WO2018090570A1 - 投影方法及装置、存储介质 - Google Patents
投影方法及装置、存储介质 Download PDFInfo
- Publication number
- WO2018090570A1 WO2018090570A1 PCT/CN2017/082274 CN2017082274W WO2018090570A1 WO 2018090570 A1 WO2018090570 A1 WO 2018090570A1 CN 2017082274 W CN2017082274 W CN 2017082274W WO 2018090570 A1 WO2018090570 A1 WO 2018090570A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- subframe
- data source
- optical data
- frame
- offset
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/001—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes using specific devices not provided for in groups G09G3/02 - G09G3/36, e.g. using an intermediate record carrier such as a film slide; Projection systems; Display of non-alphanumerical information, solely or in combination with alphanumerical information, e.g. digital display on projected diapositive as background
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
Definitions
- the present invention relates to the field of communications, and in particular to a projection method and apparatus, and a storage medium.
- the pixel size of the digital micromirror device can only be about 5 um; in the case of limited pixel size, in order to increase the resolution, only by expanding the area of the DMD chip. achieve. For example, from 720p to 1080p, the chip area is expanded from 0.3 inches to 0.47 inches. The expansion of the chip area will inevitably lead to the size of the entire projection system becoming very large, and there is no way to be miniaturized and portable, which affects the user experience. If the projection resolution can be improved by superimposing the screen offset without increasing the area of the DMD chip, the projection system can simultaneously achieve both miniaturization and high resolution.
- the projection resolution depends on the number of pixels included in the key device DMD chip.
- the size of the DMD depends on the pixel size and the number of pixels. At the current state of the art, the pixel size can only be about 5um; therefore, the number of pixels directly determines the size of the DMD chip.
- the size of the projection system is proportional to the resolution (the number of pixels), and the projection system is miniaturized and high-resolution. It is a contradiction.
- the portable micro-projection system in the related art adopts a maximum resolution of 720p (1280*720), and the size of the DMD chip is 0.3 inches; if 1080p (1920*1080) resolution is adopted, the size of the DMD chip is 0.47 inches, and FIG. 1 is In the related art, the pixel array diagram of the DMD chip and the large size of the DMD chip result in a large projection system, which is not suitable for portability.
- Embodiments of the present invention provide a projection method and apparatus, and a storage medium, to at least solve the technical problem that the DMD chip area must be increased in the related art to improve the shadow resolution.
- a projection method including: receiving an optical data source; dividing the optical data source into a first subframe and a second subframe according to a preset rule; The first sub-frame is projected on the display device, and the second sub-frame is projected on the display device in a second position, wherein the second position is offset on the basis of the first position Pre-determined location.
- the second position is offset from the preset position on the x-axis based on the first position, or the second position is based on the first position on the y-axis Offset preset position.
- the preset position is an odd multiple of a half pixel size.
- the method before dividing the optical data source into the first subframe and the second subframe according to a preset rule, the method includes: converting a source resolution of the optical data source to a target resolution.
- dividing the optical data source into the first subframe and the second subframe according to a preset rule comprise one of: dividing each frame of the optical data source into the first subframe by interlacing And the second subframe; dividing each frame of the optical data source into the first subframe and the second subframe.
- the method further includes: scanning by using a specified frequency Each sub-frame of the video data is collected, wherein the specified frequency is twice the preset scanning frequency.
- a projection apparatus includes: a receiving module configured to receive an optical data source; and a segmentation module configured to divide the optical data source into a first subframe and according to a preset rule a second subframe; a projection module configured to project the first subframe on a display device at a first location, and project the second subframe on the display device at a second location, where The second position is offset from the predetermined position by the first position.
- the second position is offset from the preset position on the x-axis based on the first position, or the second position is based on the first position on the y-axis Offset the preset position, wherein the preset position is an odd multiple of a half pixel size.
- the segmentation module includes: a first segmentation unit configured to interleave each frame of the optical data source into the first subframe and the second subframe; the second segmentation unit, And configuring to divide each frame of the optical data source into the first subframe and the second subframe.
- a projection apparatus includes: a controller, a DLP system, and a projection lens assembly, the controller further comprising: a receiving module configured to receive an optical data source; and a segmentation module configured to Dividing the optical data source into a first sub-frame and a second sub-frame according to a preset rule;
- the DLP system further includes: a digital micro-mirror element DMD chip, a motor, wherein the DMD chip is fixed on the motor, The motor drives the DMD chip to perform an offset motion within a range of pixel arrays in a direction parallel to its surface, and scans the first sub-frame and the second sub-frame at a first position and a second position, respectively.
- the projection lens assembly is configured to project the first sub-frame and the second sub-frame obtained by the DLP system onto the display device in the first position and the second position, respectively.
- the device further includes: a color separation device and a collimating lens assembly, wherein the color separation device is configured to merge the optical paths of the optical data source, and pass the The optical data source is light of one color; the collimating lens assembly is configured to convert light diverging by the color separation device into parallel light and uniformly project onto the DMD chip.
- a computer storage medium having stored therein a computer program for executing program code for:
- the position is offset from the predetermined position.
- the optical data source is received; the optical data source is divided into a first subframe and a second subframe according to a preset rule; and the first subframe is projected on the display device at the first location, And projecting the second sub-frame on the display device at a second location, wherein the second location is offset from the first location by a predetermined location by splitting the optical data source into two sub-
- the low-resolution data source can be projected into a high-resolution image, which can solve the technical problem that the DMD chip area must be increased in the related art to improve the shadow resolution.
