WO2023274331A1 - 投影设备及投影图像数据传输方法 - Google Patents
投影设备及投影图像数据传输方法 Download PDFInfo
- Publication number
- WO2023274331A1 WO2023274331A1 PCT/CN2022/102553 CN2022102553W WO2023274331A1 WO 2023274331 A1 WO2023274331 A1 WO 2023274331A1 CN 2022102553 W CN2022102553 W CN 2022102553W WO 2023274331 A1 WO2023274331 A1 WO 2023274331A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- sub
- primary color
- projection
- signal
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000005540 biological transmission Effects 0.000 title claims abstract description 24
- 238000006243 chemical reaction Methods 0.000 claims abstract description 21
- 239000003086 colorant Substances 0.000 claims description 57
- 238000010586 diagram Methods 0.000 description 16
- 238000012545 processing Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 9
- 230000008569 process Effects 0.000 description 9
- 230000003287 optical effect Effects 0.000 description 6
- 230000004044 response Effects 0.000 description 5
- 238000003384 imaging method Methods 0.000 description 3
- FVXDQWZBHIXIEJ-LNDKUQBDSA-N 1,2-di-[(9Z,12Z)-octadecadienoyl]-sn-glycero-3-phosphocholine Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCC\C=C/C\C=C/CCCCC FVXDQWZBHIXIEJ-LNDKUQBDSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000008054 signal transmission Effects 0.000 description 2
- 241001270131 Agaricus moelleri Species 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N9/00—Details of colour television systems
- H04N9/12—Picture reproducers
- H04N9/31—Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]
Definitions
- Embodiments of the present disclosure relate to the technical field of projection display, and in particular, to a projection device and a projection image data transmission method.
- Projection equipment is widely used in the display field due to its advantages of high color purity, large color gamut and high brightness.
- the projection device needs to compress the image to be projected to reduce the resolution of the image to be projected to less than or equal to the resolution of the projection device, and then project the compressed image to be projected onto the screen.
- some embodiments of the present disclosure provide a projection device.
- the projection device includes a main control circuit, a display drive circuit and a light projection assembly.
- the display driving circuit is coupled to the main control circuit, and the light projection assembly is coupled to the display driving circuit.
- the main control circuit is configured to: perform signal conversion on the image to be projected to obtain a first image signal, the first image signal is a three-color differential signal; decompose the first image corresponding to the first image signal into multiple frames A sub-image, the resolution of the first image is greater than the resolution of the light valve, and the resolution of the first sub-image in each frame is less than or equal to the resolution of the light valve; based on the multiple frames of the first sub-image
- the display sequence of the image is to sequentially transmit the image signals of the multiple frames of the first sub-image to the display driving circuit, wherein at least two frames of image signals of the first sub-image are transmitted to the display driving circuit at a time, and the The image signals of at least two frames of the first sub-image include three primary color signals of one frame of the first sub-image, and other primary color signals except the target primary color signal in other frames of the first sub-image.
- the display driving circuit is configured to: receive the image signals of the at least two frames of the first sub-image, and control the light based on the three primary color signals of the one frame of the first sub-image in the at least two frames of the first sub-image
- the projection component projects the one frame of the first sub-image, and based on the other primary color signals in the other frames of the first sub-image in the at least two frames of the first sub-image, and the primary color signals in the one frame of the first sub-image
- the target primary color signal controls the light projection component to project the first sub-image of the other frame.
- the light projection assembly is configured to project the one frame of the first sub-image and the other frames of the first sub-image to form the first image under the control of the display driving circuit.
- the projection device includes a main control circuit, a plurality of display drive circuits and a light projection assembly.
- the plurality of display driving circuits are all coupled to the main control circuit, and are all coupled to the light projection assembly.
- the main control circuit is configured to: perform signal conversion on the image to be projected to obtain a first image signal, the first image signal is a three-color differential signal; divide the first image corresponding to the first image signal into A plurality of first sub-projection images, the resolution of the first images is greater than the resolution of the light valve, and the resolution of each of the first sub-projection images is smaller than or equal to the resolution of the light valve.
- Each display driving circuit in the plurality of display driving circuits is configured to: acquire an image signal of a first sub-projection image; control the light projection assembly to project the first sub-projection image according to the image signal of the first sub-projection image A subprojection image.
- the light projection assembly is configured to project the plurality of first sub-projection images to form the first image under the control of the plurality of display driving circuits.
- some embodiments of the present disclosure provide a projection image data transmission method.
- the projection image data transmission method includes: performing signal conversion on the image to be projected to obtain a first image signal, the first image signal being a three-color difference signal; decomposing the first image corresponding to the first image signal into multiple frames A sub-image, the resolution of the first image is greater than the resolution of the light valve, and the resolution of each of the first sub-images is less than or equal to the resolution of the light valve; based on the multi-frame first sub-image
- the display sequence of the image is to sequentially transmit the image signals of the multiple frames of the first sub-image to the display driving circuit, wherein at least two frames of image signals of the first sub-image are transmitted to the display driving circuit at a time, and the at least two
- the image signal of the first sub-image of the frame includes the three primary color signals of the first sub-image of one frame, and other primary color signals except the target primary color signal in the first sub-image of other frames.
- Figure 1 is one of the structural diagrams of a projection device according to some embodiments.
- FIG. 2 is the second structural diagram of a projection device according to some embodiments.
- Figure 3 is a diagram illustrating light paths in a projection device according to some embodiments.
- Figure 4 is one of the arrangements of microlenses in a light valve according to some embodiments.
- Fig. 5 is a schematic diagram of the position of a micromirror swing in the light valve in Fig. 4;
- Fig. 6 is a working schematic diagram of a tiny mirror according to some embodiments.
- Figure 7 is one of the structural diagrams of the first image according to some embodiments.
- Fig. 8 is the second structure diagram of the first image according to some embodiments.
- FIG. 9 is a third structural diagram of a projection device according to some embodiments.
- Figure 10 is a structural diagram of a first sub-image according to some embodiments.
- Fig. 11 is one of the flow charts of the projection image data transmission method according to some embodiments.
- Fig. 12 is the second flowchart of a projection image data transmission method according to some embodiments.
- Fig. 13 is a fourth structural diagram of a projection device according to some embodiments.
- Fig. 14 is the third structural diagram of the first image according to some embodiments.
- Fig. 15 is the second arrangement diagram of the microlens in the light valve according to some embodiments.
- Fig. 16 is a fifth structural diagram of a projection device according to some embodiments.
- Fig. 17 is a sixth structural diagram of a projection device according to some embodiments.
- Fig. 18 is the seventh structural diagram of a projection device according to some embodiments.
- the expressions “coupled” and “connected” and their derivatives may be used.
- the term “connected” may be used in describing some embodiments to indicate that two or more elements are in direct physical or electrical contact with each other.
- the term “coupled” may be used when describing some embodiments to indicate that two or more elements are in direct physical or electrical contact.
- the terms “coupled” or “communicatively coupled” may also mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.
- the embodiments disclosed herein are not necessarily limited by the context herein.
- At least one of A, B and C has the same meaning as “at least one of A, B or C” and both include the following combinations of A, B and C: A only, B only, C only, A and B A combination of A and C, a combination of B and C, and a combination of A, B and C.
- a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
- the term “if” is optionally interpreted to mean “when” or “at” or “in response to determining” or “in response to detecting,” depending on the context.
- the phrases “if it is determined that " or “if [the stated condition or event] is detected” are optionally construed to mean “when determining ! or “in response to determining ! depending on the context Or “upon detection of [stated condition or event]” or “in response to detection of [stated condition or event]”.
- the projection device includes a main control circuit 1 , a display drive circuit 2 and a light projection assembly 3 .
- the main control circuit 1 is coupled to the display driving circuit 2
- the display driving circuit 2 is coupled to the light projection assembly 3 .
- the main control circuit 1 is configured to receive an external image signal
- the display driving circuit 2 is configured to control the light projection assembly 3 to project and form a corresponding image according to the above image signal.
- the light projection assembly 3 includes a light source assembly 31 , a lens 32 and an optical engine 33 .
- the light source assembly 31 is configured to provide light beams.
- the light engine 33 is configured to modulate the light beam according to the image signal to obtain a projection light beam.
- the lens 32 is configured to transmit the projection beam, and project the projection beam onto a projection screen or a wall for imaging.
- One end of the optical engine 33 is connected to the lens 32 , and the optical engine 33 and the lens 32 are arranged along the first direction A.
- the first direction A is the outgoing direction of the projection light beam of the projection device 10 .
- the other end of the light engine 33 is connected to the light source assembly 31 to receive the laser beam emitted by the light source assembly 31 .
- the light source assembly 31 can be a monochromatic light source or a multicolor light source.
- the light source assembly 31 is a monochromatic light source, which may include a blue laser.
- the light source assembly 31 may further include a fluorescent wheel and/or a color filter wheel, so as to ensure that the laser beams emitted by the light source assembly 31 can be light beams of three colors: red, green, and blue.
- the light source assembly 31 may not include at least one of the fluorescent wheel or the color filter wheel, but in order to ensure the projection effect of the projection device, the fluorescent wheel and/or the color filter wheel may be included in the light engine 33 .
- the fluorescent wheel can be excited to fluoresce.
- the light source assembly 31 is a polychromatic light source.
- the multicolor light source includes three-color laser chips or three groups of monochromatic lasers integrated in one package unit.
- the three groups of monochromatic lasers may include a group of green lasers, a group of red lasers and a group of blue lasers.
- Each set of lasers may include one or more lasers.
- the light source assembly 31 can directly emit light beams of three colors of red, green and blue.
- the projection device may be called a full-color laser projection device.
- Each set of lasers may include one laser.
- the blue laser is placed in the middle of the red laser and the green laser. With this arrangement, since the blue laser can withstand a higher temperature, it is more conducive to the rapid heat dissipation of the red laser and the green laser, making the light source assembly 31 more reliable.
- lens 32 may be a zoom lens, a fixed focus zoomable lens, or a fixed focus lens.
- the above-mentioned projection device may be an ultra-short-focus projection device, a short-focus projection device, or a telephoto projection device.
- the above-mentioned projection device is an ultra-short-focus projection device
- the lens 32 is an ultra-short-focus projection lens
- the throw ratio of the lens 32 is usually less than 0.3, such as 0.24.
- the optical machine 33 includes a light valve 331 and a vibrating mirror 332 .
- the light valve 331 is configured to receive the beams of the three primary colors emitted by the light source assembly 31 , modulate the beams of the three primary colors according to the image signal to obtain projection beams, and totally reflect the projection beams to the vibrating mirror 332 .
- the galvanometer 332 is configured such that its mirror rotates in response to a galvanometer drive current, thereby transmitting and deflecting the projected light beam.
- the oscillating mirror 332 transmits the projected light beam
- the rotation angles of its lenses are different at different times, so that the light beams at different times are displaced, and the light spots are misaligned to form misaligned light beams.
- the misaligned light beams will be incident on the lens 32, so that misaligned and superimposed images will also appear on the projection screen. Due to the persistence of vision of the human eye, if the dislocation superimposed images are related, visually, the amount of information in the image will increase, and the definition will increase, so that the effect of resolution improvement can be achieved.
- the optical machine 33 includes a light guide 333 , a lens assembly 334 , a mirror 335 and a prism assembly 336 in addition to the light valve 331 and the vibrating mirror 332 .
- the light outlet of the light pipe 333 faces the light incident surface of the lens assembly 334 , and the centerline of the light pipe 333 coincides with the main optical axis of the lens assembly 334 .
