclic aromatic hydrocarbon ring group and a polycyclic aromatic hydrocarbon ring group.
  • the monocyclic aromatic hydrocarbon ring constituting the monocyclic aromatic hydrocarbon ring group is not particularly limited, and examples thereof include a 5- to 10-membered ring, and a 5- or 6-membered ring is preferable.
  • a monocyclic aromatic hydrocarbon ring a cyclopentadienyl ring, a benzene ring, etc. are mentioned, for example.
  • the polycyclic aromatic hydrocarbon ring is not particularly limited as long as it has two or more of the monocyclic aromatic hydrocarbon rings, but a fused ring containing two or more benzene rings is more preferable, and a benzene ring is more preferable. A fused ring containing three or more rings is more preferred.
  • the upper limit of the number of monocyclic aromatic hydrocarbon rings contained in the fused ring is not particularly limited, but is, for example, often 10 or less.
  • polycyclic aromatic hydrocarbon ring examples include biphenylene, indacene, acenaphthylene, fluorene, phenalene, phenanthrene, anthracene, fluoranthene, acephenanthrylene, aceanthrylene, pyrene, chrysene, tetracene, preadine, and picene And perylene, pentaphen, pentacene, tetraphenylene, hexaphen and triphenylene.
  • a condensed ring containing two or more benzene rings is more preferable, a condensed ring containing three or more benzene rings is more preferable, pyrene or perylene is particularly preferable, and pyrene is most preferable, from the viewpoint of being excellent by the effects of the present invention.
  • the aromatic heterocyclic group may be any of a monocyclic aromatic heterocyclic group and a polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic heterocyclic ring constituting the polycyclic aromatic heterocyclic group means a fused ring composed of two or more monocyclic aromatic heterocycles, and one or more monocyclic aromatic heterocycles.
  • a fused ring consisting of a ring and one or more monocyclic aromatic hydrocarbon rings is meant.
  • the monocyclic aromatic heterocyclic ring is not particularly limited, and examples thereof include 5- to 10-membered rings, with 5- and 6-membered rings being preferred.
  • As a hetero atom which a monocyclic aromatic heterocyclic ring contains, a nitrogen atom, an oxygen atom, and a sulfur atom are mentioned, for example.
  • a monocyclic aromatic heterocyclic ring As a monocyclic aromatic heterocyclic ring, a thiophene ring, a thiazole ring, an imidazole ring, a pyridine ring, a pyridazine ring, a pyrimidine ring, a pyrazine ring, and a triazine ring are mentioned, for example.
  • Specific examples of the polycyclic aromatic heterocyclic ring include a benzoimidazole ring, an indole ring, a quinoline ring, and a quinoxaline ring.
  • an aromatic hydrocarbon ring group is preferable at a point which is more excellent in dispersibility, and a polycyclic aromatic hydrocarbon ring group is more preferable.
  • the aromatic hydrocarbon group or aromatic heterocyclic group represented by said Y may have a substituent (for example, the group illustrated by the substituent group T).
  • succinimide group oxetanyl group and maleimide group each represent a group formed by removing one hydrogen atom at any position from a compound represented by the following formula.
  • the onium group means a group having an onium salt structure.
  • the onium salt is a compound produced by coordination of a compound having an electron pair not involved in a chemical bond with another cation form compound by the electron pair.
  • the onium salt contains a cation and an anion.
  • the onium salt structure is not particularly limited. For example, ammonium salt structure, pyridinium salt structure, imidazolium salt structure, pyrrolidinium salt structure, piperidinium salt structure, triethylenediamine salt structure, phosphonium salt structure, sulfonium salt structure, and thiopyrylium salt structure Etc.
  • the kind of anion used as a counter is not specifically limited, A well-known anion is used.
  • the valence of the anion is also not particularly limited, and examples thereof include mono- to tri-valent, and mono- to divalent is preferable. Among them, a group having an ammonium salt structure represented by the following general formula (A1) is preferable as the onium group.
  • R 1A to R 3A each independently represent a hydrogen atom or an alkyl group (including any of linear, branched and cyclic groups).
  • the carbon number in the alkyl group is, for example, 1 to 10, preferably 1 to 6, and more preferably 1 to 3.
  • M - represents an anion. * Represents a bonding position.
  • the alkyl group may further have a substituent (for example, the group exemplified in the substituent group T).
  • the halogenated alkyl group is not particularly limited, and examples thereof include ones in which an alkyl group having 1 to 10 carbon atoms is substituted with one or more halogen atoms.
  • the number of carbon atoms of the alkyl group (including any of linear, branched and cyclic) is preferably 1 to 6, and more preferably 1 to 3.
  • a halogen atom a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned, A fluorine atom, a chlorine atom, or a bromine atom is preferable.
  • the halogenated alkyl group may further have a substituent (for example, the group exemplified in the substituent group T).
  • the group having a carbonate group is not particularly limited as long as it has a carbonate group, and examples thereof include an alkyl carbonate group (—O—CO—O—R B ).
  • the carbon number in the alkyl group represented by the above R B is, for example, 1 to 10, preferably 1 to 6, and more preferably 1 to 3.
  • the alkyl group may further have a substituent (for example, the group exemplified in the substituent group T).
  • the plurality of Z when there are a plurality of Z, the plurality of Z may be the same or different.
  • the divalent hydrocarbon group may further have a substituent (for example, the group exemplified in the substituent group T).
  • the alkylene group may be linear, branched or cyclic.
  • the carbon number thereof is preferably 1 to 10, more preferably 1 to 6, and still more preferably 1 to 3.
  • R 11 represents a hydrogen atom or an alkyl group (which may be linear, branched or cyclic, and preferably 1 to 6 carbon atoms, and more preferably 1 to 3 carbon atoms).
  • L 1 and L 2 are each independently a single bond, -AL-, -CO-, -CO-O-, -O-CO-, -AL-O-,- O-AL -, - AL- CO-O -, - CO-O-AL -, - AL-O-CO -, - O-CO-AL, -AL-O-AL -, - AL-NR 11 - CO -, - AL-CO- NR 11 -, - NR 11 -CO-AL -, - CO-NR 11 -AL-, or -AR-O-AL-O- more preferably a single bond.
  • the above AL represents an alkylene group having 1 to 10 carbon atoms (the number of carbon atoms is preferably 1 to 6, and more preferably 1 to 3).
  • said AR represents an arylene group.
  • the alkylene group and the arylene group may further have a substituent (for example, the group exemplified in the substituent group T).
  • a plurality of L 1 s may be the same or different.
  • a plurality of L 2 may be the same or different.
  • the molecular weight of the specific compound is, for example, 100 or more, and preferably 150 or more, more preferably 280 or more, and 3,000 or less from the viewpoint of solubility in that it is more excellent in the dispersibility of the surface modified inorganic nitride.
  • 2,000 or less is more preferable.
  • the method for producing the surface modified inorganic nitride is not particularly limited, and examples thereof include a method having a step of bringing the inorganic nitride into contact with a specific compound.
  • the contact of the inorganic nitride with the specific compound is performed, for example, by stirring a solution containing the inorganic nitride and the specific compound.
  • an organic solvent is preferable.
  • the organic solvent include ethyl acetate, methyl ethyl ketone, dichloromethane and tetrahydrofuran.
  • the solution may contain other components such as polymerizable monomers described later. In this case, the obtained mixture can also be used as a composition described later.
  • the mixing ratio of the inorganic nitride to the specific compound may be determined in consideration of the structure and surface area of the inorganic nitride, and the molecular structure such as the aspect ratio of the molecule of the specific compound.
  • the stirring conditions are not particularly limited.
  • the specific compound is surface modified the inorganic nitride.
  • the specific compound preferably forms a bond such as a hydrogen bond with an inorganic nitride to achieve surface modification.
  • the shape of the surface modified inorganic nitride is not particularly limited, and may be particulate, film or plate.
  • the mass ratio of the specific compound to the inorganic nitride (the mass of the specific compound / the mass of the inorganic nitride) in the surface modified inorganic nitride is not particularly limited, but the above-mentioned is superior in the dispersibility of the surface modified inorganic nitride
  • the mass ratio is preferably 0.0001 to 0.5, and more preferably 0.0005 to 0.1.
  • the specific compound may be adsorbed to the inorganic nitride surface, and another surface modifier may be adsorbed to the inorganic nitride surface. That is, the surface modified inorganic nitride may contain the inorganic nitride and the specific compound and other surface modifiers adsorbed on the inorganic nitride surface.
  • the surface modified inorganic nitride has improved dispersibility in various materials. By utilizing this, the surface modified inorganic nitride can be mixed with other materials and applied as a composition to various applications.
  • the content of the surface-modified inorganic nitride in the composition is not particularly limited, and the optimum content is appropriately selected according to the application of the composition.
  • the content of the surface-modified inorganic nitride is, for example, 0.01 to 95% by mass with respect to the total solid content in the composition, and in particular, the surface of the surface-modified inorganic nitride appears more
  • the content of the modified inorganic nitride is preferably 20 to 95% by mass, more preferably 30 to 90% by mass, and still more preferably 40 to 85% by mass, with respect to the total solid content in the composition.
  • the composition may contain one or more surface modified inorganic nitrides.
  • the composition may contain materials other than the surface modified inorganic nitride, and examples thereof include a polymerizable monomer, a curing agent, a curing accelerator, and a polymerization initiator.
  • materials other than the surface modified inorganic nitride include a polymerizable monomer, a curing agent, a curing accelerator, and a polymerization initiator.
  • the polymerizable monomer is a compound which is cured by a predetermined treatment such as heat or light.
  • the polymerizable monomer has a polymerizable group.
  • the type of the polymerizable group is not particularly limited, and may be a known polymerizable group. From the viewpoint of reactivity, a functional group capable of addition polymerization reaction is preferable, and a polymerizable ethylenically unsaturated group or a ring polymerizable group is preferred. More preferable.
  • the polymerizable group examples include acryloyl group, methacryloyl group, oxiranyl group, vinyl group, maleimide group, styryl group, allyl group, oxetanyl group and the like.
  • the hydrogen atom in each said group may be substituted by other substituents, such as a halogen atom.
  • the polymerizable group is preferably a group selected from the group consisting of acryloyl group, methacryloyl group, oxiranyl group, oxetanyl group, and vinyl group from the viewpoint of reactivity.
  • the number of polymerizable groups contained in the polymerizable monomer is not particularly limited, but is preferably 2 or more, and 3 or more, in that the heat resistance of a cured product obtained by curing the composition is more excellent. It is more preferable that The upper limit is not particularly limited, but is often 8 or less.
  • the type of the polymerizable monomer is not particularly limited, and known polymerizable monomers can be used.
  • an epoxy resin monomer and an acrylic resin monomer described in paragraph 0028 of Japanese Patent No. 4118691 an epoxy compound described in paragraphs 0006 to 0011 of JP2008-13759A, and a paragraph 0032 of JP2013-227451A.
  • the epoxy resin mixture described in to 0100 and the like can be mentioned.
  • bisphenol A diglycidyl ether monomer, and bisphenol F diglycidyl ether monomer can be used.
  • the content of the polymerizable monomer in the composition is not particularly limited, and an optimum content is appropriately selected according to the application of the composition. Among them, the content of the polymerizable monomer is preferably 10 to 90% by mass, more preferably 15 to 70% by mass, and still more preferably 15 to 60% by mass, with respect to the total solid content in the composition.
  • the composition may contain one or more polymerizable monomers.
  • the polymerizable monomer preferably exhibits liquid crystallinity. That is, the polymerizable monomer is preferably a liquid crystal compound. In other words, it is preferably a liquid crystal compound having a polymerizable group. Moreover, it is also preferable that the hardened
  • the polymerizable monomer or the cured product thereof preferably exhibits liquid crystallinity. That is, the polymerizable monomer or the cured product thereof is preferably a liquid crystal component.
  • the polymerizable monomer may be any of a rod-like liquid crystal compound and a discotic liquid crystal compound. That is, the polymerizable monomer may be any of a rod-like liquid crystal compound having a polymerizable group and a discotic liquid crystal compound having a polymerizable group.
  • the rod-like liquid crystal compound and the discotic liquid crystal compound will be described in detail.
  • Rod-like liquid crystal compounds include azomethines, azoxys, cyanobiphenyls, cyanophenyl esters, benzoic acid esters, cyclohexanecarboxylic acid phenyl esters, cyanophenylcyclohexanes, cyano substituted phenyl pyrimidines, alkoxy substituted phenyl pyrimidines, Phenyldioxanes, tolanes, and alkenylcyclohexyl benzonitriles can be mentioned. Not only low molecular weight liquid crystal compounds as described above, but also high molecular weight liquid crystal compounds can be used.
  • the high molecular weight liquid crystal compound is a high molecular weight compound obtained by polymerizing a rod-like liquid crystal compound having a low molecular weight reactive group.
  • the rod-shaped liquid crystal compound represented by the following general formula (XXI) is mentioned.
  • Q 1 and Q 2 are each independently a polymerizable group
  • L 111 , L 112 , L 113 and L 114 each independently represent a single bond or a divalent linking group.
  • Each of A 111 and A 112 independently represents a divalent linking group (spacer group) having 1 to 20 carbon atoms.
  • M represents a mesogenic group.
  • the definition of the polymerizable group is as described above.
  • Examples of the divalent linking group represented by L 111 , L 112 , L 113 and L 114 include -O-, -S-, -CO-, -NR 112- , -CO-O-, and -O-CO.
  • R 112 is an alkyl group having 1 to 7 carbon atoms or a hydrogen atom.
  • a 111 and A 112 represent a divalent linking group having 1 to 20 carbon atoms. Among them, an alkylene group having 1 to 12 carbon atoms, an alkenylene group, or an alkynylene group is preferable, and an alkylene group having 1 to 12 carbon atoms is more preferable.
  • the divalent linking group is preferably linear, and may contain non-adjacent oxygen or sulfur atoms.
  • the divalent linking group may have a substituent, and examples of the substituent include a halogen atom (a fluorine atom, a chlorine atom or a bromine atom), a cyano group, a methyl group, and ethyl Groups are mentioned.
  • Examples of the mesogenic group represented by M include known mesogenic groups. Among them, a group represented by the following general formula (XXII) is preferable.
  • W 1 and W 2 each independently represent a divalent cyclic alkylene group, a divalent cyclic alkenylene group, an arylene group, or a divalent heterocyclic group.
  • L 115 represents a single bond or a divalent linking group.
  • n represents 1, 2 or 3;
  • W 1 and W 2 for example, 1,4-cyclohexenediyl, 1,4-cyclohexanediyl, 1,4-phenylene, pyrimidine-2,5-diyl, pyridine-2,5-diyl, 1,3, 4-thiadiazole-2,5-diyl, 1,3,4-oxadiazole-2,5-diyl, naphthalene-2,6-diyl, naphthalene-1,5-diyl, thiophene-2,5-diyl, And pyridazine-3,6-diyl.
  • 1,4-cyclohexanediyl it may be either a trans isomer or a cis isomer or a mixture of any proportion. Among them, a trans form is preferable.
  • W 1 and W 2 may each have a substituent.
  • substituents examples include the groups exemplified in the above-mentioned Substituent Group T, and more specifically, a halogen atom (a fluorine atom, a chlorine atom, a bromine atom and an iodine atom), a cyano group, a carbon Alkyl group of 1 to 10 (for example, methyl group, ethyl group, propyl group and the like), alkoxy group having 1 to 10 carbon atoms (for example, methoxy group and ethoxy group), and acyl group of 1 to 10 carbon atoms (Eg, formyl group, acetyl group, etc.), C 1-10 alkoxycarbonyl group (eg, methoxycarbonyl group, ethoxycarbonyl group, etc.), C 1-10 acyloxy group (eg, acetyloxy group, propionyloxy) And the like), a nitro group, a trifluoromethyl group, and a difluor
  • divalent linking group represented by L 111 to L 114 described above can be given as the divalent linking group represented by L 115 , and examples thereof include, for example, —CO—O— and —O—CO— , -CH 2 -O-, and -O-CH 2- .
  • the compounds represented by formula (XXI) can be synthesized with reference to the method described in JP-A-11-513019 (WO 97/00600).
  • the rod-like liquid crystal compound may be a monomer having a mesogenic group described in JP-A-11-323162 and JP-A-4118691.
  • the discotic liquid crystal compound at least partially has a discotic structure.
  • the discoid structure has at least an aromatic ring. Therefore, the discotic liquid crystal compound can form a columnar structure by the formation of the stacking structure by the ⁇ - ⁇ interaction between molecules.
  • Specific examples of the discoid structure include triphenylene structures described in Angew. Chem. Int. Ed. 2012, 51, 7990-7993 or JP-A-7-306317, and JP-A-2007-2220. Examples thereof include the trisubstituted benzene structure described in JP-A-2010-244038.
  • a thermally conductive material exhibiting high thermal conductivity can be obtained.
  • the rod-like liquid crystal compound can conduct heat only linearly (one-dimensionally)
  • the discotic liquid crystal compound can conduct heat planarly (two-dimensionally) in the normal direction, so heat conduction It is thought that the number of paths increases and the thermal conductivity improves. Further, by using a discotic liquid crystal compound, the heat resistance of the cured product of the composition is improved.
  • the discotic liquid crystal compound preferably has three or more polymerizable groups.
  • the cured product of the composition containing the discotic liquid crystal compound having three or more polymerizable groups tends to have a high glass transition temperature and a high heat resistance.
  • Disc-like liquid crystal compounds tend to have three or more polymerizable groups without affecting the properties of the mesogen moiety, as compared to rod-like liquid crystal compounds.
  • the number of polymerizable groups in the discotic liquid crystal compound is preferably 8 or less, more preferably 6 or less.