- the projection resolution can be improved by superimposing the screen offset, so that the projection system can simultaneously achieve miniaturization and high resolution, thereby achieving cost reduction and space saving effects.
- 1 is a pixel array diagram of a DMD chip in the related art
- FIG. 2 is a flow chart of a projection method in accordance with an embodiment of the present invention.
- FIG. 3 is a block diagram showing the structure of a projection apparatus according to an embodiment of the present invention.
- FIG. 4 is a block diagram showing the structure of another image pickup apparatus according to an embodiment of the present invention.
- FIG. 5 is a schematic structural diagram of a micro projection apparatus according to an embodiment of the present invention.
- FIG. 6 is a schematic diagram of division and offset superposition of data frames in an embodiment of the present invention.
- Figure 7 is a flow chart of an embodiment of the present invention.
- FIG. 2 is a flowchart of a projection method according to an embodiment of the present invention. As shown in FIG. 2, the flow includes the following steps:
- Step S202 receiving an optical data source
- Step S204 dividing the optical data source into the first subframe and the second subframe according to the preset rule
- Step S206 projecting the first sub-frame on the display device in the first position, and projecting the second sub-frame on the display device in the second position, wherein the second position is offset on the basis of the first position position.
- the optical data source Receiving, by the foregoing steps, the optical data source; dividing the optical data source into the first sub-frame and the second sub-frame according to a preset rule; projecting the first sub-frame on the display device in the first position, and The second sub-frame is projected on the display device, wherein the second position is offset from the first position by a predetermined position, and the optical data source is divided into two sub-frames and then projected into a complete frame.
- the low-resolution data source is projected into a high-resolution image, which can solve the technical problem that the DMD chip area must be increased in the related art to improve the shadow resolution.
- the projection resolution can be improved by superimposing the screen offset, so that the projection system can simultaneously achieve miniaturization and high resolution, thereby achieving cost reduction and space saving effects.
- the execution body of the above steps may be a projector or the like, but is not limited thereto.
- the second position is offset from the preset position on the x-axis based on the first position, or the second position is offset from the preset position on the y-axis based on the first position.
- the preset position is an odd multiple of a half pixel size, and preferably, may be a half pixel size.
- the method in this embodiment includes: converting the source resolution of the optical data source to the target resolution, such as 1080p. (1920*1080) The resolution is converted to 720p (1280*720).
- dividing the optical data source into the first subframe and the second subframe according to the preset rule includes the following two methods:
- Each frame of the optical data source is divided into a first sub-frame and a second sub-frame.
- the method further includes: scanning each subframe of the collected video data by using a specified frequency.
- the specified frequency is twice the preset scanning frequency.
- the multiple is related to the target resolution and a multiple of the source resolution. If the target resolution is 1080p, the source resolution conversion is 720p, and the preset scanning frequency is f 0 Hz, the specified frequency is 2f 0 _Hz.
- a terminal device which may be a cell phone, a computer, a server, or a network device, etc.
- a terminal device which may be a cell phone, a computer, a server, or a network device, etc.
- a projection device is also provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and will not be described again.
- the term “module” may implement a combination of software and/or hardware of a predetermined function.
- the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
- FIG. 3 is a structural block diagram of a projection apparatus according to an embodiment of the present invention. As shown in FIG. 3, the apparatus includes:
- the receiving module 30 is configured to receive an optical data source
- the segmentation module 32 is configured to divide the optical data source into the first subframe and the second subframe according to a preset rule
- a projection module 34 configured to project the first sub-frame on the display device at the first location and project the second sub-frame on the display device at the second location, wherein the second location is based on the first location Offset the predetermined position.
- the second position is offset from the preset position on the x-axis based on the first position, or the second position is offset from the preset position on the y-axis based on the first position, where The preset position is an odd multiple of half a pixel size.
- the segmentation module includes: a first segmentation unit configured to interleave each frame of the optical data source into a first subframe and a second subframe; the second segmentation unit is configured to each of the optical data sources A frame divided into columns is divided into a first subframe and a second subframe.
- FIG. 4 is a structural block diagram of another image pickup apparatus according to an embodiment of the present invention. As shown in FIG. 4, the apparatus includes: a controller 40, a DLP system 42, and a projection lens assembly 44.
- the controller 40 specifically includes: a receiving module configured to receive an optical data source; and a segmentation module configured to divide the optical data source into the first subframe and the second subframe according to a preset rule;
- the DLP system 42 specifically includes: a DMD chip, a motor, wherein the DMD chip is fixed on the motor, the motor drives the DMD chip to perform an offset motion in a direction parallel to the surface thereof in the pixel array, and scans the first sub-frame and the second sub-frame in the first position and the second position, respectively, and projects
- the lens component 44 is configured to project the first subframe and the second subframe obtained by the DLP system to the display device at the first location and the second location, respectively.
- the device further includes: a color separation device 46, and a collimating lens assembly 48, wherein the color separation device is configured to merge the optical paths of the optical data source, and pass the optical data according to a predetermined proportion.
- Source light of one of the colors a collimating lens assembly configured to convert light diverging by the color separation device into parallel light and uniformly project onto the DMD chip.
- the projection apparatus shown in this embodiment includes a controller, a DLP system 42, a light source 43 (including Color A 301, Color B 302, and Color C 303), a color separation device 46, a collimator lens assembly 44, and Projection lens assembly 48.