- the light pipe 333 is configured to receive the laser beam provided by the light source assembly 31 and homogenize the laser beam.
- the light emitting side of the lens assembly 334 faces the reflective surface of the mirror 335 .
- the lens assembly 334 is configured to collimate and converge the homogenized light beam, and the converged light beam is emitted to the mirror 335 .
- the reflective surface of the reflective mirror 335 faces the first incident surface 3361 of the prism assembly 336 , so that the reflective mirror 335 can reflect the light beam shaped by the lens assembly 334 to the prism assembly 336 .
- the prism assembly 336 can refract the beam reflected by the mirror 335 to the light valve 331 .
- the first light exit surface 3362 (also the light entrance surface) of the prism assembly 336 faces the light valve 331
- the second light exit surface 3363 of the prism assembly 336 faces the vibrating mirror 332 .
- lens assembly 334 may include convex and/or concave lenses.
- the prism assembly 336 may be a total internal reflection (Total Internal Reflection, TIR) prism or a RTIR (Refraction Total Internal Reflection, refracting total internal reflection) prism.
- the light guide 333 is, for example, a rectangular light guide.
- the size of the rectangular light guide can be in a preset ratio to the size of the light valve 331, so that the light beam shaped by the lens assembly 334 just covers the working area of the light valve 331, thereby ensuring projection The imaging effect of the device.
- a rise in temperature of the non-working area of the light valve 331 due to the light beam reaching the non-working area can also be avoided.
- the aforementioned light valve 331 is, for example, a digital micromirror device (Digital Micromirror Device, DMD).
- the light valve 331 comprises a large number of (a large number of) micromirror (micromirror) 3311 that can be individually driven to rotate, and these micromirrors 3311 are arranged in an array, and each micromirror 3311 corresponds to a display to be projected. A pixel in the image.
- each microlens 3311 is equivalent to a digital switch, which can be within the range of plus or minus 12 degrees or plus or minus 17 degrees under the action of external force turn.
- the light reflected by the microlens 3311 at a negative rotation angle is called OFF light.
- the OFF light is ineffective light, which is usually absorbed by the light absorbing unit as shown in FIG. 5 .
- the light reflected by the microlens 3311 at a positive rotation angle is called ON light.
- the ON light is an effective light beam received by the microlens 3311 and reflected to the lens 32 at a positive rotation angle thereof, for projection and imaging.
- the ON state of the microlens 3311 is the state that the microlens 3311 is in and can be maintained when the light beam emitted by the light source assembly 31 is reflected by the microlens 3311 and can enter the lens 32, that is, the state when the microlens 3311 is at a positive rotation angle .
- the OFF state of the microlens 3311 is the state that the microlens 3311 is in and can be maintained when the light beam emitted by the light source assembly 31 is reflected by the microlens 3311 and does not enter the lens 32, that is, the microlens 3311 is in a negative rotation angle state.
- the state at +12° is the ON state
- the state at -12° is the OFF state
- the rotation between -12° and +12° The angle is not used in practice, and the actual working state of the microlens 3311 is only on state and off state.
- the state at +17° is the ON state
- the state at -17° is the OFF state.
- the image signal is processed and converted into digital signals such as 0 and 1, and these digital signals can drive the microlens 3311 to rotate.
- some or all of the microlenses 3311 will switch once between the on state and the off state, so as to realize the respective functions in one frame of image according to the duration time of the microlens 3311 in the on state and the off state respectively.
- the gray scale of the pixel For example, when a pixel has 256 gray scales from 0 to 255, the micromirror corresponding to grayscale 0 is in the off state during the entire display period of a frame of image, and the microlens corresponding to grayscale 255 is in the off state during the entire display period of a frame of image.
- the whole display period is in the on state, and the microlens corresponding to the gray scale 127 is in the on state for half of the display period of a frame image, and the other half of the time is in the off state. Therefore, the state of each micromirror in the display period of a frame of image in the light valve 331 is controlled by the image signal and the maintenance time of each state can control the brightness (gray scale) of the corresponding pixel of the microlens 3311 to realize the projection.
- the light beam to the light valve 331 is modulated for the purpose.
- the oscillating mirror 332 is configured to respond to the driving current of the oscillating mirror, and the lens thereof rotates and transmits the projected light beam reflected by the light valve 331 .
- the vibrating mirror 332 can be, for example, a four-dimensional vibrating mirror (also called a two-axis vibrating mirror) with four rotational positions.
- each rotation position of the vibrating mirror 332 can correspond to display a frame of images with a resolution of 4K.
- the 4 frames of images with a resolution of 4K can be displayed on different positions of the image display plane through the galvanometer 332, thereby forming an image with a resolution of 8K.
- the main control circuit 1 is further configured to: perform signal conversion on the image to be projected to obtain a first image signal, the first image signal is a three-color differential signal (for example, a 12-channel RGB signal);
- the first image corresponding to an image signal is decomposed into multiple frames of first sub-images, the resolution of the first image is greater than the resolution of the light valve 331, and the resolution of each frame of the first sub-image is less than or equal to the resolution of the light valve 331 ;
- the image signals of the first sub-images of multiple frames are transmitted to the display drive circuit 2 in sequence, wherein, the image signals of at least two frames of the first sub-images are transmitted to the display drive circuit 2 at a time, And the image signals of the at least two frames of the first sub-image include three primary color signals of one frame of the first sub-image, and other primary color signals except the target primary color signal in other frames of the first sub-image.
- the display drive circuit 2 is configured to: after receiving the image signals of at least two frames of the first sub-image, control the light projection assembly 3 based on the three primary color signals of one frame of the first sub-image in the at least two frames of the first sub-image Projecting the one frame of the first sub-image, and controlling the light projection assembly based on other primary color signals in other frames of the first sub-image in the at least two frames of the first sub-image and the target primary color signal in the one frame of the first sub-image 3 Project the first sub-image of the other frame.
- RGB signals of each frame of image can be transmitted between the main control circuit 1 and the display driving circuit 2 through multiple pairs of data interfaces.
- the RGB signal of a frame of image needs three pairs of data interfaces to transmit. Therefore, when the number of data interfaces between the main control circuit 1 and the display driving circuit 2 is small (for example, there are only 5 pairs of data interfaces), the main control circuit 1 can only transmit one frame of image to the display driving circuit 2 at a time, resulting in Projected image data transfer is less efficient.
- the main control circuit 1 when the main control circuit 1 transmits the image signal of the first sub-image of the first image to the display driving circuit 2 each time, by deleting part of the first sub-image The target primary color signal, so that the main control circuit 1 can only transmit the three primary color signals of the first sub-image of one frame and other primary color signals except the target primary color of the first sub-image of other frames to the display driving circuit 2, so that the main control circuit 1 may transmit image signals of at least two frames of the first sub-image to the display driving circuit 2 at a time, so that the display driving circuit 2 can display the first sub-image based on the three primary color signals of one frame of the first sub-image in the at least two frames of the first sub-image and displaying the first sub-image of other frames based on the target primary color signal of the first sub-image of one frame and other primary color signals of the first sub-image of other frames, thereby improving the efficiency of projection image data transmission.
- the main control circuit 1 may be a System on Chip (SoC).
- SoC System on Chip
- the SoC can receive the video signal from the signal source through the communication interface (for example, High Definition Multimedia Interface (High Definition Multimedia Interface, HDMI), Universal Serial Bus (Universal Serial Bus, USB) interface, etc.)
- the video signal can be decoded to obtain a to-be-projected image signal, and then signal conversion is performed on the to-be-projected image signal to obtain a three-color differential signal.
- the SoC is also coupled to the display driving circuit 2 through a signal line (for example, a mini serial SCSI (Mini Serial Attached SCSI, MiniSAS) signal line, a flexible flat cable (Flexible Flat Cable, FFC), a coaxial cable, etc.),
- a signal line for example, a mini serial SCSI (Mini Serial Attached SCSI, MiniSAS) signal line, a flexible flat cable (Flexible Flat Cable, FFC), a coaxial cable, etc.
- the display driving circuit 2 controls the light projection device 3 to project and form an image corresponding to the above-mentioned image signal to be projected according to the above-mentioned three-color differential signal.
- HDMI2.1 can support 4K@120Hz and 8K@60Hz video signal transmission.
- the part before the symbol @ in the above-mentioned 8K@60Hz indicates the resolution of the image to be projected, that is, the number of pixels included in the image to be projected; the part after the symbol @ indicates the refresh rate of the image to be projected, namely , when the image to be projected is displayed, the number of times it is redrawn per second.
- 8K means that the image to be projected includes 7680 ⁇ 4320 pixels; 60Hz means that when the image to be projected is displayed, it is redrawn 60 times per second.
- the main control circuit 1 may include a SoC and a signal conversion circuit.
- the SoC may be coupled to the signal conversion circuit through at least 4 MiniSAS signal lines. After the SoC decodes the video signal to obtain the image signal to be projected, it can transmit the image signal to be projected to the signal conversion circuit, so as to perform signal conversion on the image to be projected by the signal conversion circuit to obtain a three-color differential signal.
- the signal conversion circuit can be coupled to the display driving circuit 2 through at least 4 MiniSAS signal lines, so as to transmit the three-color differential signal to the display driving circuit 2 .
- the above signal conversion circuit may be a Field Programmable Gate Array (Field Programmable Gate Array, FPGA).
- the display drive circuit 2 Since the display drive circuit 2 needs to control the light projection assembly 3 to perform image projection according to the three-color differential signal, the image signal to be projected obtained after the main control circuit 1 decodes the video signal is a high-definition image signal (for example, 8K@ 60Hz image signal), the main control circuit 1 converts the decoded image signal to be projected into a three-color differential signal, so that the first image corresponding to the three-color differential signal is subsequently decomposed into multiple frames of first sub-images and transmitted to After the display drive circuit 2 is displayed, the display drive circuit 2 can control the light projection assembly 3 to project the multi-frame first sub-image according to the three-color differential signal, without further signal conversion to obtain the three-color differential signal, thereby reducing the number of display drive circuits. 2 to ensure the normal operation of the display driving circuit 2, thereby ensuring the stable output of the first image signal.
- the display drive circuit 2 can control the light projection assembly 3 to project the multi-frame first sub-image according to the three-color differential signal, without
- the resolution of the light valve 331 is equal to the number of microlenses 3311 included therein, and one microlens 3311 corresponds to displaying one pixel in the image to be projected. Therefore, when the resolution of the first image corresponding to the first image signal (that is, the resolution of the image to be projected) is greater than the resolution of the light valve 331, the number of microlenses 3311 in the light valve 331 is less than the The number of pixels in the first image makes the microlens 3311 in the light valve 331 not enough to fully display all the pixels in the first image.
- the first image may be decomposed into multiple frames of sub-images for respective projection, so as to ensure the display effect of the first image.
- the main control circuit 1 may decompose the first image into multiple frames of first sub-images, and the resolution of the first sub-images is less than or equal to the resolution of the light valve 331 . Then, the main control circuit 1 may sequentially transmit the image signals of the multiple frames of the first sub-images to the display driving circuit 2 based on the display order of the multiple frames of the first sub-images.
- the image signals of at least two frames of the first sub-image are transmitted to the display driving circuit 2 each time, and the image signals of the at least two frames of the first sub-image include the three primary color signals of one frame of the first sub-image, and the first sub-image of other frames. Other primary color signals in the sub-image except the target primary color signal.
- the operation of the above-mentioned main control circuit 1 The process is illustrated as an example.
- the main control circuit 1 can determine the number F of the multi-frame first sub-images according to the resolution of the first image and the resolution of the light valve 331 .