  • the discotic liquid crystal compound is preferably a compound represented by the following general formula (XI) or a compound represented by the following general formula (XII).
  • R 11 , R 12 , R 13 , R 14 , R 15 and R 16 be * -X 11 -L 11 -P 11 .
  • any one or more of R 11 and R 12 , any one or more of R 13 and R 14 , and any one or more of R 15 and R 16 are * -X 11 -L 11 -P.
  • R 11, R 12, R 13, R 14, R 15, and more preferably R 16 are all * -X 11 -L 11 -P 11, R 11, R 12
  • R 13 , R 14 , R 15 and R 16 are all the same * -X 11 -L 11 -P 11 .
  • L 11 represents a divalent linking group or a single bond linking X 11 and P 11 .
  • the alkylene group having 1 to 10 carbon atoms include a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, and a hexylene group.
  • Examples of the arylene group having 6 to 20 carbon atoms include 1,4-phenylene group, 1,3-phenylene group, 1,4-naphthylene group, 1,5-naphthylene group, and anthracenylene group.
  • a 1,4-phenylene group is preferred.
  • the alkylene group and the arylene group may each have a substituent.
  • a substituent the group illustrated by the above-mentioned substituent group T is mentioned, for example.
  • the number of substituents is preferably 1 to 3, and more preferably 1.
  • the substitution position of the substituent is not particularly limited.
  • a halogen atom or an alkyl group having 1 to 3 carbon atoms is preferable, and a methyl group is more preferable.
  • the alkylene group and the arylene group be unsubstituted.
  • the alkylene group is preferably unsubstituted.
  • P 11 represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • P 11 is preferably an acryloyl group, a methacryloyl group or an oxiranyl group.
  • L 11 preferably includes an arylene group, and the arylene group is preferably bonded to P 11 .
  • Y 12 is a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or one or two in a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms
  • a group substituted by it may be substituted by a halogen atom.
  • linear or branched alkyl group having 1 to 20 carbon atoms examples include methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl groups. , N-pentyl group, isopentyl group, neopentyl group, 1,1-dimethylpropyl group, n-hexyl group, isohexyl group, linear or branched heptyl group, octyl group, nonyl group, decyl group, undecyl group And dodecyl groups.
  • the carbon number of the cyclic alkyl group is preferably 3 or more, more preferably 5 or more, and preferably 20 or less, more preferably 10 or less, still more preferably 8 or less, and particularly preferably 6 or less.
  • Examples of cyclic alkyl groups include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group, cycloheptyl group, and cyclooctyl group.
  • Y 12 a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or an alkylene oxide group having 1 to 20 carbon atoms is preferable, and a linear group having 1 to 12 carbon atoms is preferable.
  • a linear or branched alkyl group, or an ethylene oxide group or a propylene oxide group having 1 to 20 carbon atoms is more preferable.
  • R 17, R 18, and R 19 are all, * - X 211 - (Z 21 -X 212) is preferably n21 -L 21 -P 21. More preferably, R 17 , R 18 and R 19 are all the same * -X 211- (Z 21 -X 212 ) n 21 -L 21 -P 21 .
  • Z 21 and Z 22 each independently represent a 5- or 6-membered aromatic group or a 5- or 6-membered non-aromatic group, and examples thereof include a 1,4-phenylene group, 1, and 2. Examples thereof include a 3-phenylene group and a divalent heterocyclic group.
  • the aromatic group and the nonaromatic group may have a substituent.
  • substituents include the groups exemplified in the above-mentioned substituent group T.
  • the number of substituents is preferably one or two, more preferably one.
  • the substitution position of the substituent is not particularly limited.
  • a substituent a halogen atom or a methyl group is preferable.
  • a halogen atom a chlorine atom or a fluorine atom is preferable. It is also preferable that the said aromatic group and non-aromatic group are unsubstituted.
  • Examples of the divalent heterocyclic ring include the following heterocyclic rings.
  • a 41 and A 42 each independently represent a methine group or a nitrogen atom;
  • X 4 Represents an oxygen atom, a sulfur atom, a methylene group or an imino group. At least one of A 41 and A 42 is preferably a nitrogen atom, and more preferably both are nitrogen atoms. In addition, X 4 is preferably an oxygen atom.
  • L 21 represents a divalent linking group or a single bond linking X 212 and P 21 and has the same meaning as L 11 in General Formula (XI).
  • the group which consists of an alkylene group or these combination is preferable.
  • P 21 represents a polymerizable group.
  • the definition of the polymerizable group is as described above.
  • P 21 is preferably an acryloyl group, a methacryloyl group or an oxiranyl group.
  • Y 22 each independently represents a hydrogen atom, a linear, branched or cyclic alkyl group having 1 to 20 carbon atoms, or a linear, branched or cyclic alkyl having 1 to 20 carbon atoms
  • n 21 and n 22 each independently represent an integer of 0 to 3, preferably an integer of 1 to 3, and more preferably 2 or 3.
  • the compound represented by the general formula (XI) or the general formula (XII) has a hydrogen bonding functional group in that the stacking is enhanced by reducing the electron density and the column aggregate is easily formed. It is preferably a compound.
  • the compounds represented by the general formula (XI) can be prepared according to the methods described in JP-A-7-306317, JP-A-7-281028, JP-A-2005-156822, and JP-A-2006-301614. Can be synthesized.
  • the compound represented by the general formula (XII) can be synthesized according to the methods described in JP-A-2010-244038, JP-A-2006-76992 and JP-A-2007-2220.
  • the composition may further contain a curing agent.
  • the type of curing agent is not particularly limited, as long as it is a compound capable of curing the above-mentioned polymerizable monomer.
  • the curing agent is preferably a compound having a functional group selected from the group consisting of a hydroxy group, an amino group, a thiol group, an isocyanate group, a carboxy group, a (meth) acryloyl group, and a carboxylic acid anhydride group. It is more preferable that it is a compound having a functional group selected from the group consisting of (meth) acryloyl group, amino group and thiol group.
  • the curing agent preferably contains two or more, and more preferably two or three of the above functional groups.
  • curing agents examples include amine curing agents, phenol curing agents, guanidine curing agents, imidazole curing agents, naphthol curing agents, acrylic curing agents, acid anhydride curing agents, active ester curing agents, Examples include benzoxazine-based curing agents and cyanate ester-based curing agents. Among them, acrylic curing agents, phenolic curing agents, or amine curing agents are preferable.
  • the content of the curing agent in the composition is not particularly limited, but it is preferably 1 to 50% by mass, and more preferably 1 to 30% by mass, with respect to the total solid content in the composition.
  • the composition may further contain a curing accelerator.
  • the type of curing accelerator is not limited, and, for example, triphenylphosphine, 2-ethyl-4-methylimidazole, boron trifluoride amine complex, 1-benzyl-2-methylimidazole, and JP-A-2012-67225. The thing as described in the paragraph 0052 of is mentioned.
  • the content of the curing accelerator in the composition is not particularly limited, but is preferably 0.1 to 20% by mass with respect to the total solid content in the composition.
  • the composition may further contain a polymerization initiator.
  • a polymerization initiator when the specific compound or the polymerizable monomer has a (meth) acryloyl group, the composition contains the polymerization initiator described in paragraph 0062 of JP 2010-125782 and paragraph 0054 of JP 2015-052710. Is preferred.
  • the content of the polymerization initiator in the composition is not particularly limited, but is preferably 0.1 to 50% by mass with respect to the total solid content in the composition.
  • the composition may further contain a solvent.
  • the type of solvent is not particularly limited, and is preferably an organic solvent.
  • the organic solvent include ethyl acetate, methyl ethyl ketone, dichloromethane, and tetrahydrofuran.
  • the method for producing the composition is not particularly limited, and a known method can be adopted.
  • the composition can be produced by mixing the various components described above (surface modified inorganic nitride, polymerizable monomer and the like) by a known method. When mixing, various components may be mixed at once or may be mixed one by one. Further, as described above, when producing the surface modified inorganic nitride, the composition may be produced by collectively mixing the inorganic nitride, the specific compound, and the other additives.
  • the curing method of the composition is not particularly limited, and an optimal method is appropriately selected depending on the type of the polymerizable monomer.
  • the curing method may be, for example, a heat curing reaction or a light curing reaction, and a heat curing reaction is preferable.
  • the heating temperature in the case of a thermosetting reaction is not specifically limited.
  • the temperature may be appropriately selected in the range of 50 to 200 ° C.
  • the curing reaction is preferably carried out on a sheet-like composition.
  • the composition may be applied, and the resulting coating film may be cured. At that time, pressing may be performed.
  • the curing reaction may be a semi-curing reaction. That is, the obtained cured product may be in a so-called B-stage state (semi-cured state). After placing the above-mentioned semi-cured cured product in contact with the device etc., the adhesive property between the layer containing the thermally conductive material which is the cured product and the device can be increased by further curing by heating etc. improves.
  • the surface modified inorganic nitride and the composition can be applied to various applications. For example, it can be applied to various fields as a pigment, a catalyst, an electrode material, a semiconductor material, a heat conducting material, a lubricant and the like. That is, the material containing the surface modified inorganic nitride can be applied to various applications.
  • the shape of the material containing a surface modification inorganic nitride is not specifically limited, For example, a sheet form may be sufficient.
  • the surface modified inorganic nitride and the composition are preferably used to form a heat conductive material or a lubricant.
  • this preferred application will be described in detail.
  • the heat transfer material of the present invention comprises a surface modified inorganic nitride.
  • the heat conductive material may contain components other than the surface modified inorganic nitride, and examples thereof include a binder.
  • a binder the binder formed by hardening
  • the heat conductive material can be produced by curing the composition described above. That is, the composition can be used to form a thermally conductive material.
  • "high thermal conductivity composite material” (CMC publication, Yutaka Takezawa) can be referred.
  • the heat conductive material only needs to contain a surface modified inorganic nitride, and the method of manufacturing the heat conductive material is not limited to the embodiment using the composition.
  • the heat transfer material is a material having excellent heat conductivity, and can be used as a heat release material such as a heat release sheet. For example, it can be used for heat dissipation applications of various devices such as power semiconductor devices. More specifically, heat generation from the device can be efficiently dissipated by the heat conduction layer by arranging the heat conduction layer containing the above-mentioned heat conduction material on the device to produce a device with a heat conduction layer .
  • the shape of the heat conductive material is not particularly limited, and may be formed into various shapes depending on the application.
  • the heat transfer material is preferably in the form of a sheet.
  • the heat conductive material may be in a completely cured state or in a semi-cured state (the above-described B-stage state). As described above, if a heat conductive material in a semi-hardened state is disposed on the device, heat treatment may be performed to form a heat conductive layer with excellent adhesion on the device.
  • the surface modified inorganic nitride can be suitably used for producing a lubricant. That is, as an application of the surface modified inorganic nitride, a lubricant containing the surface modified inorganic nitride can be mentioned.
  • the lubricant can be prepared by mixing grease (low molecular weight monomer, polymer resin) or the like with the surface modified inorganic nitride. A well-known material can be used as grease.
  • boron nitride is preferably mentioned as the inorganic nitride in the surface modified inorganic nitride. Boron nitride is known to itself exhibit lubricity in a high temperature region.
  • Alizarin is a compound well known to bind to zinc oxide to modify the surface of zinc oxide (Japanese Patent No. 5479175). 12 mg of alizarin (manufactured by Wako Pure Chemical Industries, Ltd., catalog number 015-01151) was dissolved in 300 mL of methyl ethyl ketone, and the absorbance at a wavelength of 427 nm was measured using a visible absorption spectrum (measuring device: UV-3100 PC manufactured by Shimadzu Corporation) . Furthermore, zinc oxide fine particles (Wako Pure Chemical Industries, Ltd. make 264-00365) prepared separately were added to this solution (25 mL), and it lightly stirred.
  • the resulting solution supernatant was filtered using a 0.45 micron filter (Ministart RC15 from Sartorius).
  • the absorbance of the obtained filtrate was measured in the same manner as described above.
  • the absorbance of the solution after addition of the zinc oxide microparticles was 27.6% with respect to the absorbance of the solution before the addition of the zinc oxide microparticles. From the obtained results, it was found that the presence or absence of the surface modification of the inorganic nitride of the compound and the degree thereof can be determined from the decrease in absorbance by conducting the comparison of the absorbance as described above.
  • the UV-visible absorption spectrum of the filtrate was measured using the obtained filtrate in the same manner as described above to determine the absorbance Y at the absorption maximum wavelength.
  • the results of the UV-visible absorption spectrum are shown in FIG.
  • the ratio of the absorbance Y at the absorption maximum wavelength of the filtrate obtained by adding boron nitride to the absorbance X at the absorption maximum wavelength of the solution before adding boron nitride (remaining ratio (%)) Calculated.
  • Table 1 The results are shown in Table 1.
  • A-1 A mixture of bisphenol F diglycidyl ether resin and bisphenol A diglycidyl ether resin, epoxy equivalent: 165.7 g / eq, total chlorine: 0.008 mass%, viscosity: 2,340 mPa ⁇ s, Nippon Steel Sumikin Chemical Co., Ltd. Made.
  • A-5 "TMPT” (trimethylolpropane triacrylate, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • A-6 "OXT-121" (multifunctional oxetane, manufactured by Toagosei Co., Ltd.).
  • solvent MEK (methyl ethyl ketone) was used as a solvent.
  • VAm-110 oil-soluble azo polymerization initiator, manufactured by Wako Pure Chemical Industries, Ltd.
  • Inorganic nitride The following were used as inorganic nitride. SGPS (boron nitride, average particle size 12 ⁇ m, manufactured by Denka Co., Ltd.) S-30 (Aluminum nitride, average particle size 35 ⁇ m, manufactured by MARUWA Co., Ltd.)
  • Example 1 The various components shown in Table 2 below are mixed in the order of a polymerizable monomer, MEK (methyl ethyl ketone), an additive, a surface modifier (a compound represented by general formula (I)), and a polymerization initiator, and then inorganic nitride Was added.
  • Composition 1 was obtained by treating the resulting mixture with a rotation and revolution mixer (manufactured by THINKY, Awatori Neritaro ARE-310) for 5 minutes. The final solid content of Composition 1 was adjusted with MEK so as to have the solid concentration shown in Table 2 (described in the “solvent” column).
  • the composition 1 is applied on a release surface of a polyester film (NP-100A PANAC, film thickness 100 ⁇ m) to a film thickness of about 600 ⁇ m, and left under air for 1 hour The coating film 1 was obtained by doing.
  • the coated film surface of the coated film 1 is covered with another polyester film and cured by vacuum heat press (hot plate temperature 130 ° C., vacuum degree ⁇ 1 kPa, pressure 12 MPa, processing time 5 hours) To obtain a resin sheet.
  • the polyester films on both sides of the resin sheet were peeled off to obtain a thermally conductive sheet 1 having an average film thickness (average film thickness of 350 ⁇ m in Example 1) shown in Table 1.
  • the dispersion evaluation was performed using the heat conductive sheet 1. Specifically, the film thickness of the heat conductive sheet 1 was measured at any five positions, the standard deviation of the measurement variation was determined, and evaluation was made according to the following criteria. When the standard deviation is small (in other words, when the variation in film thickness is small), it indicates that the surface modified inorganic nitride is well dispersed. On the other hand, when the standard deviation is large (in other words, when the variation in film thickness is large), this means that aggregation or the like occurs in the cured product and surface irregularities are generated, that is, the dispersibility of the surface modified inorganic nitride is inferior.
  • Thermal Conductivity evaluation was performed using the thermally conductive sheet 1.
  • the measurement of thermal conductivity was performed by the following method, and thermal conductivity was evaluated according to the following criteria.
  • Measurement of Thermal Conductivity (W / mk) (1) The thermal diffusivity in the thickness direction of the thermally conductive sheet 1 was measured using “Eye Phase Mobile 1 u” manufactured by Eye Phase.
  • the specific gravity of the thermally conductive sheet 1 was measured using a balance “XS 204” (using “solid specific gravity measurement kit”) manufactured by METTLER TOLEDO.
  • thermal conductivity is more excellent when the surface modified inorganic nitride of the present invention is used.
  • Such an improvement in thermal conductivity is due to the improvement in the dispersibility of the surface modified inorganic nitride in the sample. That is, it was confirmed that the affinity between the surface modified inorganic nitride and the organic substance was improved.
  • dispersibility is more excellent when boron nitride is used as the inorganic nitride.
  • X has a hydroxyl group, a carboxylic acid group, a phosphonic acid group, a phosphoric acid group, a phosphoric acid group, a phosphinic acid group, a sulfonic acid group or a thiol group. It was confirmed that the dispersibility tends to be better. Further, from the comparison of Examples 1 to 45, in the general formula (I), Y is a polycyclic aromatic hydrocarbon ring group containing three or more benzene rings (preferably a pyrene ring group), It was confirmed that the thermal conductivity was further improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyethers (AREA)
  • Polymerisation Methods In General (AREA)
  • Epoxy Resins (AREA)