- the controller is used to control the color separation device to proportionally output the three colors of light, and the control motor drives the DMD chip to make a slight offset, and controls the working mode of the DMD chip according to the data source (high resolution mode and normal mode).
- the DLP system includes a DMD chip 201, a memory 202, and a motor 203.
- the pixel array of the DMD chip is H 0 ⁇ V 0 and is fixed on the motor.
- the motor movement drives the DMD chip to move together, so that the DMD can be in a small range parallel to the surface thereof.
- the offset within the offset is 1/2Pixel Size, and the configuration parameters and calibration parameters of the DMD chip operation are stored in the memory.
- the light source device contains three stable light sources of different colors and high brightness to provide light energy for the entire projection device.
- the color separation device first combines the optical paths of the three color light sources, and presses under the control of the controller. The proportion of light passing through one of the colors.
- the collimating lens assembly is used to convert divergent light into parallel light and project it evenly onto the DMD chip.
- the projection lens assembly is used to project light processed by the DLP system onto a screen or other display device.
- the projection apparatus shown in the embodiment of the present invention further relates to an algorithm that determines that the DLP system should operate in a high resolution mode or a normal mode according to a pre-projected data source resolution and a preset resolution threshold.
- the high resolution mode can be twice the resolution of the normal mode.
- the algorithm converts the resolution of the data source to H 0 ⁇ V 0
- the motor does not work
- the projection resolution is H 0 ⁇ V 0
- the video scanning frequency is f 0 Hz.
- the algorithm In high-resolution mode, the algorithm first converts the resolution of the data source to H 0 ⁇ 2V 0 (or 2H 0 ⁇ V 0 ).
- Each frame is interlaced (or column) into two resolutions H 0 ⁇ V 0 subframe (subframe one and subframe two), and the scanning frequency of each subframe is 2f 0 Hz; the motor drives the DMD chip to switch back and forth at the original position and the offset position at a frequency of 2f 0 Hz; The original position projection subframe 1 projects subframe 2 at the offset position. Sub-frame 1 and sub-frame 2 are projected and superimposed on the screen, and the superimposed resolution is twice the inherent resolution H 0 ⁇ V 0 of the DMD chip.
- each of the above modules may be implemented by software or hardware.
- the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
- the forms are respectively located in different processors, which may be specifically a central processing unit (CPU), or a microprocessor (MPU), or a digital signal processor (DSP), or a programmable gate array (FPGA).
- CPU central processing unit
- MPU microprocessor
- DSP digital signal processor
- FPGA programmable gate array
- FIG. 5 is a schematic structural view of the micro-projection device according to the embodiment of the present invention.
- the device includes:
- Light source 701, 702, 703 respectively indicate red, green, and blue LED lights, and the three LED lights work by the controller to realize the color separation function.
- Collimating lens assembly 704, 705, 706 are collimating lenses, the function is to convert the divergent LED light into uniform parallel light; 707, 708 are dichroic filters, so that the three LED lights pass through the same optical path. DMD chip. Wherein 707 can pass red light, reflect green light, and 708 can pass blue light, reflect red light, and green light.
- the resolution of the DMD chip 709 is 1280*720, which is fixed on the motor 710. Under the command of the controller, the motor drives the DMD to move down along the y axis, so that each pixel can generate 1/2Pixel in the y-axis direction. The displacement of Size.
- the projection lens 711 projects the light reflected by the DMD onto the screen 712.
- FIG. 6 is a schematic diagram of the division and offset superposition of a data frame according to an embodiment of the present invention.
- the pixel array 801 of the DMD chip has a resolution of 1280*720 and a pixel size of 5.4 um, and the DMD chip is driven by the motor. Can be shifted down by 2.7um.
- the controller sets the resolution threshold to 1280*720, the controller compares the resolution of the data source with the threshold and automatically determines that the DLP system should operate in normal mode or high resolution mode. When the data source resolution is greater than the threshold, the DLP system operates in high resolution mode; when the data source resolution does not exceed the threshold, it operates in normal mode.
- the working mode of the DLP system can be manually set to the normal mode or the high resolution mode. In this case, the automatic determination of the failure, it is not necessary to compare the data source resolution with the threshold.
- FIG. 7 is a flow chart of an embodiment of the present invention.
- the working process of the projection device is as follows:
- the first step converting the data source into 1280*720p image data by interpolation or scaling;
- Step 2 Do not start the motor, set the video scanning frequency to 60Hz;
- Step 3 Control the DMD chip to project a 1280*720 image onto the screen.
- the working process of the projection device is as follows:
- the first step convert the data source into 1280*1440 image 1 by interpolation or scaling;
- the second step start the motor, set the video scanning frequency to 120Hz;
- the third step dividing the image of 1280*1440 into sub-frame one 802 and sub-frame two 803; 802 only contains odd lines of the image, and 803 only contains even lines of the image;
- the fourth step the motor is restored in the original position, and the DMD projection subframe is one;
- Step 5 The motor drives the DMD to move down 2.7 um, and the DMD projection sub-frame 2.
- the motor in the projection device of the embodiment may be fixed on the DMD chip or may be fixed on the projection lens assembly.
- the projection resolution can be increased to at least twice the native resolution of the DMD chip, which can reduce cost and save space.
- Embodiments of the present invention also provide a computer storage medium.
- the foregoing storage medium may be configured to store program code for performing the following steps:
- the optical data source is divided into a first subframe and a second subframe according to a preset rule.
- the foregoing storage medium may include, but is not limited to, a U disk, a ROM, a RAM, a mobile hard disk, a magnetic disk, or an optical disk, and the like, which can store program codes.