- the main control circuit 1 can calculate the number F of the first sub-images of multiple frames according to the following formula (1).
- [f] means that the value of f is rounded up;
- M 1 means the resolution of the first image;
- M 0 means the resolution of the light valve 331 .
- the main control circuit 1 may decompose the first image into four first sub-images with a frame resolution of 4K.
- the main control circuit 1 can divide the first image into N image blocks according to the number F of the first sub-images of multiple frames, and then select one pixel from each image block each time to form the first sub-image of a frame. A subimage.
- the main control circuit 1 can calculate the number N of image blocks according to the following formula (2).
- the main control circuit 1 may divide the first image into 8294400 (ie, 7680 ⁇ 4320 ⁇ 4) image blocks, and at this time, each image block includes 4 pixels.
- each image block includes 4 pixels.
- the embodiment of the present disclosure does not limit the arrangement manner of 4 pixels in each image block of the first image.
- 4 pixels in each image block are arranged in two rows and two columns. At this time, the four pixels in an image block may be respectively located in four positions of the upper left, lower left, upper right and lower right of the image block.
- 4 pixels in each image block may be arranged in a row and four columns. At this time, the four pixels in an image block are respectively located at the four positions of left 1, left 2, left 3 and left 4 in the image block.
- the main control circuit 1 can select the pixels at the upper left position in each image block to form the first sub-image of the first frame, and select The pixels at the lower left position in each image block are selected to form the first sub-image of the second frame, and the pixels at the lower right position in each image block are selected to form the first sub-image of the third frame, and then the pixels in each image block are selected to form the first sub-image of the third frame.
- the pixels at the upper right position constitute the first sub-image of the fourth frame.
- the embodiments of the present disclosure do not limit the positions of the pixels constituting the first sub-image of the first frame in their respective image blocks, and the first sub-image of the first frame may be located in the upper left of each image block. It is formed by pixels at the position, and may also be formed by pixels at other positions (for example, lower left, upper right or lower right) in each image block. However, for pixels in any image block, two pixels selected as the first sub-images of two adjacent frames are adjacent.
- the main control circuit 1 when the main control circuit 1 selects the pixels at the upper left position in each image block to form the first sub-image of the first frame, it can select the pixels at the lower left position in each image block to form the second sub-image.
- the pixels at the upper right position in each image block may also be selected to form the first sub-image of the second frame.
- the pixel selected as the first sub-image of the first frame is adjacent to the pixel selected as the first sub-image of the second frame.
- the display driving circuit 2 controls the light projection assembly 3 to sequentially project multiple frames of the first sub-image, the display continuity of two adjacent frames of the first sub-image is stronger and the display effect is better.
- the main control circuit 1 can transmit the image signals of the multiple frames of the first sub-image to the multiple second data interfaces of the display driving circuit 2 through the multiple first data interfaces.
- the plurality of first data interfaces are set corresponding to the plurality of second data interfaces, and one first data interface and one corresponding second data interface constitute a pair of data interfaces, and a pair of data interfaces are used to transmit three primary colors One of the primary color signals in the signal (for example, the red primary color signal).
- the main control circuit 1 may transmit the image signals of the above-mentioned four frames of the first sub-image to the display driving circuit 2 twice. That is, during the first transmission, the main control circuit 1 transmits the three primary color signals of the first sub-image of the first frame to the display drive circuit 2 through three pairs of data interfaces, and transmits the second frame and the first sub-image signal of the second frame to the display drive circuit 2 through two pairs of data interfaces.
- the main control circuit 1 transmits the three-primary signal of the first sub-image in the third frame to the display drive circuit 2 through three pairs of data interfaces.
- the data interface transmits signals of other primary colors in the first sub-image of the fourth frame except the target primary color to the display driving circuit 2 .
- the main control circuit 1 may use the blue primary color as the target primary color. Since the human eye is not sensitive to blue, the blue primary color is determined as the target primary color, and the display driving circuit 2 displays the at least two When other frames of the first sub-image in the frame of the first sub-image are selected, the human eyes will not obviously perceive that the content of the other frame of the first sub-image has changed, which ensures the display effect of the first image.
- the main control circuit 1 can transmit the red primary color signal R1, the green primary color signal G1 and the blue primary color signal of the first sub-image of the first frame to the display driving circuit 2 during the first transmission process.
- the display driving circuit 2 can multiplex the blue primary color signal B1 of the first sub-image of the first frame received during the first transmission into the blue primary color signal of the first sub-image of the second frame to display the first sub-image 2 frames of the first sub-image; and the blue primary color signal B3 of the 3rd frame of the first sub-image received in the second transmission process is multiplexed into the blue primary color signal of the 4th frame of the first sub-image to display the The first sub-image of frame 4.
- the main control circuit 1 may determine the proportion of each of the three primary colors in the first image, and determine the target primary color according to the proportion of each of the three primary colors in the first image.
- the method for determining the target primary color can refer to the method embodiment below, and will not be repeated here.
- the display driving circuit 2 may be a digital light processing chip (Digital Light Processing Chip, DLPC).
- DLPC Digital Light Processing Chip
- the DLPC can digitally process the image signal (for example, the image signal of the above-mentioned at least two frames of the first sub-image), so as to drive the light projection assembly 3 to project the light beam provided by the light source assembly 31 to form an image corresponding to the image signal. projected image.
- the display drive circuit 2 After the display drive circuit 2 receives the image signals of the above-mentioned at least two frames of the first sub-image, it can control the light projection assembly 3 to project the one frame of the first sub-image based on the three primary color signals of the at least two frames of the first sub-image. frame the first sub-image, and based on other primary color signals in other first sub-images of the at least two frames of the first sub-image and the target primary color signal in the one frame of the first sub-image, control the light projection assembly 3 to project the The first subimage of the other frame. In this way, the display driving circuit 2 can control the light projection assembly 3 to superimpose and display at least two received frames of the first sub-image, so as to display a high-resolution image to be projected on a low-resolution projection device.
- the main control circuit 1 can transmit the image signals of the four frames of the first sub-image of the first image to the display driving circuit 2 twice. . In this way, after the first transmission is completed, the display driving circuit 2 receives the three primary color signals of the first sub-image of the first frame and other primary color signals except the target primary color in the first sub-image of the second frame.
- the display driving circuit 2 can control the light projection assembly 3 to project the first sub-image of the first frame based on the three primary color signals of the first sub-image of the first frame, and based on the target primary color signal of the first sub-image of the first frame and the first The other primary color signals of the two frames of the first sub-image control the light projection assembly 3 to project the second frame of the first sub-image.
- the display driving circuit 2 receives the three primary color signals of the first sub-image in the third frame and other primary color signals in the first sub-image in the fourth frame except the target primary color.
- the display driving circuit 2 can control the light projection assembly 3 to project the first sub-image of the third frame based on the three primary color signals of the first sub-image of the third frame, and based on the target primary color signal of the first sub-image of the third frame and the first The other primary color signals of the 4 frames of the first sub-image control the light projection assembly 3 to project the 4th frame of the first sub-image.
- the display drive circuit 2 can control the light projection assembly 3 according to the red primary color signal R1, green primary color signal G1, and blue primary color signal R1 of the first sub-image in the first frame.
- Signal B1 projects the first sub-image of the first frame; projects the first sub-image of the second frame according to the blue primary color signal B1 of the first sub-image of the first frame and the red primary color signal R2 and the green primary color signal G2 of the second frame of the first sub-image A sub-image; project the first sub-image of the third frame according to the red primary color signal R3, the green primary color signal G3 and the blue primary color signal B3 of the first sub-image of the third frame; then according to the blue color of the first sub-image of the third frame
- the primary color signal B3 and the red primary color signal R4 and the green primary color signal G4 of the first sub-image of the fourth frame project the first sub-image of the fourth frame.
- An embodiment of the present disclosure also provides a projection image data transmission method as shown in FIG. 11 , including the following S1-S3.
- the projected image data transmission method may be executed by the SoC in the main control circuit 1 of the above-mentioned projection device, or by the FGPA in the main control circuit 1, or may also be executed jointly by the SoC and the FGPA. Execution, which is not limited in the embodiments of the present disclosure.
- the projection image data transmission method is exemplarily described by taking the SoC executing the projection image data transmission method as an example.
- the first image signal is a three-color differential signal.
- the resolution of the first image is greater than the resolution of the light valve 331 , and the resolution of each first sub-image is less than or equal to the resolution of the light valve 331 .
- the image signals of at least two frames of the first sub-image are transmitted to the display driving circuit 2 each time, and the image signals of the at least two frames of the first sub-image include the three primary color signals of one frame of the first sub-image, and the first sub-image of other frames. Other primary color signals in the sub-image except the target primary color signal.
- the target primary color is a blue primary color.
- the SoC may first determine the proportion of each of the three primary colors in the first image, and then determine the target primary color according to the proportion of each of the three primary colors in the first image.
- the process of determining the target primary color will be described in detail below with examples.
- the above projection image data transmission method may further include: S31-S32.
- the SoC may determine the proportion of each of the three primary colors in the first image according to the number of pixels in the first image and the values of the three primary colors in each pixel.
- the SoC may use the following formula (3) to determine the proportion of the jth primary color in the first image among the three primary colors.
- ⁇ represents summation
- j is a positive integer less than or equal to 3
- H ij is the base color value of the jth base color of the i-th pixel in the first image
- n is the bit occupied by the base color value of each base color Number, that is, the number of bits required to represent the primary color value in binary.
- the above n may be 8, 12, 24 or 32.
- H i1 is the blue primary color value of the i-th pixel among the 33177600 pixels of the first image with a resolution of 8K.
- the SoC may determine the primary color with the smallest proportion among the three primary colors as the target primary color.
- the SoC can transmit three frames of the first sub-image of the first frame to the display driving circuit.
- the display driving circuit 2 uses the red primary color signal of the first sub-image in the first frame and the green primary color signal and blue primary color signal of the first sub-image in the second frame
- the human eyes will not obviously perceive the change of the content of the first sub-image of the second frame, which ensures the display effect of the first image.
- the SoC may compare the proportion of each primary color in the first image with the first threshold to determine the target primary color.
- the first threshold is a value pre-stored by the SoC, and the first threshold may be input by a user, for example. When the proportion of a certain primary color in the first image is smaller than the first threshold, it can be considered that the first image contains less of the primary color.
- the SoC may determine whether there is a primary color whose proportion is smaller than the first threshold.
- Case 1 The proportion of only one of the three primary colors is less than the first threshold.
- the SoC may determine the primary color whose proportion is smaller than the first threshold as the target primary color.
- Case 2 There are two primary colors whose proportions are smaller than the first threshold among the three primary colors, and the proportion of the blue primary color is greater than or equal to the first threshold.
- the SoC may determine the primary color with the smallest proportion among the three primary colors as the target primary color.
- the SoC may randomly select a primary color from the two primary colors whose proportion is smaller than the first threshold as the target primary color.
- Case 3 There are two primary colors whose proportions are smaller than the first threshold among the three primary colors, and the proportion of the blue primary color is smaller than the first threshold.
- the SoC may determine blue as the target primary color.
- the SoC may determine the primary color with the smallest proportion among the three primary colors as the target primary color.
- the SoC may randomly select a primary color from two primary colors whose proportion is smaller than the first threshold as the target primary color.
- the SoC may directly determine blue as the target primary color, or may determine the target primary color according to the primary color values of the three primary colors of the target pixel in the first image.