Abstract

本発明の課題は、分散性に優れる表面修飾無機窒化物を提供することにある。また、本発明の他の課題は、上記表面修飾無機窒化物を含む組成物、熱伝導材料、及び熱伝導層付きデバイスを提供することにある。 本発明の表面修飾無機窒化物は、無機窒化物と、上記無機窒化物表面上に吸着した下記一般式(I)で表される化合物と、を含む。

Description

表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
 本発明は、表面修飾無機窒化物、組成物、熱伝導材料、及び熱伝導層付きデバイスに関する。
 無機窒化物の応用範囲を広げるために、その表面を修飾する方法が提案されている。
 例えば、特許文献1の実施例では、窒化アルミニウム粒子の表面を、4-ビフェニルカルボン酸又は4-ビフェニルメタノール等で処理する方法が開示されている。
特開2011-236376号公報
 一方で、無機窒化物を樹脂バインダー等の有機物と混合して使用する場合、無機窒化物の有機物に対する親和性のより一層の向上が求められている。例えば、窒化ホウ素等の無機窒化物を有機物と混合して熱伝導材料として用いる場合、熱伝導性のより一層の向上の点から、有機物中での無機窒化物の分散性の向上が望まれている。無機窒化物の分散性向上のためには、無機窒化物の表面を改質することが必要とされている。
 本発明者らは、窒化ホウ素の表面を、特許文献1を参照して4-ビフェニルカルボン酸又は4-ビフェニルメタノールで処理した表面修飾無機窒化物を用意し、この表面修飾無機窒化物を有機物と混合して熱伝導材料を作製して、有機物中での表面修飾無機窒化物の分散性を評価したところ、分散性が不十分であり、更なる改善が必要であることが確認された。
 そこで、本発明は、分散性に優れる表面修飾無機窒化物を提供することを課題とする。
 また、本発明は、上記表面修飾無機窒化物を含む組成物、熱伝導材料、及び熱伝導層付きデバイスを提供することを課題とする。
 本発明者らは、上記課題を達成すべく鋭意検討した結果、一般式(I)で表される化合物で表面処理をした無機窒化物を用いることにより上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、以下の構成により上記目的を達成することができることを見出した。
 〔1〕 無機窒化物と、上記無機窒化物表面上に吸着した下記一般式(I)で表される化合物と、を含む、表面修飾無機窒化物。
 〔2〕 上記Xが、水酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、スルホン酸基、又はチオール基である、〔1〕に記載の表面修飾無機窒化物。
 〔3〕 上記Yが、芳香族炭化水素環基である、〔1〕又は〔2〕に記載の表面修飾無機窒化物。
 〔4〕 上記Yが、ベンゼン環を3環以上含む多環式芳香族炭化水素環基である、〔3〕に記載の表面修飾無機窒化物。
 〔5〕 上記Yが、ピレン環基である、〔4〕に記載の表面修飾無機窒化物。
 〔6〕 上記無機窒化物が、窒化ホウ素及び窒化アルミニウムからなる群より選ばれる少なくとも1種である、〔1〕~〔5〕のいずれかに記載の表面修飾無機窒化物。
 〔7〕 上記無機窒化物が、窒化ホウ素である、〔6〕に記載の表面修飾無機窒化物。
 〔8〕 〔1〕~〔7〕のいずれかに記載の表面修飾無機窒化物と、重合性モノマーと、を含む組成物。
 〔9〕 上記重合性モノマーが、アクリロイル基、メタクリロイル基、オキシラニル基、オキセタニル基、及びビニル基からなる群より選ばれる基を有する、〔8〕に記載の組成物。
 〔10〕 上記重合性モノマー又はその硬化物が、液晶性を示す、〔8〕又は〔9〕に記載の組成物。
 〔11〕 熱伝導材料を形成するために用いられる、〔8〕~〔10〕のいずれかに記載の組成物。
 〔12〕 〔1〕~〔7〕のいずれかに記載の表面修飾無機窒化物を含む、熱伝導材料。
 〔13〕 シート状である、〔12〕に記載の熱伝導材料。
 〔14〕 放熱シートに用いられる、〔12〕又は〔13〕に記載の熱伝導材料。
 〔15〕 デバイスと、上記デバイス上に配置された〔12〕~〔14〕のいずれかに記載の熱伝導材料を含む熱伝導層とを有する、熱伝導層付きデバイス。
 本発明によれば、分散性に優れる表面修飾無機窒化物を提供することができる。
 また、本発明によれば、上記表面修飾無機窒化物を含む組成物、熱伝導材料、及び熱伝導層付きデバイスを提供することができる。
窒化ホウ素添加前後の化合物C-2含有溶液の紫外可視吸収スペクトルを示す。 窒化ホウ素添加前後の化合物C-3含有溶液の紫外可視吸収スペクトルを示す。 窒化ホウ素添加前後の化合物C-8含有溶液の紫外可視吸収スペクトルを示す。 窒化ホウ素添加前後の化合物C-15含有溶液の紫外可視吸収スペクトルを示す。 窒化ホウ素添加前後の化合物C-28含有溶液の紫外可視吸収スペクトルを示す。
 以下、本発明の表面修飾無機窒化物、組成物、熱伝導材料、及び熱伝導層付きデバイスについて詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、「(メタ)アクリロイル基」との記載は、「アクリロイル基及びメタクリロイル基のいずれか一方又は双方」の意味を表す。
 本明細書において、オキシラニル基はエポキシ基とも呼ばれる官能基であり、例えば、飽和炭化水素環基の隣接する炭素原子2つがオキソ基(-O-)により結合してオキシラン環を形成している基等もオキシラニル基に含む。
 本明細書において、酸無水物基は、無水マレイン酸、無水フタル酸、無水ピロメリット酸、及び、無水トリメリット酸等の酸無水物から任意の水素原子を除いて得られる置換基であればよい。
 本明細書において、「表面修飾無機窒化物」は、後述する一般式(I)で表される化合物(以下、「特定化合物」ともいう。)で表面修飾されている無機窒化物を意味する。
 本明細書において、「表面修飾」とは、無機窒化物表面の少なくとも一部に後述する特定化合物が吸着している状態を意味する。吸着の形態は特に限定されないが、結合している状態であることが好ましい。なお、表面修飾は、特定化合物の一部が脱離して得られる有機基(例えば、カチオン性基)が無機窒化物表面に結合している状態も含む。結合は、共有結合、配位結合、イオン結合、水素結合、ファンデルワールス結合、及び、金属結合等、いずれの結合であってもよい。表面修飾は、無機窒化物表面の少なくとも一部に単分子膜を形成するようになされていてもよい。
 なお、本明細書において、表面修飾は、無機窒化物表面の一部のみであっても、全体であってもよい。
 本明細書において、「置換基を有していてもよい」というときの置換基の種類、置換基の位置、及び、置換基の数は特に限定されない。置換基の数は例えば、1つ、2つ、3つ、又はそれ以上であってもよい。置換基の例としては水素原子を除く1価の非金属原子団を挙げることができ、例えば、以下の置換基群Tから選択することができる。
置換基群T:ハロゲン原子(-F、-Br、-Cl、-I)、水酸基、アルコキシ基、アリーロキシ基、チオール基、アルキルチオ基、アリールチオ基、アルキルジチオ基、アリールジチオ基、アミノ基、N-アルキルアミノ基、N,N-ジアルキルアミノ基、N-アリールアミノ基、N,N-ジアリールアミノ基、N-アルキル-N-アリールアミノ基、アシルオキシ基、カルバモイルオキシ基、N-アルキルカルバモイルオキシ基、N-アリールカルバモイルオキシ基、N,N-ジアルキルカルバモイルオキシ基、N,N-ジアリールカルバモイルオキシ基、N-アルキル-N-アリールカルバモイルオキシ基、アルキルスルホキシ基、アリールスルホキシ基、アシルチオ基、アシルアミノ基、N-アルキルアシルアミノ基、N-アリールアシルアミノ基、ウレイド基、N'-アルキルウレイド基、N',N'-ジアルキルウレイド基、N'-アリールウレイド基、N',N'-ジアリールウレイド基、N'-アルキル-N'-アリールウレイド基、N-アルキルウレイド基、N-アリールウレイド基、N'-アルキル-N-アルキルウレイド基、N'-アルキル-N-アリールウレイド基、N',N'-ジアルキル-N-アルキルウレイド基、N',N'-ジアルキル-N-アリールウレイド基、N'-アリール-N-アルキルウレイド基、N'-アリール-N-アリールウレイド基、N',N'-ジアリール-N-アルキルウレイド基、N',N'-ジアリール-N-アリールウレイド基、N'-アルキル-N'-アリール-N-アルキルウレイド基、N'-アルキル-N'-アリール-N-アリールウレイド基、アルコキシカルボニルアミノ基、アリーロキシカルボニルアミノ基、N-アルキル-N-アルコキシカルボニルアミノ基、N-アルキル-N-アリーロキシカルボニルアミノ基、N-アリール-N-アルコキシカルボニルアミノ基、N-アリール-N-アリーロキシカルボニルアミノ基、ホルミル基、アシル基、カルボキシ基及びその共役塩基基、アルコキシカルボニル基、アリーロキシカルボニル基、カルバモイル基、N-アルキルカルバモイル基、N,N-ジアルキルカルバモイル基、N-アリールカルバモイル基、N,N-ジアリールカルバモイル基、N-アルキル-N-アリールカルバモイル基、アルキルスルフィニル基、アリールスルフィニル基、アルキルスルホニル基、アリールスルホニル基、スルホ基(-SO3H)及びその共役塩基基、アルコキシスルホニル基、アリーロキシスルホニル基、スルフィナモイル基、N-アルキルスルフィナモイル基、N,N-ジアルキルスルフィナモイル基、N-アリールスルフィナモイル基、N,N-ジアリールスルフィナモイル基、N-アルキル-N-アリールスルフィナモイル基、スルファモイル基、N-アルキルスルファモイル基、N,N-ジアルキルスルファモイル基、N-アリールスルファモイル基、N,N-ジアリールスルファモイル基、N-アルキル-N-アリールスルファモイル基、N-アシルスルファモイル基及びその共役塩基基、N-アルキルスルホニルスルファモイル基(-SO2NHSO2(alkyl))及びその共役塩基基、N-アリールスルホニルスルファモイル基(-SO2NHSO2(aryl))及びその共役塩基基、N-アルキルスルホニルカルバモイル基(-CONHSO2(alkyl))及びその共役塩基基、N-アリールスルホニルカルバモイル基(-CONHSO2(aryl))及びその共役塩基基、アルコキシシリル基(-Si(Oalkyl)3)、アリーロキシシリル基(-Si(Oaryl)3)、ヒドロキシシリル基(-Si(OH)3)及びその共役塩基基、ホスホノ基(-PO32)及びその共役塩基基、ジアルキルホスホノ基(-PO3(alkyl)2)、ジアリールホスホノ基(-PO3(aryl)2)、アルキルアリールホスホノ基(-PO3(alkyl)(aryl))、モノアルキルホスホノ基(-PO3H(alkyl))及びその共役塩基基、モノアリールホスホノ基(-PO3H(aryl))及びその共役塩基基、ホスホノオキシ基(-OPO32)及びその共役塩基基、ジアルキルホスホノオキシ基(-OPO3(alkyl)2)、ジアリールホスホノオキシ基(-OPO3(aryl)2)、アルキルアリールホスホノオキシ基(-OPO3(alkyl)(aryl))、モノアルキルホスホノオキシ基(-OPO3H(alkyl))及びその共役塩基基、モノアリールホスホノオキシ基(-OPO3H(aryl))及びその共役塩基基、シアノ基、ニトロ基、アリール基、アルキル基、複素環基、オキシラニル基、アルケニル基及びアルキニル基。
 また、これらの置換基は、可能であるならば置換基同士、又は置換している基と結合して環を形成してもよい。
〔表面修飾無機窒化物〕
 本発明の表面修飾無機窒化物は、無機窒化物と、上記無機窒化物表面上に吸着した後述する一般式(I)で表される化合物(特定化合物)とを含む。言い換えれば、本発明の表面修飾無機窒化物は、無機窒化物の表面を後述する特定化合物で修飾してなる表面修飾無機窒化物である。
 本発明の表面修飾無機窒化物においては、無機窒化物の表面修飾剤として、後述する一般式(I)で表される化合物(特定化合物)を用いている。
 特定化合物の特徴点としては、芳香族炭化水素環基又は芳香族複素環基であるYが、置換基として、水素結合性基であるXを有する基(一般式(I)中の*-L1-Xで表される基)と、吸着性基であるZを有する基(一般式(I)中の*-L2-Zで表される基)を各々1個以上有している点が挙げられる。
 上記特定化合物は、上記水素結合性基の存在により、複数の特定化合物同士が水素結合性相互作用によって連結し易い。この結果として、上記特定化合物同士が連結して、芳香族炭化水素環基又は芳香族複素環基(Yに相当)を複数個有する平面構造を形成し、無機窒化物の表面に吸着しやすくなると考えられる。また、特に、無機窒化物が窒化ホウ素である場合、吸着性がより優れることを確認している。
 上記機序によって無機窒化物の表面を特定化合物で修飾することにより形成された表面修飾無機窒化物は、分散性に優れる。この結果として、上記表面修飾無機窒化物を含む材料は、上記材料中において表面修飾無機窒化物が偏在することなく良好に分散して存在するため、その熱伝導性が優れると推測される。特に、上記特定化合物が重合性基を有する場合、上記表面修飾無機窒化物と重合性モノマーとを含む組成物から得られる硬化物は、重合性モノマーを介して表面修飾無機窒化物同士間の導電パスが形成され易いため、より熱伝導性が向上すると考えられる。
 更に、特定化合物が分子中に縮環構造を有する場合、得られる表面修飾無機窒化物は、重合性モノマーを配向させる機能も有するものと考えられる。この結果として、特に、重合性モノマー又はその硬化物が液晶性を示す場合、表面修飾無機窒化物表面上で重合性モノマー又はその硬化物が配向(垂直配向)され、表面修飾無機窒化物間に配向した液晶成分が介在する形となり、表面修飾無機窒化物間での熱伝導性がより向上し、結果として材料全体の熱伝導性がより向上すると推測される。
 以下、表面修飾無機窒化物に含まれる成分について詳述し、その後、表面修飾無機窒化物の製造方法及びその用途等について詳述する。
<無機窒化物>
 無機窒化物の種類は特に限定されない。
 無機窒化物の例としては、窒化ホウ素(BN)、窒化炭素(C34)、窒化ケイ素(Si34)、窒化ガリウム(GaN)、窒化インジウム(InN)、窒化アルミニウム(AlN)、窒化クロム(Cr2N)、窒化銅(Cu3N)、窒化鉄(Fe4N又はFe3N)、窒化ランタン(LaN)、窒化リチウム(Li3N)、窒化マグネシウム(Mg32)、窒化モリブデン(Mo2N)、窒化ニオブ(NbN)、窒化タンタル(TaN)、窒化チタン(TiN)、窒化タングステン(W2N、WN2又はWN)、窒化イットリウム(YN)、及び、窒化ジルコニウム(ZrN)等が挙げられる。
 上記の無機窒化物は、単独で用いてもよく、複数を組み合わせて用いてもよい。
 無機窒化物は、得られる表面修飾無機窒化物の熱伝導性がより優れる点で、ホウ素原子、アルミニウム原子、及び、珪素原子からなる群より選択される少なくとも1種を含むことが好ましい。より具体的には、無機窒化物は、窒化ホウ素、窒化アルミニウム、及び、窒化ケイ素からなる群より選択される少なくとも1種であることがより好ましく、窒化ホウ素及び窒化アルミニウムからなる群より選択される少なくとも1種であることが更に好ましく、窒化ホウ素が特に好ましい。
 無機窒化物の形状は特に限定されず、粒子状、フィルム状、又は板状であってもよい。粒子状の場合、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、又は不定形状であればよい。
 無機窒化物の大きさは特に限定されないが、表面修飾無機窒化物の分散性がより優れる点で、無機窒化物の平均粒径は500μm以下が好ましく、300μm以下がより好ましく、200μm以下が更に好ましい。下限は特に限定されないが、取り扱い性の点で、10nm以上が好ましく、100nm以上がより好ましい。
 上記平均粒径の測定方法としては、電子顕微鏡を用いて、100個の無機窒化物を無作為に選択して、それぞれの無機窒化物の粒径(長径)を測定し、それらを算術平均して求める。なお、市販品を用いる場合、カタログ値を用いてもよい。
<一般式(I)で表される化合物>
 一般式(I)で表される化合物(特定化合物)は、上述したように、無機窒化物表面に吸着する成分である。以下、特定化合物について説明する。
Figure JPOXMLDOC01-appb-C000002
 一般式(I)中、m及びnは、各々独立に、1以上の整数を表す。m及びnの上限としては特に限定されないが、例えば、各々10以下である。
 一般式(I)中、Xは、水酸基(-OH)、カルボン酸基(-COOH)、ホスホン酸基(-PO(OH)2)、リン酸基(-OP(=O)(OH)2)、ホスフィン酸基(-HPO(OH))、スルホン酸基(-SO3H)、チオール基(-SH)、又はアミノ基を表す。