- the processor executes the received optical data source according to the stored program code in the storage medium
- the processor executes according to the stored program code in the storage medium.
- the line divides the optical data source into the first subframe and the second subframe according to a preset rule
- the processor executes the first subframe to be projected on the display device at the first location according to the stored program code in the storage medium, and projects the second subframe to the display at the second location.
- the second position is offset from the predetermined position by the first position.
- modules or steps of the present invention described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
- the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module.
- the invention is not limited to any specific combination of hardware and software.
- the low-resolution data source can be projected into a high-resolution image, and the DMD chip area must be increased in the related art.
- the projection resolution can be improved by superimposing the image offset without increasing the area of the DMD chip, so that the projection system can simultaneously achieve miniaturization and high resolution, thereby achieving cost reduction and Space saving effect.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Projection Apparatus (AREA)
- Transforming Electric Information Into Light Information (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
实施例提供了一种投影方法及装置、存储介质,其中,该方法包括:接收光数据源;按照预设规则将所述光数据源分割成第一子帧和第二子帧;在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。通过实施例,解决了相关技术中必须增加DMD芯片面积才能提高投影分辨率的技术问题。
Description
相关申请的交叉引用
本申请基于申请号为201611018912.7、申请日为2016年11月18日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
本发明涉及通信领域,具体而言,涉及一种投影方法及装置、存储介质。
随着便携式微型投影仪的快速发展,高亮度和高分辨率成为用户关注的焦点。以相关技术中的工艺水平,数字微镜元件(DMD,Digital Micromirror Device)芯片像素大小只能做到5um左右;在像素尺寸受限的情况下,为了提高分辨率只能通过扩大DMD芯片面积来实现。例如,从720p到1080p,芯片面积从0.3英寸扩大到0.47英寸。芯片面积扩大势必导致整个投影系统的尺寸变得很庞大,没办法做到小型化、可便携,而影响用户体验。如果能在不增加DMD芯片面积的前提下,通过画面偏移叠加的方式来提高投影分辨率,就可以使投影系统同时兼顾小型化和高分辨率。
相关技术中的数字光处理(DLP,Digital Light Processing)微型投影系统,投影分辨率取决于关键器件DMD芯片所包含的像素个数。DMD大小取决于像素大小和像素数量。以目前的工艺水平,像素大小只能做到5um左右;因此像素的数量直接决定了DMD芯片的大小,投影系统的尺寸与分辨率(像素数量)成正比、投影系统的小型化与高分辨率是一个矛盾。
相关技术中的便携式微型投影系统采用的最大分辩是720p(1280*720),DMD芯片的尺寸是0.3英寸;如果采用1080p(1920*1080)分辨率,DMD芯片的尺寸是0.47英寸,图1是相关技术中DMD芯片的像素阵列图,DMD芯片的尺寸大导致做成的投影系统很大,不适合便携。
针对相关技术中存在的上述问题,目前尚未发现有效的解决方案。
发明内容
本发明实施例提供了一种投影方法及装置、存储介质,以至少解决相关技术中必须增加DMD芯片面积才能提高影分辨率的技术问题。
根据本发明的一个实施例,提供了一种投影方法,包括:接收光数据源;按照预设规则将所述光数据源分割成第一子帧和第二子帧;在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。
可选地,所述第二位置是在所述第一位置的基础上在x轴上偏移预设位置,或,所述第二位置是在所述第一位置的基础上在y轴上偏移预设位置。
可选地,所述预设位置为半个像素尺寸的奇数倍。
可选地,在按照预设规则将所述光数据源分割成第一子帧和第二子帧之前,所述方法包括:将所述光数据源的源分辨率转换成目标分辨率。
可选地,按照预设规则将所述光数据源分割成第一子帧和第二子帧包括以下之一:将所述光数据源的每一帧画面隔行分割成所述第一子帧和所述第二子帧;将所述光数据源的每一帧画面隔列分割成所述第一子帧和所述第二子帧。
可选地,在所述光数据源为视频数据时,在按照预设规则将所述光数据源分割成第一子帧和第二子帧之前,所述方法还包括:通过指定频率扫
描采集所述视频数据的每个子帧,其中,所述指定频率是预置扫描频率的两倍。
根据本发明的另一个实施例,提供了一种投影装置,包括:接收模块,配置为接收光数据源;分割模块,配置为按照预设规则将所述光数据源分割成第一子帧和第二子帧;投射模块,配置为在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。