- the target pixel is a pixel whose primary color value is greater than the primary color threshold k. Since the primary color value of the target pixel is relatively large, the target primary color is a brighter pixel in the first image. Therefore, when the human eye observes the first image, the human eye is more sensitive to the target pixel than other pixels.
- the primary color threshold k can be determined by the following formula (4).
- w is the maximum value among the primary color values of the three primary colors of a single pixel in the first image, w is greater than 0 and less than or equal to 255; y is a percentage threshold.
- the primary color values of the three primary colors of a pixel A in the first image are (50, 60, 155)
- the blue primary color value of the pixel A is greater than the primary color value threshold
- the SoC can determine the pixel A as one of the target pixels .
- the primary color values of the three primary colors of a pixel B in the first image are (160, 175, 155)
- the three primary color values of the pixel B are all greater than the primary color value threshold, and the SoC can determine the pixel B as one of the target pixels.
- the SoC can obtain the ratio of the sum of the primary color values of each primary color of the target pixel in the first image to the sum of the primary color values of all pixels in the first image, and the ratio Primary colors less than or equal to the second threshold are determined as target primary colors.
- the second threshold is a value pre-stored by the SoC, and the second threshold may be input by a user, for example.
- the ratio of a certain primary color is smaller than the second threshold, it can be considered that the target pixel of the first image contains less of the primary color.
- the SoC can be calculated by the following formula (5) to obtain the above ratio.
- P j is the ratio of the sum of the primary color values of the j primary color in the target pixel to the sum of the primary color values of the j primary color of all pixels in the first image; H vj is the vth target pixel in the Q target pixels The primary color value of the jth primary color of , v is a positive integer less than or equal to Q; Q is a positive integer less than or equal to M 1 .
- the SoC may use the primary color with the smallest ratio among the multiple primary colors as the target primary color.
- the projection image data transmission method provided by the embodiments of the present disclosure corresponds to the above-mentioned projection device, and its technical effect can refer to the technical effect of the above-mentioned projection device, and will not be repeated here.
- Embodiments of the present disclosure also provide another projection device.
- the structure of the projection device can refer to FIG. 13 .
- the projection device includes a main control circuit 1 , a plurality of display driving circuits 2 and a light projection assembly 3 .
- a plurality of display driving circuits 2 are coupled to the main control circuit 1 .
- the plurality of display driving circuits 2 are also coupled to the light projection assembly 3 .
- the main control circuit 1 is configured to: divide the first image corresponding to the first image signal into a plurality of first sub-projection images, and the resolution of the first image is larger than that of the light valve 331, and the resolution of each first sub-projection image is less than or equal to the resolution of the light valve 331.
- Each display driving circuit 2 in the plurality of display driving circuits 2 is configured to: acquire an image signal of a first sub-projection image; control the light projection assembly 3 to project the first sub-projection according to the image signal of the first sub-projection image image.
- the above-mentioned first image can be formed after the plurality of display driving circuits 2 respectively control the light projection assembly 3 to project the first sub-projection image.
- the main control circuit 1 divides the first image into a plurality of first sub-projection images and then transmits them to the display driving circuit 2, which can reduce the resolution of the image to be processed by a single display driving circuit 2 , reducing the amount of data to be processed by a single display driving circuit 2, lowering the requirements on the processing capability of the display driving circuit 2, thereby further ensuring the normal operation of the display driving circuit 2 and ensuring the stable output of the first image signal.
- the main control circuit 1 may divide the first image corresponding to the first image signal into a plurality of first sub-images. Projecting images, the resolution of the first image is greater than the resolution of the light valve 331 , and the resolution of each first sub-projected image is less than or equal to the resolution of the light valve 331 . Different from the foregoing embodiments, the multiple first sub-projection images are obtained by dividing the first image into regions, rather than by performing frame division processing.
- the main control circuit 1 may determine the number T of the plurality of first sub-projected images according to the resolution of the first image and the resolution of the light valve 331 .
- the main control circuit 1 can calculate the number T of the plurality of first sub-projection images according to the following formula (6).
- T 4 in this example.
- the main control circuit 1 may divide the first image into T image areas according to the number T of the plurality of first sub-projection images, and use pixels in one image area to form a first sub-projection image.
- the main control circuit 1 may divide the first image into four image areas, namely, the first image area, the second image area, the third image area and the fourth image area, as shown in FIG. 14 . image area, then use the pixels in the first image area to form the first first sub-projection image, use the pixels in the second image area to form the second first sub-projection image, and use the pixels in the third image area to form the first sub-projection image
- the three first sub-projection images and the pixels in the fourth image area constitute a fourth first sub-projection image.
- the resolution of each first sub-projection image is equal to the resolution of the light valve 331, which is 4K.
- the main control circuit 1 can directly transmit the divided T first sub-projection images to a plurality of display driving circuits 2 respectively, and the plurality of display driving circuits 2 divide the T first sub-projection images into frames processing to obtain T groups of second sub-images corresponding to the T first sub-projection images (a group of second sub-images is a plurality of frames of second sub-images constituting a first sub-projection image, and each frame of the second sub-image
- the resolution of the sub-image is less than or equal to the resolution of the light valve area corresponding to the display driving circuit 2 to receive the second sub-image), so that each display driving circuit 2 that receives the first sub-projection image Multiple frames of second sub-images of a sub-projection image control the light projection assembly 3 to perform projection.
- the image signal of a first sub-projection image refers to the signal of the entire image of the first sub-projection image.
- the main control circuit 1 divides the T first sub-projection images, it first performs frame division processing on the T first sub-projection images to obtain the aforementioned T groups of second sub-images, and then the T The group of second sub-images is transmitted to a plurality of display driving circuits 2 respectively.
- a display driving circuit 2 can directly control the light projection assembly 3 to project according to the received group of second sub-images.
- the image signal of a first sub-projection image refers to signals of multiple frames of second sub-images of the first sub-projection image.
- the above-mentioned embodiment is only an exemplary illustration by taking the number of the first sub-projection images equal to the number of the display driving circuits 2, and the embodiment of the present disclosure does not limit the number of the first sub-projection images.
- the main control circuit 1 can randomly select two display driving circuits 2 from the four display driving circuits 2, and then An image signal of a first sub-projection image is transmitted to the two display driving circuits 2 respectively.
- the light valve 331 in the light projection assembly 3 is divided into a plurality of light valve regions corresponding to a plurality of display driving circuits 2 one-to-one.
- each light valve area is coupled to the corresponding display driving circuit 2 and is configured to project the first sub-projection image acquired by its corresponding display driving circuit. That is to say, in this embodiment, a display driving circuit 2 no longer uniformly controls all the micromirrors 3311 in a light valve 331 , but only controls the microlenses 3311 in a corresponding light valve area.
- the light valve 331 in the light projection assembly 3 includes four light valve areas.
- the division manner of the four light valve areas in the light valve 331 can refer to FIG. 15 .
- a Cartesian coordinate system is established with the center point of the light valve 331 as the origin, and the microlenses 3311 in a quadrant in the Cartesian coordinate system form a light valve area.
- the microlenses 3311 in a quadrant in the Cartesian coordinate system form a light valve area.
- the four display driving circuits 2 of the projection device are respectively coupled to the four light valve regions of the light valve 331 one by one, and each display driving circuit 2 distinguishes
- the image signal of the first sub-projection image with a rate of 4K is used to control the corresponding light valve area to project the first sub-projection image.
- each display driving circuit 2 in the plurality of display driving circuits 2 After each display driving circuit 2 in the plurality of display driving circuits 2 acquires an image signal of a first sub-projection image, it can control the light projection assembly 3 to project the first sub-projection image according to the image signal of the first sub-projection image .
- a display driving circuit 2 may directly The signals of the two sub-images and the display sequence of the multiple frames of the second sub-images control the corresponding light valve regions to sequentially project the multiple frames of the second sub-images to complete the projection of the first sub-projected image.
- each display driving circuit 2 receives signals of four frames of the second sub-image of a first sub-projection image.
- the resolution of one first sub-projection image is 4K
- the resolution of one frame of second sub-image is 2K (that is, one frame of second sub-image includes 1920 ⁇ 1080 pixels).
- each display driving circuit 2 can directly control the display sequence corresponding to the display driving circuit 2 according to the received signals of four frames of second sub-images of a first sub-projection image and the display sequence of the four frames of second sub-images.
- the light valve area projects the four frames of second sub-images sequentially, so that the light valve area realizes projection of the first sub-projected image.
- a display driving circuit 2 may first perform frame division processing on the first sub-projection image to The first sub-projection image is decomposed into multiple frames of second sub-images. Then, the one display driving circuit 2 can control the corresponding light valve area to sequentially project the multiple frames of second sub-images according to the display sequence of the multiple frames of second sub-images, so as to complete the projection of the first sub-projected image.
- each display driving circuit 2 receives a first sub-projected image with a resolution of 4K. Then, each display driving circuit 2 may decompose the first sub-projection image into four second sub-images with a resolution of 2K according to the received signal of the first sub-projection image. Then, each display driving circuit 2 can control the light valve area corresponding to the display driving circuit 2 (with a resolution of 2K) Projecting the four frames of second sub-images sequentially, so that the light valve area realizes projection of the first sub-projection image.
- Embodiments of the present disclosure also provide yet another projection device.
- the architecture of the projection device can refer to FIG. 1 .
- the main control circuit 1 in the projection device does not perform frame division processing on the first image corresponding to the first image signal after performing signal conversion on the image signal to be projected to obtain the first image signal, but The first image signal is directly transmitted to the display driving circuit 2 .
- the display driving circuit 2 may decompose the first image corresponding to the first image signal into multiple frames of first sub-images. Then, the display driving circuit 2 may control the light projection assembly 3 to sequentially project the multiple frames of the first sub-image based on the display sequence of the multiple frames of the first sub-image, so as to complete the projection of the first image.
- the main control circuit 1 directly transmits the first image signal to the display driving circuit 2 after performing signal conversion on the image signal to be projected to obtain the first image signal. Therefore, after receiving the first image signal, the display driving circuit 2 may directly decompose the first image corresponding to the first image signal into multiple frames of first sub-images according to the first image signal. Then, the display drive circuit 2 can control the light projection assembly 3 to sequentially project the multiple frames of the first sub-image based on the display sequence of the multiple frames of the first sub-image, so as to display the high-resolution first sub-image on the low-resolution projection device. An image, ensuring stable display of the first image.