 上記アミノ基としては特に限定されず、1級、2級、及び3級のいずれであってもよい。具体的には、-N(RA2(RAは、それぞれ独立して、水素原子、又はアルキル基(直鎖状、分岐鎖状及び環状のいずれも含む。)が挙げられる。アルキル基中の炭素数は、例えば1~10であり、1~6が好ましく、1~3がより好ましい。なお、アルキル基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。)で表されるアミノ基が挙げられる。
 上記Xとしては、分散性がより優れる点で、水酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、スルホン酸基、又はチオール基が好ましい。
 一般式(I)中、Xが複数個ある場合、複数個あるXは、各々同一でも異なっていてもよい。
 上記Yは、芳香族炭化水素環基又は芳香族複素環基を表す。
 芳香族炭化水素環基としては、単環式芳香族炭化水素環基及び多環式芳香族炭化水素環基のいずれであってもよい。
 単環式芳香族炭化水素環基を構成する単環式芳香族炭化水素環としては特に限定されないが、例えば、5員~10員の環が挙げられ、5員又は6員の環が好ましい。単環式芳香族炭化水素環としては、例えば、シクロペンタジエニル環及びベンゼン環等が挙げられる。
 多環式芳香族炭化水素環としては、上記単環式芳香族炭化水素環を2個以上有していれば特に限定されないが、ベンゼン環を2環以上含む縮合環がより好ましく、ベンゼン環を3環以上含む縮合環が更に好ましい。なお、上記縮合環中に含まれる単環式芳香族炭化水素環の個数の上限は特に制限されないが、例えば、10個以下の場合が多い。
 多環式芳香族炭化水素環としては、具体的に、ビフェニレン、インダセン、アセナフチレン、フルオレン、フェナレン、フェナントレン、アントラセン、フルオランテン、アセフェナンスリレン、アセアンスリレン、ピレン、クリセン、テトラセン、プレイアデン、ピセン、ペリレン、ペンタフェン、ペンタセン、テトラフェニレン、ヘキサフェン、及びトリフェニレンが挙げられる。本発明の効果により優れる点で、上記のうち、ベンゼン環を2環以上含む縮合環がより好ましく、ベンゼン環を3環以上含む縮合環が更に好ましく、ピレン又はペリレンが特に好ましく、ピレンが最も好ましい。
 芳香族複素環基としては、単環式芳香族複素環基及び多環式芳香族複素環基のいずれであってもよい。なお、多環式芳香族複素環基を構成する多環式芳香族複素環とは、2個以上の単環式芳香族複素環からなる縮合環、及び1個以上の単環式芳香族複素環と1個以上の単環式芳香族炭化水素環からなる縮合環を意味する。
 単環式芳香族複素環としては特に限定されないが、例えば、5員~10員の環が挙げられ、5員又は6員の環が好ましい。単環式芳香族複素環が含むヘテロ原子としては、例えば、窒素原子、酸素原子及び硫黄原子が挙げられる。
 単環式芳香族複素環としては、例えば、チオフェン環、チアゾール環、イミダゾール環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環、及びトリアジン環が挙げられる。
 多環式芳香族複素環としては、具体的に、ベンゾイミダゾール環、インドール環、キノリン環、及びキノキサリン環等が挙げられる。
 上記Yとしては、分散性がより優れる点で、芳香族炭化水素環基が好ましく、多環式芳香族炭化水素環基がより好ましい。
 なお、上記Yで表される芳香族炭化水素基又は芳香族複素環基は、置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 上記Zは、アルデヒド基(-CHO)、コハク酸イミド基、オニウム基、ハロゲン化アルキル基、ハロゲン原子(F原子、Cl原子、Br原子、及びI原子)、ニトリル基(-CN)、ニトロ基(-NO2)、アクリロイル基(-COCH2=CH2)、メタクリロイル基(-COCH(CH3)=CH2)、オキセタニル基、ビニル基(-CH=CH2)、アルキニル基(アルキンから水素原子を一つ除いた基。例えば、エチニル基、及びプロパ-2-イン-1-イル基等が含まれる。)、若しくは、マレイミド基、又は、カーボネート基を有する基(例えば、アルキルカーボネート基(-O-CO-O-RB:RBについては後述する。))を表す。
 上記コハク酸イミド基、オキセタニル基、及びマレイミド基は、それぞれ下記式より表される化合物から、任意の位置の水素原子を一つ除いて形成される基を表す。
Figure JPOXMLDOC01-appb-C000003
 また、上記オニウム基とは、オニウム塩構造を有する基を意味する。オニウム塩とは、化学結合に関与しない電子対を有する化合物が、その電子対によって、他の陽イオン形の化合物と配位結合して生ずる化合物である。通常、オニウム塩は、カチオンとアニオンとを含む。
 オニウム塩構造としては特に限定されないが、例えば、アンモニウム塩構造、ピリジニウム塩構造、イミダゾリウム塩構造、ピロリジニウム塩構造、ピペリジニウム塩構造、トリエチレンジアミン塩構造、ホスホニウム塩構造、スルホニウム塩構造、及びチオピリリウム塩構造等が挙げられる。なお、カウンターとなるアニオンの種類は特に限定されず、公知のアニオンが用いられる。アニオンの価数も特に限定されず、例えば、1~3価が挙げられ、1~2価が好ましい。
 オニウム基としては、なかでも、下記一般式(A1)で表されるアンモニウム塩構造を有する基が好ましい。
Figure JPOXMLDOC01-appb-C000004
 一般式(A1)中、R1A~R3Aは、それぞれ独立して、水素原子又はアルキル基(直鎖状、分岐鎖状及び環状のいずれも含む。)を表す。アルキル基中の炭素数は、例えば1~10であり、1~6が好ましく、1~3がより好ましい。Mは、アニオンを表す。*は、結合位置を表す。なお、アルキル基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 上記ハロゲン化アルキル基としては特に限定されないが、例えば、炭素数1~10のアルキル基にハロゲン原子が1個以上置換したものが挙げられる。上記アルキル基(直鎖状、分岐鎖状及び環状のいずれも含む。)の炭素数は、1~6が好ましく、1~3がより好ましい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、及びヨウ素原子が挙げられ、フッ素原子、塩素原子、又は臭素原子が好ましい。なお、ハロゲン化アルキル基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 上記カーボネート基を有する基としては、カーボネート基を有しさえすれば特に限定されないが、例えば、アルキルカーボネート基(-O-CO-O-RB)が挙げられる。
 上記RBで表されるアルキル基中の炭素数は、例えば1~10であり、1~6が好ましく、1~3がより好ましい。なお、アルキル基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 一般式(I)中、Zが複数個ある場合、複数個あるZは、各々同一でも異なっていてもよい。
 上記L1及びL2は、各々独立に、単結合、又は、-O-、-CO-、-S-、-CS-、-NR11-、-N=N-、及び2価の炭化水素基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた2価の連結基を表す。2価の炭化水素基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 上記2価の炭化水素基としては、例えば、アルキレン基、アルケニレン基(例:-CH=CH-)、アルキニレン基(例:-C≡C-)、及びアリーレン基(例:フェニレン基)が挙げられる。上記アルキレン基としては、直鎖状、分岐鎖状、環状のいずれであってもよい。また、その炭素数は、1~10が好ましく、1~6がより好ましく、1~3が更に好ましい。
 R11は、水素原子又はアルキル基(直鎖状、分岐鎖状、環状のいずれであってもよい。炭素数は、1~6が好ましく、1~3がより好ましい)を表す。
 上記L1及びL2としては、分散性により優れる点で、各々独立に、単結合、-AL-、-CO-、-CO-O-、-O-CO-、-AL-O-、-O-AL-、-AL-CO-O-、-CO-O-AL-、-AL-O-CO-、-O-CO-AL、-AL-O-AL-、-AL-NR11-CO-、-AL-CO-NR11-、-NR11-CO-AL-、-CO-NR11-AL-、又は-AR-O-AL-O-が好ましく、単結合がより好ましい。上記ALは、炭素数1~10のアルキレン基(炭素数は、1~6が好ましく、1~3がより好ましい。)を表す。また、上記ARは、アリーレン基を表す。上記アルキレン基及びアリーレン基は、更に置換基(例えば、置換基群Tで例示された基)を有していてもよい。
 なお、一般式(I)中、複数個あるL1は、各々同一でも異なっていてもよい。また、複数個あるL2は、各々同一でも異なっていてもよい。
 上記特定化合物の分子量は、例えば、100以上であり、表面修飾無機窒化物の分散性により優れる点で、150以上が好ましく、280以上がより好ましく、また、溶解度の観点から、3,000以下が好ましく、2,000以下がより好ましい。
 以下に、特定化合物の具体例を示すが、本発明はこれに限定されるものではない。なお、下記例示において、「Me」はメチル基を表し、「Et」はエチル基を表す。
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
<表面修飾無機窒化物の製造方法>
 表面修飾無機窒化物の製造方法は特に限定されず、例えば、無機窒化物と特定化合物とを接触させる工程を有する方法が挙げられる。
 無機窒化物と特定化合物との接触は、例えば、無機窒化物及び特定化合物を含む溶液を攪拌することにより実施される。
 上記溶液の溶媒の種類は特に限定されないが、有機溶媒が好ましい。有機溶媒としては、例えば、酢酸エチル、メチルエチルケトン、ジクロロメタン、及び、テトラヒドロフランが挙げられる。
 上記溶液は、後述の重合性モノマー等のその他の成分を含むものであってもよい。この場合、得られた混合物は、後述する組成物として用いることもできる。
 無機窒化物と特定化合物との混合比は、無機窒化物の構造及び表面積、並びに、特定化合物の分子のアスペクト比等の分子構造を考慮して決定すればよい。
 攪拌条件(攪拌回転数、温度条件)は特に限定されない。
<表面修飾無機窒化物>
 表面修飾無機窒化物において、特定化合物は、無機窒化物を表面修飾している。特定化合物は、無機窒化物と水素結合等の結合を形成し、表面修飾を達成していることが好ましい。
 表面修飾無機窒化物の形状は特に限定されず、粒子状、フィルム状及び板状であってもよい。
 表面修飾無機窒化物中における特定化合物と無機窒化物との質量比(特定化合物の質量/無機窒化物の質量)は特に限定されないが、表面修飾無機窒化物の分散性がより優れる点で、上記質量比は0.0001~0.5が好ましく、0.0005~0.1がより好ましい。
 表面修飾無機窒化物では特定化合物が無機窒化物表面に吸着していればよく、他の表面修飾剤が無機窒化物表面に吸着していてもよい。つまり、表面修飾無機窒化物は、無機窒化物と、無機窒化物表面上に吸着した特定化合物及び他の表面修飾剤とを含んでいてもよい。
〔組成物〕
 上記表面修飾無機窒化物は、各種材料への分散性が改善されている。これを利用して、表面修飾無機窒化物は、他の材料と混合して、組成物として様々な用途に適用できる。
 組成物中における表面修飾無機窒化物の含有量は特に限定されず、組成物の用途に応じて適宜最適な含有量が選択される。表面修飾無機窒化物の含有量は、組成物中の全固形分に対して、例えば、0.01~95質量%であり、なかでも、表面修飾無機窒化物の特性がより現れる点で、表面修飾無機窒化物の含有量は、組成物中の全固形分に対して、20~95質量%が好ましく、30~90質量%がより好ましく、40~85質量%が更に好ましい。
 組成物は、表面修飾無機窒化物を1種含んでいても、2種以上含んでいてもよい。
 組成物には、上述したように、表面修飾無機窒化物以外の材料が含まれていてもよく、例えば、重合性モノマー、硬化剤、硬化促進剤、及び重合開始剤等が挙げられる。
 以下、各種成分について詳述する。
<重合性モノマー>
 重合性モノマーは、熱又は光等の所定の処理によって硬化する化合物である。
 重合性モノマーは、重合性基を有する。
 重合性基の種類は特に制限されず、公知の重合性基が挙げられ、反応性の点から、付加重合反応が可能な官能基が好ましく、重合性エチレン性不飽和基又は環重合性基がより好ましい。重合性基としては、例えば、アクリロイル基、メタクリロイル基、オキシラニル基、ビニル基、マレイミド基、スチリル基、アリル基、及びオキセタニル基等が挙げられる。なお、上記各基中の水素原子は、ハロゲン原子等他の置換基で置換されていてもよい。重合性基は、なかでも、反応性の観点から、アクリロイル基、メタクリロイル基、オキシラニル基、オキセタニル基、及びビニル基からなる群より選ばれる基であることが好ましい。
 なお、重合性モノマーに含まれる重合性基の数は特に限定されないが、組成物を硬化して得られる硬化物の耐熱性がより優れる点で、2個以上であることが好ましく、3個以上であることがより好ましい。上限は特に限定されないが、8個以下の場合が多い。
 重合性モノマーの種類は特に限定されず、公知の重合性モノマーを用いることができる。例えば、特許第4118691号の段落0028に記載のエポキシ樹脂モノマー及びアクリル樹脂モノマー、特開2008-13759号公報の段落0006~0011に記載のエポキシ化合物、並びに、特開2013-227451号公報の段落0032~0100に記載のエポキシ樹脂混合物等が挙げられる。
 また、ビスフェノールAジグリシジルエーテルモノマー、及びビスフェノールFジグリシジルエーテルモノマー等も用いることができる。
 組成物中における重合性モノマーの含有量は特に限定されず、組成物の用途に応じて適宜最適な含有量が選ばれる。なかでも、重合性モノマーの含有量は、組成物中の全固形分に対して、10~90質量%が好ましく、15~70質量%がより好ましく、15~60質量%が更に好ましい。
 組成物は、重合性モノマーを1種含んでいても、2種以上含んでいてもよい。
 重合性モノマーは、液晶性を示すことが好ましい。つまり、重合性モノマーが、液晶化合物であることが好ましい。言い換えれば、重合性基を有する液晶化合物であることが好ましい。
 また、重合性モノマーの硬化物が液晶性を示すことも好ましい。なお、重合性モノマーの硬化物とは、重合性モノマー自体を硬化させて得られる硬化物を意図し、上述した表面修飾無機窒化物は含まれない。なお、上記硬化物を得る際には、必要に応じて、後述する硬化剤を用いてもよい。
 以上のように、重合性モノマー又はその硬化物は、液晶性を示すことが好ましい。つまり、重合性モノマー又はその硬化物は、液晶成分であることが好ましい。
 重合性モノマーは、棒状液晶化合物及び円盤状液晶化合物のいずれであってもよい。つまり、重合性モノマーは、重合性基を有する棒状液晶化合物及び重合性基を有する円盤状液晶化合物のいずれであってもよい。
 以下、棒状液晶化合物及び円盤状液晶化合物について詳述する。
(棒状液晶化合物)
 棒状液晶化合物としては、アゾメチン類、アゾキシ類、シアノビフェニル類、シアノフェニルエステル類、安息香酸エステル類、シクロヘキサンカルボン酸フェニルエステル類、シアノフェニルシクロヘキサン類、シアノ置換フェニルピリミジン類、アルコキシ置換フェニルピリミジン類、フェニルジオキサン類、トラン類、及びアルケニルシクロヘキシルベンゾニトリル類が挙げられる。以上のような低分子液晶化合物だけではなく、高分子液晶化合物も用いることができる。上記高分子液晶化合物は、低分子の反応性基を有する棒状液晶化合物が重合した高分子化合物である。
 好ましい棒状液晶化合物としては、下記一般式(XXI)で表される棒状液晶化合物が挙げられる。
 一般式(XXI):Q1-L111-A111-L113-M-L114-A112-L112-Q2
 式中、Q1及びQ2はそれぞれ独立に、重合性基であり、L111、L112、L113及びL114はそれぞれ独立に、単結合又は2価の連結基を表す。A111及びA112はそれぞれ独立に、炭素数1~20の2価の連結基(スペーサ基)を表す。Mはメソゲン基を表す。
 なお、重合性基の定義は、上述の通りである。
 L111、L112、L113及びL114で表される2価の連結基としては、-O-、-S-、-CO-、-NR112-、-CO-O-、-O-CO-O-、-CO-NR112-、-NR112-CO-、-O-CO-、-CH2-O-、-O-CH2-、-O-CO-NR112-、-NR112-CO-O-、及び、-NR112-CO-NR112-からなる群より選ばれる2価の連結基であることが好ましい。上記R112は炭素数1~7のアルキル基又は水素原子である。