可选地,所述第二位置是在所述第一位置的基础上在x轴上偏移预设位置,或,所述第二位置是在所述第一位置的基础上在y轴上偏移预设位置,其中,所述预设位置为半个像素尺寸的奇数倍。
可选地,所述分割模块包括:第一分割单元,配置为将所述光数据源的每一帧画面隔行分割成所述第一子帧和所述第二子帧;第二分割单元,配置为将所述光数据源的每一帧画面隔列分割成所述第一子帧和所述第二子帧。
根据本发明的又一个实施例,提供了一种投影装置,包括:控制器、DLP系统、投影镜头组件,所述控制器还包括:接收模块,配置为接收光数据源;分割模块,配置为按照预设规则将所述光数据源分割成第一子帧和第二子帧;所述DLP系统还包括:数字微镜元件DMD芯片、马达,其中所述DMD芯片固定所述马达上,所述马达驱动所述DMD芯片沿与其表面平行的方向在像素阵列范围内进行偏移运动,分别在第一位置和第二位置扫描所述第一子帧和所述第二子帧。所述投影镜头组件,配置为将所述DLP系统描述得到的所述第一子帧和所述第二子帧分别在所述第一位置和所述第二位置投射到显示设备上。
可选地,所述装置还包括:分色装置、准直透镜组件,其中,所述分色装置,配置为将所述光数据源的光路合并,按照预设占比分时通过所述
光数据源其中一种颜色的光;所述准直透镜组件,配置为将所述分色装置发散的光转换成平行光,并均匀的投射到所述DMD芯片上。
根据本发明的又一个实施例,还提供了一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行以下步骤的程序代码:
接收光数据源;
按照预设规则将所述光数据源分割成第一子帧和第二子帧;
在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。
通过本发明实施例,接收光数据源;按照预设规则将所述光数据源分割成第一子帧和第二子帧;在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置,通过将光数据源分成两个子帧后再投射整合成完整的一帧,可以实现将低分辨率的数据源投射成高分辨率的画面,可以解决相关技术中必须增加DMD芯片面积才能提高影分辨率的技术问题,在不增加DMD芯片面积的前提下,通过画面偏移叠加的方式来提高投影分辨率,可以使投影系统同时兼顾小型化和高分辨率,实现了降低成本和节省空间的效果。
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是相关技术中DMD芯片的像素阵列图;
图2是根据本发明实施例的投影方法的流程图;
图3是根据本发明实施例的一种投影装置的结构框图;
图4是根据本发明实施例的另一种摄像装置的结构框图;
图5为本发明本实施例的微型投影装置的结构示意图;
图6是本发明实施例数据帧的分割和偏移叠加示意图;
图7是本发明实施例的流程图。
下文中将参考附图并结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
在本实施例中提供了一种投影方法,图2是根据本发明实施例的投影方法的流程图,如图2所示,该流程包括如下步骤:
步骤S202,接收光数据源;
步骤S204,按照预设规则将光数据源分割成第一子帧和第二子帧;
步骤S206,在第一位置将第一子帧投射在显示设备上,以及在第二位置将第二子帧投射在显示设备上,其中,第二位置是在第一位置的基础上偏移预定位置。
通过上述步骤,接收光数据源;按照预设规则将光数据源分割成第一子帧和第二子帧;在第一位置将第一子帧投射在显示设备上,以及在第二位置将第二子帧投射在显示设备上,其中,第二位置是在第一位置的基础上偏移预定位置,通过将光数据源分成两个子帧后再投射整合成完整的一帧,可以实现将低分辨率的数据源投射成高分辨率的画面,可以解决相关技术中必须增加DMD芯片面积才能提高影分辨率的技术问题,在不增加
DMD芯片面积的前提下,通过画面偏移叠加的方式来提高投影分辨率,可以使投影系统同时兼顾小型化和高分辨率,实现了降低成本和节省空间的效果。
可选地,上述步骤的执行主体可以为投影仪等,但不限于此。
可选的,第二位置是在第一位置的基础上在x轴上偏移预设位置,或,第二位置是在第一位置的基础上在y轴上偏移预设位置。具体的,预设位置为半个像素尺寸的奇数倍,优选的,可以是半个像素尺寸。
可选的,在按照预设规则将光数据源分割成第一子帧和第二子帧之前,本实施例的方法包括:将光数据源的源分辨率转换成目标分辨率,如将1080p(1920*1080)分辨率转换为720p(1280*720)。
在本实施例中,按照预设规则将光数据源分割成第一子帧和第二子帧包括以下两种方式:
将光数据源的每一帧画面隔行分割成第一子帧和第二子帧;
将光数据源的每一帧画面隔列分割成第一子帧和第二子帧。
可选的,在光数据源为视频数据时,在按照预设规则将光数据源分割成第一子帧和第二子帧之前,方法还包括:通过指定频率扫描采集视频数据的每个子帧,其中,指定频率是预置扫描频率的两倍。该倍数与目标分辨率与源分辨率的倍数相关,如目标分辨率是1080p,源分辨率转换是720p,预置扫描频率是f0Hz,则指定频率为2f0_Hz。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器(ROM,Read-Only Memory)/随机存取存储器(RAM,Random
Access Memory)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本发明各个实施例所述的方法。
实施例2
在本实施例中还提供了一种投影装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图3是根据本发明实施例的一种投影装置的结构框图,如图3所示,该装置包括:
接收模块30,配置为接收光数据源;
分割模块32,配置为按照预设规则将光数据源分割成第一子帧和第二子帧;
投射模块34,配置为在第一位置将第一子帧投射在显示设备上,以及在第二位置将第二子帧投射在显示设备上,其中,第二位置是在第一位置的基础上偏移预定位置。
可选的,第二位置是在第一位置的基础上在x轴上偏移预设位置,或,第二位置是在第一位置的基础上在y轴上偏移预设位置,其中,预设位置为半个像素尺寸的奇数倍。
可选的,分割模块包括:第一分割单元,配置为将光数据源的每一帧画面隔行分割成第一子帧和第二子帧;第二分割单元,配置为将光数据源的每一帧画面隔列分割成第一子帧和第二子帧。
图4是根据本发明实施例的另一种摄像装置的结构框图,如图4所示,该装置包括:控制器40、DLP系统42、投影镜头组件44,
控制器40具体包括:接收模块,配置为接收光数据源;分割模块,配置为按照预设规则将光数据源分割成第一子帧和第二子帧;DLP系统42具体包括:DMD芯片、马达,其中DMD芯片固定马达上,马达驱动DMD芯片沿与其表面平行的方向在像素阵列范围内进行偏移运动,分别在第一位置和第二位置扫描第一子帧和第二子帧,投影镜头组件44,配置为将DLP系统描述得到的第一子帧和第二子帧分别在第一位置和第二位置投射到显示设备上。