Landscapes
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Control Of Indicators Other Than Cathode Ray Tubes (AREA)
Abstract
本公开一些实施例提供一种投影设备及投影图像数据传输方法。该投影设备包括主控制电路、显示驱动电路和光投影组件。主控制电路被配置为:对待投影图像进行信号转换得到第一图像信号;将第一图像分解为多帧第一子图像;基于多帧第一子图像的显示顺序,依次向显示驱动电路传输多帧第一子图像的图像信号。显示驱动电路被配置为:基于至少两帧第一子图像中的一帧第一子图像的三基色信号,控制光投影组件投影一帧第一子图像;并基于至少两帧第一子图像中的其他帧第一子图像中的其他基色信号以及一帧第一子图像中的目标基色信号,控制光投影组件投影其他帧第一子图像。光投影组件被配置为投影一帧第一子图像和其他帧第一子图像,以形成第一图像。
Description
本申请要求于2021年06月29日提交的、申请号为202110732720.7的中国专利申请的优先权,于2021年06月30日提交的、申请号为202110739855.6的中国专利申请的优先权,以及于2021年08月10日提交的、申请号为202110915610.4的中国专利申请的优先权;其全部内容通过引用结合在本申请中。
本公开实施例涉及投影显示技术领域,尤其涉及一种投影设备及投影图像数据传输方法。
投影设备因具有色彩纯度高、色域大和亮度高等优点,被广泛应用于显示领域。通常,在投影设备投影图像的过程中,若待投影图像的分辨率大于该投影设备的分辨率,则投影设备需要将该待投影图像进行压缩处理,以降低该待投影图像的分辨率至小于或等于该投影设备的分辨率,然后再将压缩处理后的待投影图像投影到屏幕。
发明内容
一方面,本公开一些实施例提供一种投影设备。所述投影设备包括主控制电路、显示驱动电路和光投影组件。所述显示驱动电路与所述主控制电路耦接,所述光投影组件与所述显示驱动电路耦接。所述主控制电路被配置为:对待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像分解为多帧第一子图像,所述第一图像的分辨率大于光阀的分辨率,且每帧所述第一子图像的分辨率小于或等于所述光阀的分辨率;基于所述多帧第一子图像的显示顺序,依次向所述显示驱动电路传输所述多帧第一子图像的图像信号,其中,每一次向所述显示驱动电路传输至少两帧第一子图像的图像信号,且所述至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。所述显示驱动电路被配置为:接收所述至少两帧第一子图像的图像信号,基于所述至少两帧第一子图像中的所述一帧第一子图像的三基色信号,控制光投影组件投影所述一帧第一子图像,并基于所述至少两帧第一子图像中的其他帧第一子图像中的所述其他基色信号、以及所述一帧第一子图像中的所述目标基色信号,控制所述光投影组件投影所述其他帧第一子图像。所述光投影组件被配置为:在所述显示驱动电路的控制下,投影所述一帧第一子图像和所述其他帧第一子图像,以形成所述第一图像。
另一方面,本公开另一些实施例提供一种投影设备。所述投影设备包括主控制电路、多个显示驱动电路和光投影组件。所述多个显示驱动电路均与所述主控制电路耦接,且均与光投影组件耦接。所述主控制电路被配置为:对所述待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像划分为多个第一子投影图像,所述第一图像的分辨率大于光阀的分辨率,且每个所述第一子投影图像的分辨率小于或等于所述光阀的分辨率。所述多个显示驱动电路中的每个显示驱动电路被配置为:获取一个第一子投影图像的图像信号;根据所述第一子投影图像的图像信号控制所述光投影组件投影所述第一子投影图像。所述光投影组件被配置为:在所述多个显示驱动电路的控制下,投影所述多个第一子投影图像,以形成所述第一图像。
又一方面,本公开一些实施例提供一种投影图像数据传输方法。所述投影图像数据 传输方法包括:对待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像分解为多帧第一子图像,所述第一图像的分辨率大于光阀的分辨率,且每个所述第一子图像的分辨率小于或等于所述光阀的分辨率;基于所述多帧第一子图像的显示顺序,依次向显示驱动电路传输所述多帧第一子图像的图像信号,其中,每一次向所述显示驱动电路传输至少两帧第一子图像的图像信号,且所述至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的投影设备的结构图之一;
图2为根据一些实施例的投影设备的结构图之二;
图3为示出了根据一些实施例的投影设备中的光路的图;
图4为根据一些实施例的光阀中微镜片的排列图之一;
图5为图4中的光阀中一个微镜片摆动的位置示意图;
图6为根据一些实施例的微小反射镜片的工作示意图;
图7为根据一些实施例的第一图像的结构图之一;
图8为根据一些实施例的第一图像的结构图之二;
图9为根据一些实施例的投影设备的结构图之三;
图10为根据一些实施例的第一子图像的结构图;
图11为根据一些实施例的投影图像数据传输方法的流程图之一;
图12为根据一些实施例的投影图像数据传输方法的流程图之二;
图13为根据一些实施例的投影设备的结构图之四;
图14为根据一些实施例的第一图像的结构图之三;
图15为根据一些实施例的光阀中微镜片的排列图之二;
图16为根据一些实施例的投影设备的结构图之五;
图17为根据一些实施例的投影设备的结构图之六;
图18为根据一些实施例的投影设备的结构图之七。
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,然而,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示 例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
本公开的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本公开的一些实施例例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。例如,描述一些实施例时可能使用了术语“连接”以表明两个或两个以上部件彼此间有直接物理接触或电接触。又如,描述一些实施例时可能使用了术语“耦接”以表明两个或两个以上部件有直接物理接触或电接触。然而,术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
如本文中所使用,根据上下文,术语“如果”任选地被解释为意思是“当……时”或“在……时”或“响应于确定”或“响应于检测到”。类似地,根据上下文,短语“如果确定……”或“如果检测到[所陈述的条件或事件]”任选地被解释为是指“在确定……时”或“响应于确定……”或“在检测到[所陈述的条件或事件]时”或“响应于检测到[所陈述的条件或事件]”。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
另外,“基于”的使用意味着开放和包容性,因为“基于”一个或多个所述条件或值的过程、步骤、计算或其他动作在实践中可以基于额外条件或超出所述的值。
本公开实施例提供了一种投影设备,例如激光投影设备。如图1所示,该投影设备包括主控制电路1、显示驱动电路2和光投影组件3。主控制电路1与显示驱动电路2耦接,显示驱动电路2与光投影组件3耦接。主控制电路1被配置为接收外部的图像信号,显示驱动电路2被配置为根据上述图像信号控制光投影组件3进行投影形成相应的图像。
首先,结合图1-图6描述光投影组件3的基本原理。
如图2和图3所示,光投影组件3包括光源组件31、镜头32和光机33。该光源组件31被配置为提供光束。该光机33被配置为根据图像信号对该光束进行调制以获得投影光束。该镜头32被配置为透射投影光束,并将该投影光束投射至投影屏幕或墙壁上进行成像。
光机33的一端和镜头32连接,且光机33和镜头32沿着第一方向A设置。比如,第一方向A为该投影设备10的投影光束的出射方向。光机33的另一端连接光源组件31,以接收光源组件31发出的激光光束。
光源组件31
在一些实施例中,光源组件31可以为单色光源或多色光源。
在一些示例中,光源组件31为单色光源,该单色光源可以包括蓝色激光器。此时,光源组件31还可以包括荧光轮和/或滤色轮,以保证光源组件31出射的激光光束可以为红绿蓝三个颜色的光束。然而,光源组件31也可以不包括荧光轮或滤色轮中的至少一个,但是为了保证投影设备的投影效果,荧光轮和/或滤色轮可以包括在光机33中。该荧光轮可被激发出荧光。
在另一些示例中,光源组件31为多色光源。例如,该多色光源包括集成在一个封装单元内的三色激光芯片或者三组单色的激光器。示例性地,该三组单色的激光器可以包括一组绿色激光器、一组红色激光器和一组蓝色激光器。每组激光器可包括一个或多个激光器。这样,可以使得光源组件31直接出射红绿蓝三个颜色的光束。例如,在光源组件31包括集成设置的两组红色激光器、一组蓝色激光器和一组绿色激光器的情况下,该投影设备可称为全色激光投影设备。每组激光器可包括一个激光器。蓝色激光器设置在红色激光器和绿色激光器的中间。如此设置,由于蓝色激光器所能承受的温度更高,因此更有利于红色激光器和绿色激光器的快速散热,使得该光源组件31的可靠性更高。
镜头32
在一些实施例中,镜头32可以是变焦镜头、定焦可调焦镜头、或者定焦镜头。上述投影设备可以为超短焦投影设备、短焦投影设备或长焦投影设备。例如,上述投影设备为超短焦投影设备,镜头32为超短焦投影镜头,镜头32的投射比通常小于0.3,比如0.24。
光机33
在一些实施例中,如图3所示,光机33包括光阀331以及振镜332。光阀331被配置为接收光源组件31发出的三基色的光束,根据图像信号对三基色的光束进行调制以得到投影光束,并将投影光束全反射至振镜332。振镜332被配置为响应于振镜驱动电流,其镜片转动,从而透射并偏转投影光束。振镜332在透射该投影光束时,其镜片的转动角度在不同时刻不同,从而使得不同时刻的光束发生位移,进而光斑发生错位,形成发生错位的光束。这样,发生错位的光束会入射至镜头32中,从而在投影屏幕上也会出现错位叠加的画面。由于人眼视觉暂留现象,错位叠加的画面如果是相关联的,则在视觉上,图像的信息量会增加,清晰度会提高,从而可达到分辨率提升的效果。
在一些实施例中,如图3所示,上述光机33除光阀331和振镜332以外,还包括光导管333、透镜组件334、反射镜335和棱镜组件336。光导管333的出光口朝向透镜组件334的入光面,光导管333的中心线与透镜组件334的主光轴重合。光导管333配置为接收光源组件31提供的激光光束,并对该激光光束进行匀化。透镜组件334的出光侧朝向反射镜335的反射面。透镜组件334配置为对该匀化后的光束进行准直和会聚,会聚后的光束出射至反射镜335。反射镜335的反射面朝向棱镜组件336的第一入光面3361,以便反射镜335可以将透镜组件334整形后的光束反射至棱镜组件336。棱镜组件336可以将反射镜335反射后的光束折射至光阀331。棱镜组件336的第一出光面3362(也为入光面)朝向光阀331,并且棱镜组件336的第二出光面3363朝向振镜332。
例如,透镜组件334可以包括凸透镜和/或凹透镜。棱镜组件336可以是全内反射(Total Internal Reflection,TIR)棱镜或RTIR(Refraction Total Internal Reflection,折射全内反射)棱镜。