 A111及びA112は、炭素数1~20の2価の連結基を表す。なかでも、炭素数1~12のアルキレン基、アルケニレン基、又はアルキニレン基が好ましく、炭素数1~12のアルキレン基がより好ましい。
 2価の連結基は直鎖状であることが好ましく、隣接していない酸素原子又は硫黄原子を含んでいてもよい。また、上記2価の連結基は置換基を有していてもよく、置換基としては、例えば、ハロゲン原子(フッ素原子、塩素原子、又は、臭素原子)、シアノ基、メチル基、及び、エチル基が挙げられる。
 Mで表されるメソゲン基としては、公知のメソゲン基が挙げられる。なかでも、下記一般式(XXII)で表される基が好ましい。
 一般式(XXII):-(W1-L115n-W2
 式中、W1及びW2は、それぞれ独立して、2価の環状アルキレン基、2価の環状アルケニレン基、アリーレン基、又は、2価のヘテロ環基を表す。L115は、単結合又は2価の連結基を表す。nは、1、2又は3を表す。
 W1及びW2としては、例えば、1,4-シクロヘキセンジイル、1,4-シクロヘキサンジイル、1,4-フェニレン、ピリミジン-2,5-ジイル、ピリジン-2,5-ジイル、1,3,4-チアジアゾール-2,5-ジイル、1,3,4-オキサジアゾール-2,5-ジイル、ナフタレン-2,6-ジイル、ナフタレン-1,5-ジイル、チオフェン-2,5-ジイル、及び、ピリダジン-3,6-ジイルが挙げられる。1,4-シクロヘキサンジイルの場合、トランス体及びシス体の構造異性体のどちらの異性体であってもよく、任意の割合の混合物でもよい。なかでも、トランス体であることが好ましい。
 W1及びW2は、それぞれ置換基を有していてもよい。置換基としては、例えば、上述した置換基群Tで例示された基が挙げられ、より具体的には、ハロゲン原子(フッ素原子、塩素原子、臭素原子、及び、ヨウ素原子)、シアノ基、炭素数1~10のアルキル基(例えば、メチル基、エチル基、及び、プロピル基等)、炭素数1~10のアルコキシ基(例えば、メトキシ基、エトキシ基等)、炭素数1~10のアシル基(例えば、ホルミル基、アセチル基等)、炭素数1~10のアルコキシカルボニル基(例えば、メトキシカルボニル基、エトキシカルボニル基等)、炭素数1~10のアシルオキシ基(例えば、アセチルオキシ基、プロピオニルオキシ基等)、ニトロ基、トリフルオロメチル基、及び、ジフルオロメチル基等が挙げられる。
 L115で表される2価の連結基としては、上述したL111~L114で表される2価の連結基の具体例が挙げられ、例えば、-CO-O-、-O-CO-、-CH2-O-、及び-O-CH2-が挙げられる。
 上記一般式(XXII)で表されるメソゲン基の基本骨格で好ましいものを、以下に例示する。これらに上記置換基が置換していてもよい。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-I000010
 なお、一般式(XXI)で表される化合物は、特表平11-513019号公報(WO97/00600)に記載の方法を参照して合成できる。
 棒状液晶化合物は、特開平11-323162号公報及び特許4118691号に記載のメソゲン基を有するモノマーであってもよい。
(円盤状液晶化合物)
 円盤状液晶化合物は、少なくとも部分的に円盤状構造を有する。円盤状構造は、少なくとも芳香族環を有する。そのため、円盤状液晶化合物は、分子間のπ-π相互作用によるスタッキング構造の形成により柱状構造を形成しうる。
 円盤状構造として、具体的には、Angew.Chem.Int. Ed. 2012, 51, 7990-7993又は特開平7-306317号公報に記載のトリフェニレン構造、及び、特開2007-2220号公報、特開2010-244038号公報に記載の3置換ベンゼン構造等が挙げられる。
 なかでも、重合性モノマーとして円盤状液晶化合物を用いることにより、高い熱伝導性を示す熱伝導材料が得られる。その理由としては、棒状液晶化合物が直線的(一次元的)にしか熱伝導できないのに対して、円盤状液晶化合物は法線方向に平面的(二次元的)に熱伝導できるため、熱伝導パスが増え、熱伝導率が向上する、と考えられる。
 また、円盤状液晶化合物を用いることにより、組成物の硬化物の耐熱性が向上する。
 円盤状液晶化合物は、3個以上の重合性基を有することが好ましい。3個以上の重合性基を有する円盤状液晶化合物を含む組成物の硬化物はガラス転移温度が高く、耐熱性が高い傾向がある。円盤状液晶化合物は棒状液晶化合物と比較して、メソゲン部分の特性に影響を与えることなく3個以上の重合性基を有しやすい。円盤状液晶化合物が有する重合性基の数は8個以下であることが好ましく、6個以下であることがより好ましい。
 円盤状液晶化合物としては、以下の一般式(XI)で表される化合物又は一般式(XII)で表される化合物が好ましい。
Figure JPOXMLDOC01-appb-C000011
 式中、R11、R12、R13、R14、R15、及びR16はそれぞれ独立に*-X11-L11-P11又は*-X12-Y12を表し、*はトリフェニレン環との結合位置を表し、R11、R12、R13、R14、R15、及びR16のうち2つ以上は*-X11-L11-P11であり、X11及びX12はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、又は-SC(=O)S-を表し、L11は2価の連結基又は単結合を表し、P11は重合性基を表し、Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基において1つ又は2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、又は-C(=O)O-で置換された基を表す。
 R11、R12、R13、R14、R15、及びR16は3つ以上が*-X11-L11-P11であることが好ましい。なかでも、R11及びR12のいずれか1つ以上、R13及びR14のいずれか1つ以上、並びに、R15及びR16のいずれか1つ以上が*-X11-L11-P11であることがより好ましく、R11、R12、R13、R14、R15、及びR16が全て*-X11-L11-P11であることが更に好ましく、R11、R12、R13、R14、R15、及びR16が全て同一の*-X11-L11-P11であることが特に好ましい。
 X11及びX12としては、それぞれ独立に、-O-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-C(=O)O-、-C(=O)NH-、-NHC(=O)-、又はNHC(=O)O-が好ましく、-OC(=O)-、-C(=O)O-、-OC(=O)NH-又は-C(=O)NH-がより好ましく、-C(=O)O-が更に好ましい。
 L11は、X11とP11とを連結する2価の連結基又は単結合を表す。2価の連結基としては、-O-、-OC(=O)-、-C(=O)O-、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)のアルキレン基、炭素数6~20(好ましくは炭素数6~14、より好ましくは炭素数6~10)のアリーレン基、又は、これらの組み合わせからなる基等が挙げられる。
 炭素数1~10のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基、及び、ヘキシレン基等が挙げられる。
 炭素数6~20のアリーレン基としては、例えば、1,4-フェニレン基、1,3-フェニレン基、1,4-ナフチレン基、1,5-ナフチレン基、及び、アントラセニレン基等が挙げられ、1,4-フェニレン基が好ましい。
 上記アルキレン基及び上記アリーレン基は、それぞれ置換基を有していてもよい。置換基としては、例えば、上述した置換基群Tで例示された基が挙げられる。置換基の数は1~3個であることが好ましく、1個であることがより好ましい。置換基の置換位置は特に限定されない。置換基としては、ハロゲン原子又は炭素数1~3のアルキル基が好ましく、メチル基がより好ましい。アルキレン基及びアリーレン基は無置換であることも好ましい。特にアルキレン基は無置換であることが好ましい。
 P11は、重合性基を表す。重合性基の定義は、上述の通りである。
 P11は、アクリロイル基、メタクリロイル基、又はオキシラニル基であることが好ましい。
 なお、P11がヒドロキシ基であるとき、L11はアリーレン基を含み、このアリーレン基はP11と結合していることが好ましい。
 Y12は、水素原子、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基において1つ又は2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、又は-C(=O)O-で置換された基を表す。
 Y12が炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基において1つ又は2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、又は-C(=O)O-で置換された基の場合、ハロゲン原子で置換されていてもよい。
 炭素数1~20の直鎖状又は分岐鎖状のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、イソペンチル基、ネオペンチル基、1,1-ジメチルプロピル基、n-ヘキシル基、イソヘキシル基、直鎖状又は分岐鎖状のヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、及び、ドデシル基が挙げられる。
 環状のアルキル基の炭素数は、3以上が好ましく、5以上がより好ましく、また、20以下が好ましく、10以下がより好ましく、8以下が更に好ましく、6以下が特に好ましい。環状のアルキル基の例としては、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、及び、シクロオクチル基が挙げられる。
 Y12としては、水素原子、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20のアルキレンオキシド基が好ましく、炭素数1~12の直鎖状若しくは分岐鎖状のアルキル基、又は、炭素数1~20のエチレンオキシド基若しくはプロピレンオキシド基がより好ましい。
 上記一般式(XI)で表される化合物の具体例については、特開平7-281028号公報の段落0028~0036、特開平7-306317号公報、特開2005-156822号公報の段落0016~0018、特開2006-301614号公報の段落0067~0072、及び液晶便覧(平成12年丸善株式会社発刊)330頁~333頁に記載のものを参照することができる。
Figure JPOXMLDOC01-appb-C000012
 式中、A2、A3及びA4はそれぞれ独立に-CH=又は-N=を表し、R17、R18、及びR19はそれぞれ独立に、*-X211-(Z21-X212n21-L21-P21又は*-X211-(Z22-X222n22-Y22を表し、*は中心環との結合位置を表し、R17、R18、及びR19のうち2つ以上は*-X211-(Z21-X212n21-L21-P21であり、X211、X212、及びX222はそれぞれ独立に、単結合、-O-、-C(=O)-、-OC(=O)-、-OC(=O)O-、-OC(=O)NH-、-OC(=O)S-、-C(=O)O-、-C(=O)NH-、-C(=O)S-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、-S-、-SC(=O)-、-SC(=O)O-、-SC(=O)NH-、又は-SC(=O)S-を表し、Z21及びZ22はそれぞれ独立に、5員環若しくは6員環の芳香族基、又は、5員環若しくは6員環の非芳香族基を表し、L21は、X212とP21とを連結する2価の連結基又は単結合を表し、P21は重合性基を表し、Y22は水素原子、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基において1つ又は2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、又は-C(=O)O-で置換された基を表し、n21及びn22はそれぞれ独立に、0~3の整数を表し、n21及びn22が2以上の場合の複数個あるZ21-X212及びZ22-X222は同一でも異なっていてもよい。
 R17、R18、及びR19は全て、*-X211-(Z21-X212n21-L21-P21であることが好ましい。R17、R18、及びR19は全て同一の*-X211-(Z21-X212n21-L21-P21であることがより好ましい。
 X211、X212、及びX222としては、単結合、又は、-OC(=O)-が好ましい。
 Z21及びZ22はそれぞれ独立に、5員環若しくは6員環の芳香族基、又は、5員環若しくは6員環の非芳香族基を表し、例えば、1,4-フェニレン基、1,3-フェニレン基、及び、2価の複素環基等が挙げられる。
 上記芳香族基及び非芳香族基は置換基を有していてもよい。置換基としては、上述した置換基群Tで例示された基が挙げられる。置換基は1つ又は2つであることが好ましく、1つであることがより好ましい。置換基の置換位置は特に限定されない。置換基としては、ハロゲン原子又はメチル基が好ましい。ハロゲン原子としては塩素原子又はフッ素原子が好ましい。上記芳香族基及び非芳香族基は無置換であることも好ましい。
 2価の複素環としては、例えば、以下の複素環が挙げられる。
Figure JPOXMLDOC01-appb-C000013
 式中、*はX211に結合する部位を示し、**はX212(又はX222)に結合する部位を示し;A41及びA42はそれぞれ独立にメチン基又は窒素原子を表し;X4は、酸素原子、硫黄原子、メチレン基又はイミノ基を表す。
 A41及びA42は、少なくとも一方が窒素原子であることが好ましく、両方が窒素原子であることがより好ましい。また、X4は酸素原子であることが好ましい。
 L21は、X212とP21とを連結する2価の連結基又は単結合を表し、一般式(XI)におけるL11と同義である。L21としては、-O-、-OC(=O)-、-C(=O)O-、炭素数1~10(好ましくは炭素数1~8、より好ましくは炭素数1~6)のアルキレン基、又はこれらの組み合わせからなる基が好ましい。
 P21は、重合性基を表す。重合性基の定義は、上述の通りである。
 P21は、アクリロイル基、メタクリロイル基、又はオキシラニル基であることが好ましい。
 Y22はそれぞれ独立に、水素原子、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基、又は、炭素数1~20の直鎖状、分岐鎖状、若しくは環状のアルキル基において1つ又は2つ以上のメチレン基が-O-、-S-、-NH-、-N(CH3)-、-C(=O)-、-OC(=O)-、又は-C(=O)O-で置換された基を表し、一般式(XI)におけるY12と同義であり、好ましい範囲も同様である。
 n21及びn22はそれぞれ独立に、0~3の整数を表し、1~3の整数が好ましく、2又は3がより好ましい。
 一般式(XII)で表される化合物の詳細及び具体例については、特開2010-244038号公報の段落0013~0077の記載を参照することができ、その内容は本明細書に組み込まれる。
 電子密度を減らすことでスタッキングを強くし、カラム状集合体を形成しやすくなるという点で、一般式(XI)又は一般式(XII)で表される化合物としては、水素結合性官能基を有する化合物であることが好ましい。
 水素結合性官能基としては、-OC(=O)NH-、-C(=O)NH-、-NHC(=O)-、-NHC(=O)O-、-NHC(=O)NH-、-NHC(=O)S-、及び、SC(=O)NH-等が挙げられる。
 一般式(XI)で表される化合物、及び、一般式(XII)で表される化合物として特に好ましい具体例としては以下の化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 一般式(XI)で表される化合物は、特開平7-306317号公報、特開平7-281028号公報、特開2005-156822号公報、及び特開2006-301614号公報に記載の方法に準じて合成できる。
 一般式(XII)で表される化合物は、特開2010-244038号公報、特開2006-76992号公報、及び特開2007-2220号公報に記載の方法に準じて合成できる。
<その他の成分>
 (硬化剤)
 組成物は、更に、硬化剤を含んでいてもよい。