可选的,如图4所示,装置还包括:分色装置46、准直透镜组件48,其中,分色装置,配置为将光数据源的光路合并,按照预设占比分时通过光数据源其中一种颜色的光;准直透镜组件,配置为将分色装置发散的光转换成平行光,并均匀的投射到DMD芯片上。
如图4所示,本实施例所示的投影装置包括控制器、DLP系统42、光源43(包括Color A 301,Color B 302和Color C 303)、分色装置46、准直透镜组件44和投影镜头组件48。
控制器用来控制分色装置将三种颜色的光按比例分时输出,控制马达带动DMD芯片作微小的偏移,根据数据源控制DMD芯片的工作方式(高分辨率模式和正常模式)。
DLP系统包括DMD芯片201、存储器202和马达203,DMD芯片的像素阵列为H0×V0,并固定马达上,马达运动带动DMD芯片一起运动,使DMD能够沿与其表面平行的方向进行小范围内的偏移,偏移量为1/2Pixel Size(像素尺寸),存储器内存储了DMD芯片工作的配置参数和校准参数。
光源装置包含三种不同颜色、高亮度的稳定光源,为整个投影装置提供光能量。
分色装置首先将三种颜色光源的光路合并,在控制器的控制下按一定
占比分时通过其中一种颜色的光。
准直透镜组件用来将发散的光转换成平行光,均匀的投射到DMD芯片上。
投影镜头组件用来将经DLP系统处理后的光投影到幕布或其他显示设备上。
本发明实施例所示的投影装置,还涉及一种算法,该算法根据预投影的数据源分辨率与预设的分辨率阈值作对比,判定DLP系统应工作在高分辨率模式或正常模式。其中,高分辨率模式可以是正常模式分辨率的2倍。在正常模式下,该算法将数据源的分辨率转换为H0×V0,马达不工作,投影分辨率为H0×V0,视频扫描频率为f0Hz。在高分辨率工作模式下,该算法首先将数据源的分辨率转换成H0×2V0(或2H0×V0)每一帧画面隔行(或列)分割成两个分辨率为H0×V0的子帧(子帧一和子帧二),且每一个子帧的扫描频率为2f0Hz;马达带动DMD芯片在原始位置和偏移位置,以2f0Hz的频率来回切换;在原始位置投影子帧一,在偏移位置投影子帧2。子帧一和子帧二被投影后在幕布上完成叠加,叠加后的分辨率是DMD芯片固有分辨率H0×V0的2倍。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中,所述处理器可以具体为中央处理器(CPU)、或微处理器(MPU)、或数字信号处理器(DSP)、或可编程门阵列(FPGA)。
实施例3
本实施例是本发明的可选实施例,用于结合具体的实例对本申请进行详细说明:
装置侧方法实施例
本实施例提供了一种微型投影装置,图5为本发明本实施例的微型投影装置的结构示意图,该装置包含了:
光源:701、702、703分别示意红色、绿色、蓝色LED灯,三个LED灯通过控制器分时工作,实现分色的功能。
准直透镜组件:704、705、706为准直透镜,功能是将发散的LED光转换成均匀的平行光;707、708为分色滤光镜,作用是使3路LED光通过同一光路到达DMD芯片。其中707可以通过红光、反射绿光,708可以通过蓝光、反射红光和绿光。
DLP装置:DMD芯片709的分辨率为1280*720,固定在马达710上;在控制器的指挥下,马达带动DMD沿y轴向下移动,使每个像素能够在y轴方向产生1/2Pixel Size的位移。
投影镜头711将DMD反射出的光投影到幕布712上。
图6是本发明实施例数据帧的分割和偏移叠加示意图,在图6中,DMD芯片的像素阵列801,分辨率为1280*720,pixel size为5.4um,在马达的带动下,DMD芯片可以向下偏移2.7um。设定分辨率阈值为1280*720,控制器将数据源的分辨率与阈值作对比,自动判定DLP系统应工作在正常模式或高分辨率模式。当数据源分辨率大于阈值,DLP系统工作在高分辨率模式;当数据源分辨率未超过阈值,则工作在正常模式。
其中,DLP系统的工作模式可以手动设置为正常模式或高分辨率模式,此时自动判定失效,就不需要将数据源分辨率与阈值作对比。
图7是本发明实施例的流程图,在正常模式下,投影装置的工作过程如下:
第一步:将数据源通过插值或缩放的方式转换成1280*720p的图像数据;
第二步:不启动马达,将视频扫描频率设置为60Hz;
第三步:控制DMD芯片将1280*720的图片投影到屏幕上。
其中,在高分辨率模式下,投影装置的工作过程如下:
第一步:将数据源通过插值或缩放的方式转换成1280*1440的图像1;
第二步;启动马达,将视频扫描频率设置为120Hz;
第三步:将1280*1440的图像隔行分割成子帧一802和子帧二803;802只包含图像的奇数行,803只包含图像的偶数行;
第四步:马达恢复在原始位置,DMD投影子帧一;
第五步:马达带动DMD向下移动2.7um,DMD投影子帧二。
可选的,本实施例的投影装置内的马达除了可以固定在DMD芯片上,也可以固定在投影镜头组件上。
采用本实施例,投影分辨率能至少提高到DMD芯片固有分辨率的2倍,可以降低成本、节省空间。
实施例4
本发明的实施例还提供了一种计算机存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,接收光数据源;
S2,按照预设规则将光数据源分割成第一子帧和第二子帧;
S3,在第一位置将第一子帧投射在显示设备上,以及在第二位置将第二子帧投射在显示设备上,其中,第二位置是在第一位置的基础上偏移预定位置。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、ROM、RAM、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行接收光数据源;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执
行按照预设规则将光数据源分割成第一子帧和第二子帧;
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行在第一位置将第一子帧投射在显示设备上,以及在第二位置将第二子帧投射在显示设备上,其中,第二位置是在第一位置的基础上偏移预定位置。
可选地,本实施例中的具体示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本发明的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本发明不限制于任何特定的硬件和软件结合。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
本发明实施例通过将光数据源分成两个子帧后再投射整合成完整的一帧,可以实现将低分辨率的数据源投射成高分辨率的画面,可以解决相关技术中必须增加DMD芯片面积才能提高影分辨率的技术问题,在不增加DMD芯片面积的前提下,通过画面偏移叠加的方式来提高投影分辨率,可以使投影系统同时兼顾小型化和高分辨率,实现了降低成本和节省空间的效果。
Claims (12)
- 一种投影方法,包括:接收光数据源;按照预设规则将所述光数据源分割成第一子帧和第二子帧;在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。