光导管333例如为矩形光导管,该矩形导光管的尺寸可以与光阀331的尺寸成预设比例,以使得经过透镜组件334整形的光束正好覆盖光阀331的工作区域,从而可保证投影设备的成像效果。此外,还可避免因光束到达光阀331的非工作区而导致的该非工作区的温度升高。
光阀331
上述光阀331例如为数字微镜器件(Digital Micromirror Device,DMD)。如图4所示,光阀331包含大量的(a large number of)可被单独驱动以转动的微镜片(micromirror)3311,这些微镜片3311呈阵列排布,每个微镜片3311对应显示待投影图像中的一个像素。如图5所示,在数字光处理(Digital Light Processing,DLP)投影架构中,每个微镜片3311相当于一个数字开关,在外力作用下可以在正负12度或者正负17度的范围内转动。
如图6所示,微镜片3311在负的转动角度下反射出的光,称之为OFF光。OFF光为无效光,通常会打到如图5所示的光吸收单元上而被吸收掉。微镜片3311在正的转动角度下反射出的光,称之为ON光。ON光是被微镜片3311接收,并在其正的转动角度下反射至镜头32的有效光束,用于投影成像。微镜片3311的ON状态为光源组件31发出的光束经微镜片3311反射后可以进入镜头32的情况下,微镜片3311所处且可以保持的状态,即微镜片3311处于正的转动角度时的状态。微镜片3311的OFF状态为光源组件31发出的光束经微镜片3311反射后未进入镜头32的情况下,微镜片3311所处且可以保持的状态,即微镜片3311处于负的转动角度的状态。
例如,对于处于转动角度为±12°的微镜片3311,位于+12°的状态即为ON状态,位于-12°的状态即为OFF状态,而对于-12°和+12°之间的转动角度,实际中未使用,微镜片3311的实际工作状态仅开状态和关状态。而对于处于转动角度为±17°的微镜片3311,位于+17°的状态即为ON状态,位于-17°的状态即为OFF状态。图像信号通过处理后转换成0、1这样的数字信号,这些数字信号可以驱动所述微镜片3311转动。
在一帧图像的显示周期内,部分或全部微镜片3311会在开状态和关状态之间切换一次,从而根据微镜片3311在开状态和关状态分别持续的时间来实现一帧图像中的各个像素的灰阶。例如,当像素具有0~255这256个灰阶时,与灰阶0对应的微镜片在一帧图像的整个显示周期内均处于关状态,与灰阶255对应的微镜片在一帧图像的整个显示周期内均处于开状态,而与灰阶127对应的微镜片在一帧图像的显示周期内一半时间处于开状态、另一半时间处于关状态。因此通过图像信号控制光阀331中每个微镜片在一帧图像的显示周期内所处的状态以及各状态的维持时间,可以控制该微镜片3311对应像素的亮度(灰阶),实现对投射至光阀331的光束进行调制的目的。
振镜332
由上述描述可知,振镜332被配置为响应于振镜驱动电流,其镜片发生转动并透射光阀331反射的投影光束。
振镜332例如可以为具有四个转动位置的四维振镜(也称为双轴振镜)。示例性地,在光阀331的分辨率为4K的情况下,该振镜332的每个转动位置可以对应显示一帧分辨率为4K的图像。此时,4帧分辨率为4K的图像可以通过振镜332分别显示在图像显示平 面的不同位置,从而形成一个分辨率为8K的图像。
在本公开一些实施例中,主控制电路1还被配置为:对待投影图像进行信号转换得到第一图像信号,第一图像信号为三色差分信号(例如,12通道的RGB信号);将第一图像信号对应的第一图像分解为多帧第一子图像,第一图像的分辨率大于光阀331的分辨率,且每帧第一子图像的分辨率小于或等于光阀331的分辨率;基于多帧第一子图像的显示顺序,依次向显示驱动电路2传输多帧第一子图像的图像信号,其中,每一次向显示驱动电路2传输至少两帧第一子图像的图像信号,且该至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。
显示驱动电路2被配置为:在接收到至少两帧第一子图像的图像信号之后,基于该至少两帧第一子图像中的一帧第一子图像的三基色信号,控制光投影组件3投影该一帧第一子图像,并基于该至少两帧第一子图像中的其他帧第一子图像中的其他基色信号以及该一帧第一子图像中的目标基色信号,控制光投影组件3投影该其他帧第一子图像。
需要说明的是,在主控制电路1与显示驱动电路2之间可以通过多对数据接口传输每一帧图像的RGB信号。通常,一帧图像的RGB信号需要三对数据接口来传输。因此,在主控制电路1与显示驱动电路2之间的数据接口数量较少(例如只有5对数据接口)的情况下,主控制电路1一次只能够向显示驱动电路2传输一帧图像,导致投影图像数据传输的效率较低。然而,在本公开的一些实施例中,对于上述投影设备,主控制电路1在每一次向显示驱动电路2传输第一图像的第一子图像的图像信号时,通过删除部分第一子图像的目标基色信号,使得主控制电路1可以仅向显示驱动电路2传输一帧第一子图像的三基色信号和其他帧第一子图像的除目标基色之外的其他基色信号,从而使得主控制电路1可以每一次向显示驱动电路2传输至少两帧第一子图像的图像信号,使得显示驱动电路2可以基于该至少两帧第一子图像中一帧第一子图像的三基色信号显示该第一子图像,并基于该一帧第一子图像的目标基色信号和其他帧第一子图像的其他基色信号显示该其他帧第一子图像,提高了投影图像数据传输的效率。
下面,结合图7-图10,对上述投影设备中的主控制电路1和显示驱动电路2进行举例说明。
主控制电路1
在一些实施例中,主控制电路1可以为系统级芯片(System on Chip,SoC)。在该示例中,SoC可以通过通信接口(例如,高清多媒体接口(High Definition Multimedia Interface,HDMI)、通用串行总线(Universal Serial Bus,USB)接口等)从信号源处接收视频信号,在接收到视频信号之后可以对该视频信号进行解码得到待投影图像信号,再对该待投影图像信号进行信号转换得到三色差分信号。此外,该SoC还通过信号线(例如,迷你串行SCSI(Mini Serial Attached SCSI,MiniSAS)信号线、柔性扁平电缆(Flexible Flat Cable,FFC)、同轴线等)与显示驱动电路2耦接,以便将三色差分信号传输给显示驱动电路2,从而由显示驱动电路2控制光投影设备3根据上述三色差分信号投影形成上述待投影图像信号对应的图像。
在一些实施例中,以上述HDMI接口为HDMI2.1且上述信号线为4路MiniSAS信号线为例,HDMI2.1可以支持4K@120Hz和8K@60Hz的视频信号传输。其中,上述8K@60Hz中符号@之前的部分表示该待投影图像的分辨率,即,该待投影图像所包括的像素个数;符号@之后的部分标识表示该待投影图像的刷新率,即,该待投影图像被显示时,每秒被 重绘的次数。例如,8K表示该待投影图像中包括7680×4320个像素;60Hz表示该待投影图像被显示时,每秒被重绘60次。
在另一些示例中,主控制电路1可以包括SoC和信号转换电路。在该示例中,SoC可以通过至少4路MiniSAS信号线与信号转换电路耦接。SoC在对视频信号进行解码得到待投影图像信号后,可以传输该待投影图像信号至该信号转换电路,从而通过该信号转换电路对该待投影图像进行信号转换,以得到三色差分信号。此外,信号转换电路可通过至少4路MiniSAS信号线与显示驱动电路2耦接,以便将三色差分信号传输给显示驱动电路2。应理解,上述信号转换电路可以为现场可编程逻辑门阵列(Field Programmable Gate Array,FPGA)。
由于显示驱动电路2需要根据三色差分信号控制光投影组件3进行图像投影,因此,在主控制电路1对视频信号进行解码后得到的待投影图像信号为高清晰度图像信号(例如,8K@60Hz的图像信号)时,主控制电路1将解码得到的待投影图像信号转换为三色差分信号,使得后续将该三色差分信号对应的第一图像分解为多帧第一子图像并传输至显示驱动电路2后,显示驱动电路2可以根据该三色差分信号控制光投影组件3投影该多帧第一子图像,而无需再进行信号转换以得到三色差分信号,从而减少了显示驱动电路2的处理步骤,保证了显示驱动电路2正常工作,进而保证了第一图像信号的稳定输出。
如前所述,光阀331的分辨率等于其所包括的微镜片3311的个数,一个微镜片3311对应显示待投影图像中的一个像素。因此,在该第一图像信号对应的第一图像的分辨率(即,待投影图像的分辨率)大于光阀331的分辨率的情况下,光阀331中的微镜片3311的个数小于该第一图像中的像素个数,使得该光阀331中的微镜片3311不足以完整显示该第一图像中的全部像素。
为使该第一图像能够正常投影,可以将第一图像分解为多帧子图像进行分别投影,以保证该第一图像的显示效果。例如,主控制电路1可以将该第一图像分解为多帧第一子图像,且该第一子图像的分辨率小于或等于光阀331的分辨率。然后,主控制电路1可以基于该多帧第一子图像的显示顺序,依次向显示驱动电路2传输该多帧第一子图像的图像信号。其中,每一次向显示驱动电路2传输至少两帧第一子图像的图像信号,且该至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。
为便于理解,下面,以第一图像的分辨率为8K且光阀331的分辨率为4K(即,光阀331一次能够显示3840×2160个像素)为例,对上述主控制电路1的工作过程进行示例性说明。
首先,主控制电路1可以根据第一图像的分辨率和光阀331的分辨率,确定多帧第一子图像的个数F。
示例性地,主控制电路1可以根据下述公式(1),计算得到多帧第一子图像的个数F。
其中,[f]表示将f的值向上取整;M
1表示第一图像的分辨率;M
0表示光阀331的分辨率。在该示例中,M
1=7680×4320,M
0=3840×2160,即得到F=4。此时,主控制电路1可以将第一图像分解为4帧分辨率为4K的第一子图像。
然后,主控制电路1可以根据多帧第一子图像的个数F,将第一图像划分为N个图像块,然后每次从每个图像块中各选取出一个像素,以构成一帧第一子图像。
示例性地,主控制电路1可以根据下述公式(2),计算得到图像块的个数N。
在该示例中,主控制电路1可以将第一图像划分为8294400(即,7680×4320÷4)个图像块,此时,每个图像块包括4个像素。需要说明的是,本公开实施例对第一图像的每个图像块中4个像素的排列方式不做限制。例如,参照图7,每个图像块中的4个像素呈两行、两列的方式排列。此时,一个图像块中的4个像素可以分别位于该图像块中左上、左下、右上和右下这四个位置。或者,参照图8,每个图像块中的4个像素可以呈一行、四列的方式排列。此时,一个图像块中的4个像素分别位于该图像块中左1、左2、左3和左4这四个位置处。
以每个图像块中的4个像素呈如图7所示的方式排列为例,主控制电路1可以选取出每个图像块中位于左上位置处的像素构成第1帧第一子图像,选取出每个图像块中位于左下位置处的像素构成第2帧第一子图像,选取出各个图像块中位于右下位置处的像素构成第3帧第一子图像,再选取出各个图像块中位于右上位置处的像素构成第4帧第一子图像。
需要说明的是,本公开实施例对构成第1帧第一子图像的各个像素在各自所在图像块中的位置不做限制,该第1帧第一子图像可以是每个图像块中位于左上位置处的像素构成的,也可以是每个图像块中位于其他位置(例如,左下、右上或右下)处的像素构成的。但是,对于任意一个图像块中的像素而言,被选取作为相邻两帧第一子图像的两个像素相邻。