 硬化剤の種類は特に限定されず、上述した重合性モノマーを硬化し得る化合物であればよい。硬化剤としては、ヒドロキシ基、アミノ基、チオール基、イソシアネート基、カルボキシ基、(メタ)アクリロイル基、及び無水カルボン酸基からなる群より選ばれる官能基を有する化合物であることが好ましく、ヒドロキシ基、(メタ)アクリロイル基、アミノ基、及びチオール基からなる群より選ばれる官能基を有する化合物であることがより好ましい。
 硬化剤は、上記官能基を2個以上含むことが好ましく、2又は3個含むことがより好ましい。
 硬化剤としては、例えば、アミン系硬化剤、フェノール系硬化剤、グアニジン系硬化剤、イミダゾール系硬化剤、ナフトール系硬化剤、アクリル系硬化剤、酸無水物系硬化剤、活性エステル系硬化剤、ベンゾオキサジン系硬化剤、及び、シアネートエステル系硬化剤等が挙げられる。なかでも、アクリル系硬化剤、フェノール系硬化剤、又は、アミン系硬化剤が好ましい。
 組成物中における硬化剤の含有量は特に限定されないが、組成物中の全固形分に対して、1~50質量%が好ましく、1~30質量%がより好ましい。
 (硬化促進剤)
 組成物は、更に、硬化促進剤を含んでいてもよい。
 硬化促進剤の種類は限定されず、例えば、トリフェニルホスフィン、2-エチル-4-メチルイミダゾール、三フッ化ホウ素アミン錯体、1-ベンジル-2-メチルイミダゾール、及び、特開2012-67225号公報の段落0052に記載のものが挙げられる。
 組成物中における硬化促進剤の含有量は特に限定されないが、組成物中の全固形分に対して、0.1~20質量%が好ましい。
 (重合開始剤)
 組成物は、更に、重合開始剤を含んでいてもよい。
 特に、特定化合物又は重合性モノマーが(メタ)アクリロイル基を有する場合には、組成物は、特開2010-125782の段落0062及び特開2015-052710の段落0054に記載の重合開始剤を含むことが好ましい。
 組成物中における重合開始剤の含有量は特に限定されないが、組成物中の全固形分に対して、0.1~50質量%が好ましい。
 (溶媒)
 組成物は、更に、溶媒を含んでいてもよい。
 溶媒の種類は特に限定されず、有機溶媒であることが好ましい。有機溶媒としては、例えば、酢酸エチル、メチルエチルケトン、ジクロロメタン、及び、テトラヒドロフラン等が挙げられる。
<組成物の製造方法>
 組成物の製造方法は特に限定されず、公知の方法を採用でき、例えば、上述した各種成分(表面修飾無機窒化物及び重合性モノマー等)を公知の方法で混合することにより製造できる。混合する際には、各種成分を一括で混合しても、順次混合してもよい。
 また、上述したように、表面修飾無機窒化物を製造する際に、無機窒化物、特定化合物、及び、その他の添加剤を一括して混合して、組成物を製造してもよい。
<組成物の硬化方法>
 組成物の硬化方法は特に限定されず、重合性モノマーの種類によって適宜最適な方法が選ばれる。硬化方法は、例えば、熱硬化反応であっても、光硬化反応であってもよく、熱硬化反応が好ましい。
 熱硬化反応の際の加熱温度は特に限定されない。例えば、50~200℃の範囲で適宜選択すればよい。また、熱硬化反応を行う際には、温度の異なる加熱処理を複数回にわたって実施してもよい。
 なお、硬化反応は、シート状とした組成物に対して実施することが好ましい。具体的には、例えば、組成物を塗布し、得られた塗膜に対して硬化反応を実施すればよい。その際、プレス加工を行ってもよい。
 また、硬化反応は、半硬化反応であってもよい。つまり、得られる硬化物が、いわゆるBステージ状態(半硬化状態)であってもよい。
 上記のような半硬化させた硬化物をデバイス等に接触するように配置した後、更に加熱等によって本硬化させることにより、硬化物である熱伝導材料を含む層とデバイスとの接着性がより向上する。
<用途>
 上記表面修飾無機窒化物及び上記組成物は、種々の用途に適用することができる。例えば、顔料、触媒、電極材料、半導体材料、熱伝導材料、及び潤滑剤等として様々な分野に応用することができる。つまり、上記表面修飾無機窒化物を含む材料は、種々の用途に適用できる。なお、表面修飾無機窒化物を含む材料の形状は特に限定されず、例えば、シート状であってもよい。
 なかでも、上記表面修飾無機窒化物及び上記組成物は、熱伝導材料又は潤滑剤を形成するために用いることが好ましい。
 以下、この好適用途に関して詳述する。
(熱伝導材料)
 本発明の熱伝導材料は、表面修飾無機窒化物を含む。
 熱伝導材料中には、表面修飾無機窒化物以外の成分が含まれていてもよく、例えば、バインダーが挙げられる。なお、バインダーとしては、上述した重合性モノマーが硬化して形成されるバインダーが挙げられる。
 熱伝導材料は、上述した組成物を硬化して作製することができる。つまり、上記組成物は、熱伝導材料を形成するために用いることができる。なお、硬化反応を含む熱伝導材料の作製については、「高熱伝導性コンポジット材料」(シーエムシー出版、竹澤由高著)を参照することができる。
 なお、上記熱伝導材料には表面修飾無機窒化物が含まれていればよく、その製造方法は上記組成物を用いる態様には限定されない。
 熱伝導材料は、熱伝導性に優れる材料であり、放熱シート等の放熱材として用いることができる。例えば、パワー半導体デバイス等の各種デバイスの放熱用途に用いることができる。より具体的には、デバイス上に上記熱伝導材料を含む熱伝導層を配置して熱伝導層付きデバイスを作製することにより、デバイスからの発熱を効率的に熱伝導層で放熱することができる。
 熱伝導材料の形状は特に限定されず、用途に応じて、様々な形状に成形されたものであってもよい。典型的には、熱伝導材料は、シート状であることが好ましい。
 なお、上記熱伝導材料は、完全に硬化した状態であってもよく、半硬化状態(上述したBステージ状態)であってもよい。上述したように、半硬化状態の熱伝導材料であればデバイス上に配置した後、加熱処理を施すことにより、デバイス上に接着性に優れた熱伝導層を形成することができる。
(潤滑剤)
 上記表面修飾無機窒化物は、潤滑剤の作製に好適に使用することができる。つまり、表面修飾無機窒化物の用途として、表面修飾無機窒化物を含む潤滑剤が挙げられる。
 潤滑剤は、グリース(低分子モノマー、高分子樹脂)等と表面修飾無機窒化物とを混合することにより作製できる。グリースとしては、公知の材料を用いることができる。
 潤滑剤を作製する際には、表面修飾無機窒化物中の無機窒化物としては、窒化ホウ素が好ましく挙げられる。窒化ホウ素は、高温領域でそのもの自身が潤滑性を示すことが知られているからである。
 以下に実施例に基づいて本発明を更に詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
〔実験系の確立〕
 アリザリンは、酸化亜鉛と結合して酸化亜鉛表面を修飾することがよく知られている化合物である(特許5479175号)。アリザリン(和光純薬社製、カタログ番号015-01151)12mgをメチルエチルケトン300mLに溶解させて、この溶液の可視吸収スペクトル(測定装置:島津製作所製UV-3100PC)を用いて波長427nmの吸光度を測定した。さらに、この溶液(25mL)に、別に用意した酸化亜鉛微粒子(和光純薬社製、264-00365)を添加して、軽く攪拌した。約5分後、得られた溶液の上澄み液を0.45ミクロンフィルター(ザルトリウス社製Minisart RC15)を使用してフィルターろ過した。得られたろ液について、上記と同様に吸光度を測定した。その結果、酸化亜鉛微粒子添加前の溶液の吸光度に対して、酸化亜鉛微粒子添加後の溶液の吸光度が27.6%であった。得られた結果から、上記のような吸光度の比較を行うことにより、吸光度の減少分から化合物の無機窒化物の表面修飾の有無、及び、その程度を決定できることが分かった。
(無機窒化物への吸着試験)
 下記化合物C-2(10mg)をアセトニトリル(100mL)に溶解し、さらに1/10に希釈することにより溶液を得た。得られた溶液の紫外可視吸収スペクトル(測定装置:島津製作所製UV-3100PC)を測定し、吸収極大波長での吸光度Xを求めた。
 次に、上記溶液(20mL)にデンカ株式会社製窒化ホウ素「SGPS」(0.5g)を添加し数秒間撹拌した。撹拌後、得られた溶液の上澄み液をフィルターろ過した。得られたろ液を用いて、上記と同様に、ろ液の紫外可視吸収スペクトル(測定装置:島津製作所製UV-3100PC)を測定し、吸収極大波長での吸光度Yを求めた。紫外可視吸収スペクトルの結果を図1に示す。
 次いで、窒化ホウ素を添加する前の溶液の吸収極大波長での吸光度Xに対する、窒化ホウ素を添加して得られた上記ろ液の吸収極大波長での吸光度Yの割合(残存率(%))を算出した。残存率(%)が小さいほど、窒化ホウ素への吸着に優れることを意味する。結果を表1に示す。
 さらに、C-2の代わりに、後述する表1に示す各化合物を用い、上記と同様の手順に従って、窒化ホウ素の添加後の吸光度の残存率(%)を算出した。各結果を後述する表1にまとめて示す。
 また、以下の化合物を用いた場合の紫外可視吸収スペクトルの結果を図2~5にそれぞれ示す。
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-T000025
 上記表1の結果から分かるように、表1に示す各化合物を用いた場合、いずれも吸光度の減少が確認された。この結果より、表1に示す各化合物は、窒化ホウ素の表面に吸着することが確認された。なお、後述する実施例で用いられる化合物C-1~16、C-18~C~35のうち、表1に示す化合物以外の化合物を用いた場合においても吸光度の減少が確認された。この結果より、後述する実施例で用いられる化合物C-1~16、C-18~C~35のうち、表1に示す化合物以外の化合物についても、窒化ホウ素の表面に吸着することが確認された。
〔組成物の調製及び評価〕
<各種成分>
 以下に、実施例及び比較例で使用する各種成分を示す。
(重合性モノマー)
 重合性モノマーとして、下記A-1~A-8で表される化合物を用いた。
 A-1:ビスフェノールFジグリシジルエーテル樹脂とビスフェノールAジグリシジルエーテル樹脂の混合物、エポキシ当量:165.7g/eq、全塩素:0.008質量%、粘度:2,340mPa・s、新日鉄住金化学社製。
Figure JPOXMLDOC01-appb-C000026
 A-5:「TMPT」(トリメチロールプロパントリアクリレート、新中村化学工業(株)製)。
 A-6:「OXT-121」(多官能オキセタン、東亜合成(株)製)。
Figure JPOXMLDOC01-appb-C000027
(添加剤)
 添加剤として、下記B-1~B-3で表される化合物を用いた。
Figure JPOXMLDOC01-appb-C000028
 B-3:「KAYAHARD GPH-65」(日本化薬(株)製)
(溶剤)
 溶剤として、MEK(メチルエチルケトン)を用いた。
(重合開始剤)
 重合開始剤として、VAm-110(油溶性アゾ重合開始剤、和光純薬(株)社製)を用いた。
(無機窒化物)
 無機窒化物としては、下記のものを用いた。
 SGPS(窒化ホウ素、平均粒径12μm、デンカ(株)社製)
 S-30(窒化アルミニウム、平均粒径35μm、(株)MARUWA社製)
(表面修飾剤)
 表面修飾剤として、下記C-1~C-16、C-18~C-35で表される化合物を用いた。
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000031
(比較用表面修飾剤)
 比較用表面修飾剤として、下記D-1~D-4で表される化合物を用いた。
Figure JPOXMLDOC01-appb-C000032
<実施例1>
 下記表2に示す各種成分を、重合性モノマー、MEK(メチルエチルケトン)、添加剤、表面修飾剤(一般式(I)で表される化合物)、及び重合開始剤の順で混合した後、無機窒化物を添加した。得られた混合物を自転公転ミキサー(THINKY社製、あわとり練太郎ARE-310)で5分間処理することで組成物1を得た。なお、組成物1の最終的な固形分は、表2に記載された固形分濃度(「溶媒」欄内に記載)になるよう、MEKで調整した。
 次に、アプリケーターを用いて、ポリエステルフィルム(NP-100A パナック社製、膜厚100μm)の離型面上に膜厚が約600μmになるように組成物1を塗布し、空気下で1時間放置することで塗膜1を得た。
 次に、塗膜1の塗膜面を別のポリエステルフィルムで覆い、真空熱プレス(熱板温度130℃、真空度≦1kPa、圧力12MPa、処理時間5時間)で処理することで塗膜を硬化し、樹脂シートを得た。樹脂シートの両面にあるポリエステルフィルムを剥がし、表1に示す平均膜厚(実施例1では平均膜厚350μm)の熱伝導性シート1を得た。
(評価)
 得られた熱伝導性シート1に対し、下記の評価を実施した。
 [1]分散性評価
 分散性評価は、熱伝導性シート1を用いて実施した。具体的には、熱伝導性シート1の膜厚を任意の5か所の位置において測定し、その測定ばらつきについて標準偏差を求め、下記の基準にしたがって評価した。標準偏差が小さい場合(言い換えると膜厚のばらつきが小さい場合)、表面修飾無機窒化物が良好に分散していることを示す。一方、標準偏差が大きい場合(言い換えると膜厚のばらつきが大きい場合)、硬化物中において凝集等が発生し表面凹凸が生じていることを意味し、つまり表面修飾無機窒化物の分散性が劣っていることを示す。
 膜厚測定は、アイフェイズ社製の「アイフェイズ・モバイル1u」を用いて実施した。
(評価基準)
 「A」:標準偏差が5未満
 「B」:標準偏差が5以上10未満
 「C」:標準偏差が10以上30未満
 「D」:標準偏差が30以上
 結果を表2に示す。
 [2]熱伝導性評価
 熱伝導性評価は、熱伝導性シート1を用いて実施した。熱伝導率の測定は下記の方法で行い、下記の基準にしたがって熱伝導性を評価した。
・熱伝導率(W/mk)の測定
(1)アイフェイズ社製の「アイフェイズ・モバイル1u」を用いて、熱伝導性シート1の厚み方向の熱拡散率を測定した。
(2)メトラー・トレド社製の天秤「XS204」(「固体比重測定キット」使用)を用いて、熱伝導性シート1の比重を測定した。
(3)セイコーインスツル社製の「DSC320/6200」を用い、10℃/分の昇温条件の下、25℃における熱伝導性シート1の比熱をDSC7のソフトウエアを用いて比熱を求めた。
(4)得られた熱拡散率に比重及び比熱を乗じることで、熱伝導性シート1の熱伝導率を算出した。
(評価基準)
 「A」: 15W/m・K以上
 「B」: 12W/m・K以上15W/m・K未満
 「C」: 9W/m・K以上12W/m・K未満
 「D」: 9W/m・K未満
 結果を表2に示す。
 <実施例2~45、比較例1~4>
 実施例1と同様の手順により、下記表2に示す実施例及び比較例の各組成物を得た。なお、組成物の最終的な固形分は、表2に記載された固形分濃度(「溶媒」欄内に記載)になるよう、MEKで調整した。
 また、得られた各組成物から熱伝導性シート2~45、比較用熱伝導性シート1~4を作製し、実施例1と同様の評価試験を実施した。結果を表2に示す。
 表2において、各成分欄に記載される(数値)は、組成物中の全固形分に対する各成分の含有量(質量%)を意味する。
 また、表2中に記載される「膜厚(μm)」は、熱伝導性シートの平均膜厚を意味する。
 表2において、実施例44で使用する硬化促進剤Aは、トリフェニルホスフィンである。
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000034
Figure JPOXMLDOC01-appb-T000035
 上記表に示すように、本発明の表面修飾無機窒化物を用いると熱伝導率がより優れることが確認された。このような熱伝導率の向上は、サンプル中での表面修飾無機窒化物の分散性が向上したためである。つまり、表面修飾無機窒化物と有機物との親和性が向上したことが確認された。
 また、実施例15と実施例33の対比から、無機窒化物として、窒化ホウ素を用いた場合、分散性がより優れることが確認された。
 また、実施例1~45の対比から、一般式(I)中、Xとしては、水酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、スルホン酸基、又はチオール基を有する場合、分散性により優れる傾向があることが確認された。
 また、実施例1~45の対比から、一般式(I)中、Yがベンゼン環を3環以上含む多環式芳香族炭化水素環基である場合(好ましくはピレン環基である場合)、熱伝導性がより向上することが確認された。
 また、実施例39~43の対比から、重合性モノマーが、アクリロイル基、メタクリロイル基、オキシラニル基、オキセタニル基、及びビニル基からなる群より選ばれる基を有する場合、熱伝導性がより向上することが確認された。