- 根据权利要求1所述的方法,其中,所述第二位置是在所述第一位置的基础上在x轴上偏移预设位置,或,所述第二位置是在所述第一位置的基础上在y轴上偏移预设位置。
- 根据权利要求2所述的方法,其中,所述预设位置为半个像素尺寸的奇数倍。
- 根据权利要求1所述的方法,其中,在按照预设规则将所述光数据源分割成第一子帧和第二子帧之前,所述方法包括:将所述光数据源的源分辨率转换成目标分辨率。
- 根据权利要求1所述的方法,其中,按照预设规则将所述光数据源分割成第一子帧和第二子帧包括以下之一:将所述光数据源的每一帧画面隔行分割成所述第一子帧和所述第二子帧;将所述光数据源的每一帧画面隔列分割成所述第一子帧和所述第二子帧。
- 根据权利要求1所述的方法,其中,在所述光数据源为视频数据时,在按照预设规则将所述光数据源分割成第一子帧和第二子帧之前,所述方法还包括:通过指定频率扫描采集所述视频数据的每个子帧,其中,所述指定 频率是预置扫描频率的两倍。
- 一种投影装置,包括:接收模块,配置为接收光数据源;分割模块,配置为按照预设规则将所述光数据源分割成第一子帧和第二子帧;投射模块,配置为在第一位置将所述第一子帧投射在显示设备上,以及在第二位置将所述第二子帧投射在所述显示设备上,其中,所述第二位置是在所述第一位置的基础上偏移预定位置。
- 根据权利要求7所述的装置,其中,所述第二位置是在所述第一位置的基础上在x轴上偏移预设位置,或,所述第二位置是在所述第一位置的基础上在y轴上偏移预设位置,其中,所述预设位置为半个像素尺寸的奇数倍。
- 根据权利要求7所述的装置,其中,所述分割模块包括:第一分割单元,配置为将所述光数据源的每一帧画面隔行分割成所述第一子帧和所述第二子帧;第二分割单元,配置为将所述光数据源的每一帧画面隔列分割成所述第一子帧和所述第二子帧。
- 一种摄像装置,包括:控制器、数字光处理DLP系统、投影镜头组件,其中,所述控制器还包括:接收模块,配置为接收光数据源;分割模块,配置为按照预设规则将所述光数据源分割成第一子帧和第二子帧;所述DLP系统还包括:数字微镜元件DMD芯片、马达,其中所述DMD芯片固定所述马达上,所述马达驱动所述DMD芯片沿与其表面平 行的方向在像素阵列范围内进行偏移运动,分别在第一位置和第二位置扫描所述第一子帧和所述第二子帧;所述投影镜头组件,配置为将所述DLP系统描述得到的所述第一子帧和所述第二子帧分别在所述第一位置和所述第二位置投射到显示设备上。
- 根据权利要求10所述的装置,其中,所述装置还包括:分色装置、准直透镜组件,其中,所述分色装置,配置为将所述光数据源的光路合并,按照预设占比分时通过所述光数据源其中一种颜色的光;所述准直透镜组件,配置为将所述分色装置发散的光转换成平行光,并均匀的投射到所述DMD芯片上。
- 一种计算机存储介质,所述计算机存储介质中存储有计算机程序,所述计算机程序用于执行前述权利要求1至6任一项所述的投影方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201611018912.7 | 2016-11-18 | ||
CN201611018912.7A CN108074512A (zh) | 2016-11-18 | 2016-11-18 | 投影方法及装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018090570A1 true WO2018090570A1 (zh) | 2018-05-24 |
Family
ID=62145227
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/082274 WO2018090570A1 (zh) | 2016-11-18 | 2017-04-27 | 投影方法及装置、存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108074512A (zh) |
WO (1) | WO2018090570A1 (zh) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110335885B (zh) * | 2019-04-29 | 2021-09-17 | 上海天马微电子有限公司 | 显示模组及显示模组的显示方法、显示装置 |
CN110602470B (zh) * | 2019-09-20 | 2022-02-08 | 青岛海信激光显示股份有限公司 | 投影显示系统及其控制方法 |
US11044447B2 (en) | 2019-09-20 | 2021-06-22 | Hisense Laser Display Co., Ltd. | Projection display system, controlling method thereof, and projection display device |
CN113286131A (zh) * | 2020-02-20 | 2021-08-20 | 深圳光峰科技股份有限公司 | 投影系统 |
CN113888565B (zh) * | 2020-07-03 | 2025-03-07 | 深圳光峰科技股份有限公司 | 视频信号处理系统、方法、投影系统以及投影方法 |
CN112153359A (zh) * | 2020-09-08 | 2020-12-29 | 深圳康佳电子科技有限公司 | 一种高分辨率投影的方法、投影设备及存储介质 |
WO2023274331A1 (zh) * | 2021-06-29 | 2023-01-05 | 青岛海信激光显示股份有限公司 | 投影设备及投影图像数据传输方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7046407B2 (en) * | 2000-02-14 | 2006-05-16 | 3M Innovative Properties Company | Diffractive color filter |
US7052142B2 (en) * | 2004-04-30 | 2006-05-30 | Hewlett-Packard Development Company, L.P. | Enhanced resolution projector |
CN1906931A (zh) * | 2004-06-01 | 2007-01-31 | Lg电子株式会社 | 显示设备 |
CN105120187A (zh) * | 2015-08-20 | 2015-12-02 | 深圳创维-Rgb电子有限公司 | 一种激光电视的图像处理方法、系统及激光电视 |
US9354494B2 (en) * | 2014-02-04 | 2016-05-31 | Panasonic Intellectual Property Management Co., Ltd. | Projection type image display apparatus and adjusting method |