示例性地,主控制电路1在选取出每个图像块中位于左上位置处的像素构成第1帧第一子图像的情况下,可以选取每个图像块中位于左下位置处的像素构成第2帧第一子图像,也可以选取每个图像块中位于右上位置处的像素构成第2帧第一子图像。此时,对于任意一个图像块中的像素而言,被选取作为第1帧第一子图像的像素与被选取作为第2帧第一子图像的像素相邻。这样,能够使显示驱动电路2控制光投影组件3依次投影多帧第一子图像时,相邻两帧第一子图像的显示连续性更强,显示效果更好。
然后,主控制电路1可以通过多个第一数据接口将多帧第一子图像的图像信号传输至显示驱动电路2的多个第二数据接口。其中,该多个第一数据接口与该多个第二数据接口对应设置,且一个第一数据接口和与其对应的一个第二数据接口构成一对数据接口,一对数据接口用于传输三基色信号中的一个基色信号(例如,红色基色信号)。
以主控制电路1与显示驱动电路2之间具有如图9所示的5对数据接口为例。此时,为了提升图像信号传输的效率,主控制电路1可以分两次将上述四帧第一子图像的图像信号传输至显示驱动电路2。即,第一次传输时,主控制电路1通过三对数据接口向显示驱动电路2传输第1帧第一子图像的三基色信号,通过两对数据接口向显示驱动电路2传输第2帧第一子图像中除目标基色之外的其他基色信号;第二次传输时,主控制电路1通过三对数据接口向显示驱动电路2传输第3帧第一子图像的三基色信号,通过两对数据接口向显示驱动电路2传输第4帧第一子图像中除目标基色之外的其他基色信号。
在一些实施例中,主控制电路1可以将蓝色基色作为目标基色。由于人眼对蓝色不敏感,将蓝色基色确定为目标基色,显示驱动电路2在利用至少两帧第一子图像中的一帧第一子图像的蓝色基色信号、来显示该至少两帧第一子图像中的其他帧第一子图像时,人眼不会明显感知到该其他帧第一子图像的内容发生了变化,确保了第一图像的显示效果。
在该实施例中,参照图10,主控制电路1可以在第一次传输过程中向显示驱动电路2 传输第1帧第一子图像的红色基色信号R1、绿色基色信号G1和蓝色基色信号B1,以及第2帧第一子图像的红色基色信号R2和绿色基色信号G2;在第二次传输过程中向显示驱动电路2传输第3帧第一子图像的红色基色信号R3、绿色基色信号G3和蓝色基色信号B3,以及第4帧第一子图像的红色基色信号R4和绿色基色信号G4。这样,显示驱动电路2可以将第一次传输过程中接收到的第1帧第一子图像的蓝色基色信号B1复用为第2帧第一子图像的蓝色基色信号,以显示该第2帧第一子图像;并将第二次传输过程中接收到的第3帧第一子图像的蓝色基色信号B3复用为第4帧第一子图像的蓝色基色信号,以显示该第4帧第一子图像。
在另一些实施例中,主控制电路1可以确定三基色中的每个基色在第一图像中的占比,并根据三基色中每个基色在第一图像中的占比,确定目标基色。在该实施例中,确定目标基色的方法可以参考下方的方法实施例,此处不再赘述。
显示驱动电路2
该显示驱动电路2可以为数字光处理芯片(Digital Light Processing Chip,DLPC)。示例性地,DLPC可以对图像信号(例如,上述至少两帧第一子图像的图像信号)进行数字处理,以驱动光投影组件3把光源组件31提供的光束投影出来,形成与该图像信号对应的投影图像。
显示驱动电路2接收到上述至少两帧第一子图像的图像信号之后,可以基于该至少两帧第一子图像中的一帧第一子图像的三基色信号,控制光投影组件3投影该一帧第一子图像,并基于该至少两帧第一子图像中的其他帧第一子图像中的其他基色信号以及该一帧第一子图像中的目标基色信号,控制光投影组件3投影该其他帧第一子图像。这样,显示驱动电路2可以控制光投影组件3叠加显示接收到的至少两帧第一子图像,从而实现在低分辨率的投影设备上显示高分辨率的待投影图像。
继续以第一图像的分辨率为8K且光阀331的分辨率为4K为例,主控制电路1可以分两次将第一图像的四帧第一子图像的图像信号传输至显示驱动电路2。这样,第一次传输完成后,显示驱动电路2接收到第1帧第一子图像的三基色信号和第2帧第一子图像中除目标基色之外的其他基色信号。此时,显示驱动电路2可以基于第1帧第一子图像的三基色信号控制光投影组件3投影该第1帧第一子图像,并基于第1帧第一子图像的目标基色信号和第2帧第一子图像的其他基色信号控制光投影组件3投影该第2帧第一子图像。第二次传输完成后,显示驱动电路2接收到第3帧第一子图像的三基色信号和第4帧第一子图像中除目标基色之外的其他基色信号。此时,显示驱动电路2可以基于第3帧第一子图像的三基色信号控制光投影组件3投影该第3帧第一子图像,并基于第3帧第一子图像的目标基色信号和第4帧第一子图像的其他基色信号控制光投影组件3投影该第4帧第一子图像。
示例性地,以目标基色为蓝色为例,继续参照图10,显示驱动电路2可以控制光投影组件3根据第1帧第一子图像的红色基色信号R1、绿色基色信号G1和蓝色基色信号B1投影该第1帧第一子图像;根据第1帧第一子图像的蓝色基色信号B1以及第2帧第一子图像的红色基色信号R2和绿色基色信号G2投影该第2帧第一子图像;根据第3帧第一子图像的红色基色信号R3、绿色基色信号G3和蓝色基色信号B3投影该第3帧第一子图像;再根据第3帧第一子图像的蓝色基色信号B3以及第4帧第一子图像的红色基色信号R4和绿色基色信号G4投影该第4帧第一子图像。
本公开实施例还提供一种如图11所示的投影图像数据传输方法,包括以下S1~S3。需要说明的是,该投影图像数据传输方法可以由上述投影设备的主控制电路1中的SoC执行,也可以由该主控制电路1中的FGPA执行,或者,还可以由该SoC和该FGPA共同执行,本公开实施例对此不做限制。以下,以SoC执行该投影图像数据传输方法为例,对该投影图像数据传输方法进行示例性说明。
另外,该投影图像数据传输方法中各步骤的具体实现方式可以参照前述实施例,在以下各步骤中不再赘述。
S1,对待投影图像进行信号转换得到第一图像信号。
其中,该第一图像信号为三色差分信号。
S2,将第一图像信号对应的第一图像分解为多帧第一子图像。
其中,第一图像的分辨率大于光阀331的分辨率,且每个第一子图像的分辨率小于或等于该光阀331的分辨率。
S3,基于多帧第一子图像的显示顺序,依次向显示驱动电路2传输多帧第一子图像的图像信号。
其中,每一次向显示驱动电路2传输至少两帧第一子图像的图像信号,且该至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。
在一些实施例中,上述目标基色为蓝色基色。
在另一些实施例中,SoC可以先确定三基色中的每个基色在第一图像中的占比,然后根据三基色中每个基色在第一图像中的占比,确定目标基色。下面结合示例详细描述确定目标基色的过程。此时,如图12所示,上述投影图像数据传输方法还可以包括:S31-S32。
S31,确定三基色中的每个基色在第一图像中的占比。
在一些实施例中,SoC可以根据第一图像的像素个数以及每个像素中的三基色值,确定三基色中的每个基色在第一图像中的占比。
示例性地,SoC可以通过下述公式(3),确定三基色中第j个基色在第一图像中的占比。
其中,∑表示求和;j为小于或等于3的正整数;H
ij为第一图像中的第i个像素的第j个基色的基色值;n为每个基色的基色值所占用的位数,即,用二进制表示该基色值所需占用的位数。示例性地,上述n可以为8、12、24或者32。
例如,在j=1且第1个基色为蓝色的情况下,H
i1为分辨率为8K的第一图像的33177600个像素中,第i个像素的蓝色基色值。
S32,根据三基色中每个基色在第一图像中的占比,确定目标基色。
在一些实施例中,SoC可以将三基色中占比最小的基色确定为目标基色。
例如,假设第一图像的三基色中红色的占比最小、且SoC每次向显示驱动电路2传输两帧第一子图像,则SoC可以向显示驱动电路传输第1帧第一子图像的三基色信号,以及第2帧第一子图像的绿色基色信号和蓝色基色信号。此时,由于红色在第一图像中的占比最小,因此显示驱动电路2在采用第1帧第一子图像的红色基色信号以及第2帧第一子图像的绿色基色信号和蓝色基色信号显示该第2帧第一子图像时,人眼不会明显感知到该第 2帧第一子图像的内容发生了变化,确保了第一图像的显示效果。
在另一些实施例中,SoC可以将每个基色在第一图像中的占比于第一阈值进行比较,以确定目标基色。其中,第一阈值为SoC预先存储的数值,该第一阈值例如可以是用户输入的。当某个基色在第一图像中的占比小于该第一阈值时,可以认为第一图像中含有较少该基色。
在该实施例中,首先,SoC可以判断是否存在占比小于第一阈值的基色。
示例性地,若存在占比小于第一阈值的基色,则可能出现以下三种情况。
情况1:三基色中仅有一个基色的占比小于第一阈值。
在该情况下,SoC可以将该占比小于第一阈值的基色确定为目标基色。
情况2:三基色中存在两个占比小于第一阈值的基色,且蓝色基色的占比大于或等于该第一阈值。
在该情况下,SoC可以将三基色中占比最小的基色确定为目标基色。或者,SoC也可以在两个占比小于第一阈值的基色中随机选取一个基色作为目标基色。
情况3:三基色中存在两个占比小于第一阈值的基色,且蓝色基色的占比小于该第一阈值。
在该情况下,SoC可以将蓝色确定为目标基色。或者,SoC可以将三基色中占比最小的基色确定为目标基色。再或者,SoC可以在两个占比小于第一阈值的基色中随机选取一个基色作为目标基色。
或者,若不存在占比小于第一阈值的基色,则SoC可以直接确定蓝色为目标基色,也可以根据第一图像中目标像素的三基色的基色值确定目标基色。
其中,目标像素为基色值大于基色阈值k的像素。由于目标像素的基色值较大,该目标基色为第一图像中较亮的像素,因此,人眼观察第一图像时,相较于其他像素,人眼对该目标像素的敏感度更高。
示例性地,基色阈值k可以通过下述公式(4)确定。
k=w×y (4)
其中,w为第一图像中单个像素的三基色的基色值中的最大值,w大于0且小于或等于255;y为百分比阈值。
例如,在w等于250,y等于60%的情况下,基色值阈值k=250×60%=150。此时,假设第一图像中一像素A的三基色的基色值为(50,60,155),则该像素A的蓝色基色值大于基色值阈值,SoC可以将该像素A确定为目标像素之一。或者,假设第一图像中一像素B的三基色的基色值为(160,175,155),则该像素B的三个基色值均大于基色值阈值,SoC可以将该像素B确定为目标像素之一。
确定出第一图像中的目标像素后,SoC可以获取所述第一图像中目标像素的每个基色的基色值总和与第一图像中所有像素的该基色的基色值总和的比值,将该比值小于或等于第二阈值的基色确定为目标基色。
其中,第二阈值为SoC预先存储的数值,该第二阈值例如可以是用户输入的。当某个基色的比值小于该第二阈值时,可以认为第一图像的目标像素中含有较少该基色。
示例性地,SoC可以通过下述公式(5)计算得到上述比值。
其中,P
j为目标像素中第j个基色的基色值总和与第一图像中所有像素的该第j个基色的基色值的总和的比值;H
vj为Q个目标像素中第v个目标像素的第j个基色的基色值,v为小于或等于Q的正整数;Q为小于或等于M
1的正整数。
示例性地,在三基色中仅有一个基色的上述比值小于或等于上述第二阈值的情况下,SoC可以将该一个基色确定为目标基色。例如,在j=1、第1个基色为蓝色、P
1=20%、第二阈值为30%且P
2和P
3均大于30%的情况下,SoC可以将蓝色确定为目标基色。
或者,当三基色中有多个基色的上述比值小于或等于上述第二阈值的情况下,SoC可以将该多个基色中比值最小的基色作为目标基色。
本公开实施例提供的投影图像数据传输方法与上述投影设备对应,其技术效果可以参照上述投影设备的技术效果,此处不再赘述。
本公开实施例还提供另一种投影设备。该投影设备的结构可以参考图13。如图13所示,该投影设备包括主控制电路1、多个显示驱动电路2和光投影组件3。多个显示驱动电路2均与主控制电路1耦接。多个显示驱动电路2还均与光投影组件3耦接。