Claims (15)

  1.  無機窒化物と、前記無機窒化物表面上に吸着した下記一般式(I)で表される化合物と、を含む、表面修飾無機窒化物。
    Figure JPOXMLDOC01-appb-C000001
     一般式(I)中、Xは、水酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、スルホン酸基、チオール基、又はアミノ基を表す。Yは、芳香族炭化水素環基又は芳香族複素環基を表す。Zは、アルデヒド基、コハク酸イミド基、オニウム基、ハロゲン化アルキル基、ハロゲン原子、ニトリル基、ニトロ基、アクリロイル基、メタクリロイル基、オキセタニル基、ビニル基、アルキニル基、若しくは、マレイミド基、又は、カーボネート基を有する基を表す。L1及びL2は、各々独立に、単結合、又は、-O-、-CO-、-S-、-CS-、-NR11-、-N=N-、及び2価の炭化水素基からなる群より選ばれるいずれか1種又は2種以上を組み合わせた2価の連結基を表す。R11は、水素原子又はアルキル基を表す。m及びnは、各々独立に、1以上の整数を表す。
     なお、一般式(I)中、Xが複数個ある場合、複数個あるXは、各々同一でも異なっていてもよい。また、Zが複数個ある場合、複数個あるZは、各々同一でも異なっていてもよい。また、L1が複数個ある場合、複数個あるL1は、各々同一でも異なっていてもよい。また、L2が複数個ある場合、複数個あるL2は、各々同一でも異なっていてもよい。
  2.  前記Xが、水酸基、カルボン酸基、ホスホン酸基、リン酸基、ホスフィン酸基、スルホン酸基、又はチオール基である、請求項1に記載の表面修飾無機窒化物。
  3.  前記Yが、芳香族炭化水素環基である、請求項1又は2に記載の表面修飾無機窒化物。
  4.  前記Yが、ベンゼン環を3環以上含む多環式芳香族炭化水素環基である、請求項3に記載の表面修飾無機窒化物。
  5.  前記Yが、ピレン環基である、請求項4に記載の表面修飾無機窒化物。
  6.  前記無機窒化物が、窒化ホウ素及び窒化アルミニウムからなる群より選ばれる少なくとも1種である、請求項1~5のいずれか1項に記載の表面修飾無機窒化物。
  7.  前記無機窒化物が、窒化ホウ素である、請求項6に記載の表面修飾無機窒化物。
  8.  請求項1~7のいずれか1項に記載の表面修飾無機窒化物と、重合性モノマーと、を含む組成物。
  9.  前記重合性モノマーが、アクリロイル基、メタクリロイル基、オキシラニル基、オキセタニル基、及びビニル基からなる群より選ばれる基を有する、請求項8に記載の組成物。
  10.  前記重合性モノマー又はその硬化物が、液晶性を示す、請求項8又は請求項9に記載の組成物。
  11.  熱伝導材料を形成するために用いられる、請求項8~10のいずれか1項に記載の組成物。
  12.  請求項1~7のいずれか1項に記載の表面修飾無機窒化物を含む、熱伝導材料。
  13.  シート状である、請求項12に記載の熱伝導材料。
  14.  放熱シートに用いられる、請求項12又は13に記載の熱伝導材料。
  15.  デバイスと、前記デバイス上に配置された請求項12~14のいずれか1項に記載の熱伝導材料を含む熱伝導層とを有する、熱伝導層付きデバイス。
PCT/JP2018/026599 2017-07-14 2018-07-13 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス WO2019013343A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP18831162.5A EP3653574B1 (en) 2017-07-14 2018-07-13 Surface-modified inorganic nitride, composition, thermally conductive material, device provided with thermally conductive layer
KR1020197038340A KR102252723B1 (ko) 2017-07-14 2018-07-13 표면 수식 무기 질화물, 조성물, 열전도 재료, 열전도층 부착 디바이스
CN201880043393.0A CN110799454B (zh) 2017-07-14 2018-07-13 表面修饰无机氮化物、组合物、导热材料及带导热层的器件
JP2019529812A JP6876800B2 (ja) 2017-07-14 2018-07-13 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
US16/734,908 US11945717B2 (en) 2017-07-14 2020-01-06 Surface-modified inorganic nitride, composition, thermally conductive material, and device with thermally conductive layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-138356 2017-07-14
JP2017138356 2017-07-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/734,908 Continuation US11945717B2 (en) 2017-07-14 2020-01-06 Surface-modified inorganic nitride, composition, thermally conductive material, and device with thermally conductive layer