CN106507075A (zh) * | 2016-11-18 | 2017-03-15 | 海信集团有限公司 | 一种投影图像处理方法、装置及投影显示系统 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6963319B2 (en) * | 2002-08-07 | 2005-11-08 | Hewlett-Packard Development Company, L.P. | Image display system and method |
CN100361519C (zh) * | 2004-03-17 | 2008-01-09 | 扬明光学股份有限公司 | 显示装置的投影方法 |
CN106094409B (zh) * | 2016-08-19 | 2017-11-21 | 广景视睿科技(深圳)有限公司 | 一种投影装置 |
-
2016
- 2016-11-18 CN CN201611018912.7A patent/CN108074512A/zh active Pending
-
2017
- 2017-04-27 WO PCT/CN2017/082274 patent/WO2018090570A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7046407B2 (en) * | 2000-02-14 | 2006-05-16 | 3M Innovative Properties Company | Diffractive color filter |
US7052142B2 (en) * | 2004-04-30 | 2006-05-30 | Hewlett-Packard Development Company, L.P. | Enhanced resolution projector |
CN1906931A (zh) * | 2004-06-01 | 2007-01-31 | Lg电子株式会社 | 显示设备 |
US9354494B2 (en) * | 2014-02-04 | 2016-05-31 | Panasonic Intellectual Property Management Co., Ltd. | Projection type image display apparatus and adjusting method |
CN105120187A (zh) * | 2015-08-20 | 2015-12-02 | 深圳创维-Rgb电子有限公司 | 一种激光电视的图像处理方法、系统及激光电视 |
CN106507075A (zh) * | 2016-11-18 | 2017-03-15 | 海信集团有限公司 | 一种投影图像处理方法、装置及投影显示系统 |
Also Published As
Publication number | Publication date |
---|---|
CN108074512A (zh) | 2018-05-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2018090570A1 (zh) | 投影方法及装置、存储介质 | |
US10778940B2 (en) | MEMS projector using multiple laser sources | |
JP5381145B2 (ja) | プロジェクター | |
JP2007060118A (ja) | 投影装置及び投影制御方法 | |
JP2018084686A (ja) | 画像投影装置および画像投影装置の制御方法 | |
JP2015037250A (ja) | 画像投影装置及びプレゼンテーションシステム | |
US20110279738A1 (en) | Control device and projection video display device | |
US7740360B2 (en) | Image display apparatus | |
US20200382750A1 (en) | Method of controlling display device, and display device | |
US20210037221A1 (en) | Control method for image projection system and image projection system | |
JP2009181323A (ja) | 信号処理装置及び投写型映像表示装置 | |
JP6015996B2 (ja) | プロジェクタシステム | |
JP2015114443A (ja) | 表示装置及び表示装置の制御方法 | |
US10349026B2 (en) | Projector, method for controlling the same, and projection system | |
CN114760451B (zh) | 投影图像校正提示方法、装置、投影设备和存储介质 | |
JP2017032937A (ja) | 画像投影システム、画像投影装置、および画像投影方法 | |
US20140300691A1 (en) | Imaging system | |
US7011414B2 (en) | Highly efficient projection system and color scrolling method therefor | |
US20070041077A1 (en) | Pocket-sized two-dimensional image projection system | |
JP3092698U (ja) | 画像表示プロジェクタ | |
US20240022697A1 (en) | Control method for projector, non-transitory computer-readable storage medium storing program, and projector | |
JP2020053710A (ja) | 情報処理装置、投影装置、投影装置の制御方法、プログラム | |
JP2007025287A (ja) | プロジェクタ装置及びdmd素子 | |
AU2003244326B2 (en) | Highly efficient projection system and color scrolling method therefor | |
US20240179282A1 (en) | Control method for projector, projector, and non-transitory computer-readable storage medium storing program |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17871204 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17871204 Country of ref document: EP Kind code of ref document: A1 |