Publications (1)

Publication Number Publication Date
WO2019013343A1 true WO2019013343A1 (ja) 2019-01-17

Family

ID=65001644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/026599 WO2019013343A1 (ja) 2017-07-14 2018-07-13 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス

Country Status (6)

Country Link
US (1) US11945717B2 (ja)
EP (1) EP3653574B1 (ja)
JP (1) JP6876800B2 (ja)
KR (1) KR102252723B1 (ja)
CN (1) CN110799454B (ja)
WO (1) WO2019013343A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020081A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JPWO2021039732A1 (ja) * 2019-08-26 2021-03-04
JP2021038119A (ja) * 2019-09-04 2021-03-11 三菱マテリアル電子化成株式会社 窒化ジルコニウム粉末及びその製造方法
CN114144470A (zh) * 2019-07-17 2022-03-04 富士胶片株式会社 导热材料形成用组合物、导热材料及表面修饰无机物
WO2022070718A1 (ja) * 2020-09-29 2022-04-07 富士フイルム株式会社 表面修飾窒化ホウ素粒子、表面修飾窒化ホウ素粒子の製造方法、熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
US11697156B2 (en) 2020-12-18 2023-07-11 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same

Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198668A (ja) * 1987-10-13 1989-04-17 Hitachi Chem Co Ltd 樹脂組成物
JPH07281028A (ja) 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd 光学異方性シートおよびそれを用いた液晶表示素子
JPH07306317A (ja) 1994-05-11 1995-11-21 Fuji Photo Film Co Ltd 新規なトリフェニレン誘導体、それを含む組成物およびそれを含む光学異方性材料
WO1997000600A2 (de) 1995-09-01 1997-01-09 Basf Aktiengesellschaft Polymerisierbare flüssigkristalline verbindungen
JPH11323162A (ja) 1998-03-19 1999-11-26 Hitachi Ltd 絶縁組成物
JP2005156822A (ja) 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 位相差板、トリフェニレン化合物および液晶表示装置
JP2006076992A (ja) 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd 液晶性化合物、組成物および薄膜
JP2006301614A (ja) 2005-03-24 2006-11-02 Fuji Photo Film Co Ltd 位相差板
JP2007002220A (ja) 2005-03-15 2007-01-11 Fujifilm Holdings Corp 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
JP2008013759A (ja) 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP4118691B2 (ja) 2001-05-18 2008-07-16 株式会社日立製作所 熱硬化性樹脂硬化物
JP2009221039A (ja) * 2008-03-14 2009-10-01 Shin Kobe Electric Mach Co Ltd 無機窒化物粒子およびこれを混合した樹脂組成物
JP2010125782A (ja) 2008-11-28 2010-06-10 Fujifilm Corp インプリント材料及びインプリント方法
JP2010244038A (ja) 2009-03-19 2010-10-28 Fujifilm Corp 光学フィルム、位相差板、楕円偏光板、液晶表示装置、及び化合物
JP2011236376A (ja) 2010-05-13 2011-11-24 Hitachi Chem Co Ltd 高熱伝導性複合粒子及びそれを用いた放熱材料
JP2012067225A (ja) 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、led基板、及びパワーモジュール
JP2013227451A (ja) 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP5479175B2 (ja) 2009-12-07 2014-04-23 富士フイルム株式会社 アリザリン誘導体化合物の製造方法、新規アリザリン誘導体化合物、表面修飾方法、光電変換膜、光電変換素子、及び電子写真感光体
JP2015052710A (ja) 2013-09-06 2015-03-19 富士フイルム株式会社 偏光板およびその製造方法
WO2017131005A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 表面修飾無機物およびその製造方法、樹脂組成物、熱伝導材料、ならびにデバイス

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100373834B1 (ko) * 2000-11-11 2003-02-26 (주)해은켐텍 유기표면처리제로 코팅된 열전도성 페이스트용질화알루미늄 및 질화알루미늄의 코팅방법
JP5962514B2 (ja) * 2011-01-19 2016-08-03 日立化成株式会社 液晶性樹脂組成物、放熱材料前駆体、bステージシート、プリプレグ、放熱材料、積層板、金属基板、プリント配線板、液晶性樹脂組成物の製造方法、放熱材料前駆体の製造方法及び放熱材料の製造方法
TWI547436B (zh) * 2011-11-29 2016-09-01 Mitsubishi Chem Corp 氮化硼凝集粒子、含有該粒子之組成物、以及具有由該組成物所構成的層之三維積體電路
DE112014002796B4 (de) 2013-06-14 2020-07-02 Mitsubishi Electric Corporation Wärmehärtbare Harzzusammensetzung, Verfahren zur Herstellung einer wärmeleitenden Folie und Leistungsmodul
US9745499B2 (en) * 2013-09-06 2017-08-29 Korea Advanced Institute Of Science And Technology Hexagonal boron nitride nanosheet/ceramic nanocomposite powder and producing method of the same, and hexagonal boron nitride nanosheet/ceramic nanocomposite materials and producing method of the same
JP2016135729A (ja) 2014-02-05 2016-07-28 三菱化学株式会社 窒化ホウ素凝集粒子、該粒子の製造方法、該粒子を含む組成物、及び該粒子を含む成形体
JP6632807B2 (ja) * 2014-03-31 2020-01-22 大阪瓦斯株式会社 窒化ホウ素用分散剤
CN106459736B (zh) * 2014-05-09 2020-04-07 捷恩智株式会社 放热部材、电子机器
WO2016084873A1 (ja) 2014-11-27 2016-06-02 富士フイルム株式会社 表面修飾無機物、表面修飾無機物の製造方法、および無機物表面を有機物で修飾する方法、ならびに放熱材料、熱伝導材料、および潤滑剤
JP6602062B2 (ja) * 2015-06-17 2019-11-06 東京応化工業株式会社 硬化性組成物、硬化物の製造方法、及びハードコート材
TWI708805B (zh) * 2015-12-30 2020-11-01 美商聖高拜陶器塑膠公司 改質氮化物顆粒、寡聚物官能化氮化物顆粒、基於聚合物之複合材料及其形成方法

Patent Citations (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0198668A (ja) * 1987-10-13 1989-04-17 Hitachi Chem Co Ltd 樹脂組成物
JPH07281028A (ja) 1994-04-08 1995-10-27 Fuji Photo Film Co Ltd 光学異方性シートおよびそれを用いた液晶表示素子
JPH07306317A (ja) 1994-05-11 1995-11-21 Fuji Photo Film Co Ltd 新規なトリフェニレン誘導体、それを含む組成物およびそれを含む光学異方性材料
WO1997000600A2 (de) 1995-09-01 1997-01-09 Basf Aktiengesellschaft Polymerisierbare flüssigkristalline verbindungen
JPH11513019A (ja) 1995-09-01 1999-11-09 ビーエーエスエフ アクチェンゲゼルシャフト 重合可能な液晶化合物
JPH11323162A (ja) 1998-03-19 1999-11-26 Hitachi Ltd 絶縁組成物
JP4118691B2 (ja) 2001-05-18 2008-07-16 株式会社日立製作所 熱硬化性樹脂硬化物
JP2005156822A (ja) 2003-11-25 2005-06-16 Fuji Photo Film Co Ltd 位相差板、トリフェニレン化合物および液晶表示装置
JP2006076992A (ja) 2004-08-12 2006-03-23 Fuji Photo Film Co Ltd 液晶性化合物、組成物および薄膜
JP2007002220A (ja) 2005-03-15 2007-01-11 Fujifilm Holdings Corp 化合物、組成物、位相差板、楕円偏光板および液晶表示装置
JP2006301614A (ja) 2005-03-24 2006-11-02 Fuji Photo Film Co Ltd 位相差板
JP2008013759A (ja) 2006-06-07 2008-01-24 Sumitomo Chemical Co Ltd エポキシ樹脂組成物及びエポキシ樹脂硬化物
JP2009221039A (ja) * 2008-03-14 2009-10-01 Shin Kobe Electric Mach Co Ltd 無機窒化物粒子およびこれを混合した樹脂組成物
JP2010125782A (ja) 2008-11-28 2010-06-10 Fujifilm Corp インプリント材料及びインプリント方法
JP2010244038A (ja) 2009-03-19 2010-10-28 Fujifilm Corp 光学フィルム、位相差板、楕円偏光板、液晶表示装置、及び化合物
JP5479175B2 (ja) 2009-12-07 2014-04-23 富士フイルム株式会社 アリザリン誘導体化合物の製造方法、新規アリザリン誘導体化合物、表面修飾方法、光電変換膜、光電変換素子、及び電子写真感光体
JP2011236376A (ja) 2010-05-13 2011-11-24 Hitachi Chem Co Ltd 高熱伝導性複合粒子及びそれを用いた放熱材料
JP2012067225A (ja) 2010-09-24 2012-04-05 Hitachi Chemical Co Ltd 樹脂シート硬化物の製造方法、樹脂シート硬化物、樹脂付金属箔、金属基板、led基板、及びパワーモジュール
JP2013227451A (ja) 2012-04-26 2013-11-07 Hitachi Chemical Co Ltd エポキシ樹脂組成物、半硬化エポキシ樹脂組成物、硬化エポキシ樹脂組成物、樹脂シート、プリプレグ、積層板、金属基板、及びプリント配線板
JP2015052710A (ja) 2013-09-06 2015-03-19 富士フイルム株式会社 偏光板およびその製造方法
WO2017131005A1 (ja) * 2016-01-26 2017-08-03 富士フイルム株式会社 表面修飾無機物およびその製造方法、樹脂組成物、熱伝導材料、ならびにデバイス

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Liquid Crystal Handbook", 2000, MARUZEN CO., LTD., pages: 330 - 333
ANGEW. CHEM. INT. ED., vol. 51, 2012, pages 7990 - 7993
YOSHITAKA TAKEZAWA: "Highly Thermally Conductive Composite Material", CMC PUBLISHING CO., LTD.

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144470A (zh) * 2019-07-17 2022-03-04 富士胶片株式会社 导热材料形成用组合物、导热材料及表面修饰无机物
EP4001340A4 (en) * 2019-07-17 2022-08-24 FUJIFILM Corporation COMPOSITION FOR FORMING A THERMALLY CONDUCTIVE MATERIAL, THERMALLY CONDUCTIVE MATERIAL, AND SURFACE-MODIFIED INORGANIC SUBSTANCE
JPWO2021020081A1 (ja) * 2019-07-26 2021-02-04
JP7324283B2 (ja) 2019-07-26 2023-08-09 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
WO2021020081A1 (ja) * 2019-07-26 2021-02-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
CN114269848A (zh) * 2019-08-26 2022-04-01 富士胶片株式会社 导热材料形成用组合物、导热材料、导热片、带导热层的器件
WO2021039732A1 (ja) * 2019-08-26 2021-03-04 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JP7257529B2 (ja) 2019-08-26 2023-04-13 富士フイルム株式会社 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JPWO2021039732A1 (ja) * 2019-08-26 2021-03-04
JP2021038119A (ja) * 2019-09-04 2021-03-11 三菱マテリアル電子化成株式会社 窒化ジルコニウム粉末及びその製造方法
JP7339080B2 (ja) 2019-09-04 2023-09-05 三菱マテリアル電子化成株式会社 窒化ジルコニウム粉末及びその製造方法
WO2022070718A1 (ja) * 2020-09-29 2022-04-07 富士フイルム株式会社 表面修飾窒化ホウ素粒子、表面修飾窒化ホウ素粒子の製造方法、熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
JP7500750B2 (ja) 2020-09-29 2024-06-17 富士フイルム株式会社 表面修飾窒化ホウ素粒子、表面修飾窒化ホウ素粒子の製造方法、熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス
US11697156B2 (en) 2020-12-18 2023-07-11 Mitsubishi Materials Electronic Chemicals Co., Ltd. Zirconium nitride powder and method for producing same

Also Published As

Publication number Publication date
EP3653574A4 (en) 2020-07-01
CN110799454B (zh) 2022-12-30
KR102252723B1 (ko) 2021-05-17
KR20200014813A (ko) 2020-02-11
JP6876800B2 (ja) 2021-05-26
EP3653574B1 (en) 2021-01-06
EP3653574A1 (en) 2020-05-20
US11945717B2 (en) 2024-04-02
JPWO2019013343A1 (ja) 2020-04-16
CN110799454A (zh) 2020-02-14
US20200140275A1 (en) 2020-05-07

Similar Documents

Publication Publication Date Title
WO2019013343A1 (ja) 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
WO2019013325A1 (ja) 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
WO2019013323A1 (ja) 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス
KR102293461B1 (ko) 표면 수식 무기 질화물, 조성물, 열전도 재료, 열전도층 부착 디바이스
JPWO2017203965A1 (ja) 表面修飾無機窒化物、組成物、熱伝導材料、熱伝導層付きデバイス、表面修飾無機窒化物の製造方法
EP3858885B1 (en) Composition for forming heat conductive materials, heat conductive material, heat conductive sheet, device with heat conductive layer, and film
WO2018147425A1 (ja) 硬化性組成物、熱伝導材料、熱伝導層付きデバイス
WO2020158574A1 (ja) 熱伝導材料形成用組成物、熱伝導材料、熱伝導シート、熱伝導層付きデバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18831162

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019529812

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197038340

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018831162

Country of ref document: EP

Effective date: 20200214