与上述图1中的投影设备不同的是,主控制电路1被配置为:将第一图像信号对应的第一图像划分为多个第一子投影图像,该第一图像的分辨率大于光阀331的分辨率,且每个第一子投影图像的分辨率小于或等于该光阀331的分辨率。多个显示驱动电路2中的每个显示驱动电路2被配置为:获取一个第一子投影图像的图像信号;根据该第一子投影图像的图像信号控制光投影组件3投影该第一子投影图像。此时,多个显示驱动电路2分别控制光投影组件3投影第一子投影图像之后,可形成上述第一图像。
本公开实施例提供的投影设备,通过主控制电路1将第一图像划分为多个第一子投影图像再传输至显示驱动电路2,可以降低单个显示驱动电路2所需处理的图像的分辨率,减少单个显示驱动电路2所需处理的数据量,降低了对显示驱动电路2的处理能力的要求,从而进一步保证了显示驱动电路2正常工作,保证了第一图像信号的稳定输出。
下面,结合图13-图18,对上述投影设备中各部件所实现的功能进行举例说明。
主控制电路1
在主控制电路1对待投影图像进行信号转换得到第一图像信号后,为保证第一图像信号的稳定输出,主控制电路1可以将第一图像信号对应的第一图像划分为多个第一子投影图像,该第一图像的分辨率大于光阀331的分辨率,且每个第一子投影图像的分辨率小于或等于该光阀331的分辨率。与上述实施例不同的是,该多个第一子投影图像是将第一图像进行区域划分后得到的,而非进行分帧处理后得到的。
为便于理解,下面,以第一图像的分辨率为8K且光阀331的分辨率为4K为例,对上述主控制电路1将第一图像划分为多个第一子投影图像的工作过程进行示例性说明。
首先,主控制电路1可以根据第一图像的分辨率和光阀331的分辨率,确定多个第一子投影图像的个数T。
示例性地,主控制电路1可以根据下述公式(6),计算得到多个第一子投影图像的个数T。
根据前述实施例,在该示例中,T=4。
然后,主控制电路1可以根据多个第一子投影图像的个数T,将第一图像划分为T个图像区域,以一个图像区域内的像素构成一个第一子投影图像。
示例性地,主控制电路1可以将第一图像按照如图14所示的方式,将第一图像划分为第一图像区域、第二图像区域、第三图像区域和第四图像区域这4个图像区域,然后以第一图像区域内的像素构成第一个第一子投影图像、以第二图像区域内的像素构成第二个第一子投影图像、以第三图像区域内的像素构成第三个第一子投影图像、再以第四图像区域内的像素构成第四个第一子投影图像。这样,每个第一子投影图像的分辨率均与光阀331的分辨率相等,均为4K。
再然后,主控制电路1可以直接将划分出的T个第一子投影图像分别传输给多个显示驱动电路2,由该多个显示驱动电路2对该T个第一子投影图像进行分帧处理,以得到与该T个第一子投影图像对应的T组第二子图像(一组第二子图像为构成一个第一子投影图像的多帧第二子图像,且每帧该第二子图像的分辨率小于或等于待接收该第二子图像的显示驱动电路2所对应的光阀区域的分辨率),从而使每个接收到第一子投影图像的显示驱动电路2根据该第一子投影图像的多帧第二子图像控制光投影组件3进行投影。此时,一个第一子投影图像的图像信号是指该第一子投影图像整个图像的信号。
或者,主控制电路1可以在划分出T个第一子投影图像后,先对这T个第一子投影图像进行分帧处理,以得到前述的T组第二子图像,然后再将该T组第二子图像分别传输给多个显示驱动电路2。这样,一个显示驱动电路2可以直接根据接收到的一组第二子图像控制光投影组件3进行投影。此时,一个第一子投影图像的图像信号是指该第一子投影图像的多帧第二子图像的信号。
需要说明的是,上述实施例仅是以第一子投影图像的个数与显示驱动电路2的个数相等为例,进行的示例性说明,本公开实施例不限制第一子投影图像的个数与显示驱动电路2的个数之间的大小关系。例如,当第一子投影图像的个数为四,显示驱动电路2的个数为二时,主控制电路1可以分别向一个显示驱动电路2传输两个第一子投影图像的图像信号。或者,当第一子投影图像的个数为二,显示驱动电路2的个数为四时,主控制电路1可以从该四个显示驱动电路2中随机选取出两个显示驱动电路2,然后分别向该两个显示驱动电路2传输一个第一子投影图像的图像信号。
另外,上述对第一子投影图像进行分帧处理的方法可以参照前述实施例,在此不再赘述。
光投影组件3
与上述实施例不同的是,该光投影组件3中的光阀331被划分为了与多个显示驱动电路2一一对应的多个光阀区域。其中,每个光阀区域与对应的显示驱动电路2耦接,且被配置为投影其对应的显示驱动电路获取的第一子投影图像。也就是说,在该实施例中,一个显示驱动电路2不再统一控制一个光阀331中的所有微镜片3311,而是只控制与其对应的一个光阀区域中的微镜片3311。
以第一图像的分辨率为8K、光阀331的分辨率为4K且显示驱动电路2的个数为四为例,光投影组件3中的光阀331包括四个光阀区域。示例性地,光阀331中四个光阀区域的划分方式可以参照图15。如图15所示,以光阀331的中心点为原点,建立一个直角坐标系,该直角坐标系中的一个象限中的微镜片3311构成一个光阀区域。此时,如图16所 示,投影设备的四个显示驱动电路2分别与光阀331的四个光阀区域一一对应耦接,且每个显示驱动电路2均根据其接收到的一个分辨率为4K的第一子投影图像的图像信号,控制对应的光阀区域投影该第一子投影图像。
多个显示驱动电路2
该多个显示驱动电路2中的每个显示驱动电路2获取一个第一子投影图像的图像信号后,可以根据该第一子投影图像的图像信号控制光投影组件3投影该第一子投影图像。
在一些实施例中,当一个第一子投影图像的图像信号是指该第一子投影图像的多帧第二子图像的信号时,一个显示驱动电路2可以直接根据接收到的该多帧第二子图像的信号和该多帧第二子图像的显示顺序,控制与其对应的光阀区域依次投影该多帧第二子图像,以完成投影该第一子投影图像。
参照图17,以待投影图像的分辨率为8K、光阀331的分辨率为4K为例,每个显示驱动电路2分别接收一个第一子投影图像的四帧第二子图像的信号。其中,一个第一子投影图像的分辨率为4K,一帧第二子图像的分辨率为2K(即,一帧第二子图像包括1920×1080个像素)。然后,每个显示驱动电路2可以直接根据接收到的一个第一子投影图像的四帧第二子图像的信号和该四帧第二子图像的显示顺序,控制与该显示驱动电路2对应的光阀区域依次投影该四帧第二子图像,以使该光阀区域实现投影该第一子投影图像。
在另一些示例中,当一个第一子投影图像的图像信号是指该第一子投影图像整个图像的信号时,一个显示驱动电路2可以先对该第一子投影图像进行分帧处理,以将该第一子投影图像分解为多帧第二子图像。然后,该一个显示驱动电路2可以根据该多帧第二子图像的显示顺序,控制与其对应的光阀区域依次投影该多帧第二子图像,以完成投影该第一子投影图像。
参照图18,以待投影图像的分辨率为8K、光阀331的分辨率为4K为例,每个显示驱动电路2分别接收一个分辨率为4K的第一子投影图像。然后,每个显示驱动电路2可以根据接收到的第一子投影图像的信号,将该第一子投影图像分解为四帧分辨率为2K的第二子图像。再然后,每个显示驱动电路2可以根据分解得到的四帧第二子图像的信号和该四帧第二子图像的显示顺序,控制与该显示驱动电路2对应的光阀区域(分辨率为2K)依次投影该四帧第二子图像,以使该光阀区域实现投影该第一子投影图像。
本公开实施例还提供又一种投影设备。该投影设备的架构可以参照图1。
与上述实施例不同的是,该投影设备中的主控制电路1在对待投影图像信号进行信号转换得到第一图像信号后,不对该第一图像信号对应的第一图像进行分帧处理,而是直接将该第一图像信号传输至显示驱动电路2。显示驱动电路2接收到第一图像信号后,可以将该第一图像信号对应的第一图像分解为多帧第一子图像。然后,显示驱动电路2可以基于该多帧第一子图像的显示顺序,控制光投影组件3依次投影该多帧第一子图像,以完成投影该第一图像。
本公开实施例提供的投影设备,主控制电路1在对待投影图像信号进行信号转换得到第一图像信号后,直接将该第一图像信号传输至显示驱动电路2。从而,显示驱动电路2接收到第一图像信号后,可以直接根据该第一图像信号,将与该第一图像信号对应的第一图像分解为多帧第一子图像。然后,显示驱动电路2可以基于该多帧第一子图像的显示顺序,控制光投影组件3依次投影该多帧第一子图像,以完成在分辨率低的投影设备上显示分辨率高的第一图像,保证了该第一图像的稳定显示。
上述投影设备所包括的部件可以参照前述实施例,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。
Claims (19)
- 一种投影设备,包括:主控制电路,被配置为:对待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像分解为多帧第一子图像,所述第一图像的分辨率大于光阀的分辨率,且每帧所述第一子图像的分辨率小于或等于所述光阀的分辨率;基于所述多帧第一子图像的显示顺序,依次向显示驱动电路传输所述多帧第一子图像的图像信号,其中,每一次向所述显示驱动电路传输至少两帧第一子图像的图像信号,且所述至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号;所述显示驱动电路,与所述主控制电路耦接,且被配置为:接收所述至少两帧第一子图像的图像信号,基于所述至少两帧第一子图像中的所述一帧第一子图像的三基色信号,控制光投影组件投影所述一帧第一子图像,并基于所述至少两帧第一子图像中的其他帧第一子图像中的所述其他基色信号、以及所述一帧第一子图像中的所述目标基色信号,控制所述光投影组件投影所述其他帧第一子图像;所述光投影组件,与所述显示驱动电路耦接,且被配置为:在所述显示驱动电路的控制下,投影所述一帧第一子图像和所述其他帧第一子图像,以形成所述第一图像。
- 根据权利要求1所述的投影设备,其中,所述目标基色为蓝色基色。
- 根据权利要求1所述的投影设备,其中,所述主控制电路还被配置为:确定三基色中的每个基色在所述第一图像中的占比;根据所述三基色中每个基色在所述第一图像中的占比,确定所述目标基色。
- 根据权利要求3所述的投影设备,其中,所述主控制电路还被配置为:根据所述第一图像的像素个数以及每个像素中的三基色值,确定三基色中的每个基色在所述第一图像中的占比。
- 根据权利要求3所述的投影设备,其中,所述主控制电路还被配置为:在存在占比小于第一阈值的基色的情况下,则将所述三基色中占比最小的基色确定为所述目标基色;在不存在占比小于第一阈值的基色的情况下,则确定蓝色为所述目标基色。
- 根据权利要求3所述的投影设备,其中,所述主控制电路还被配置为:将所述三基色中占比最小的基色确定为所述目标基色。
- 根据权利要求3所述的投影设备,其中,所述主控制电路还被配置为:在存在占比小于第一阈值的基色的情况下,将所述三基色中占比最小的基色确定为所述目标基色;在不存在占比小于第一阈值的基色的情况下,根据所述第一图像中目标像素的三基色的基色值确定所述目标基色;所述目标像素为基色值大于基色阈值的像素。
- 根据权利要求7所述的投影设备,其中,所述主控制电路还被配置为:在不存在占比小于第一阈值的基色的情况下,获取所述第一图像中目标像素的每个基色的基色值总和与所述第一图像中所有像素的所述基色的基色值总和的比值;将所述比值小于或等于第二阈值的基色确定为所述目标基色。
- 一种投影设备,包括:主控制电路,被配置为:对所述待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像划分为多个第一子投影图像,所述第一图像的分辨率大于光阀的分辨率,且每个所述第一子投影图像的分辨率小于或等于所述光阀的分辨率;多个显示驱动电路,均与所述主控制电路耦接,且均与光投影组件耦接;每个显示驱动电路被配置为:获取一个第一子投影图像的图像信号;根据所述第一子投影图像的图像信号控制所述光投影组件投影所述第一子投影图像;所述光投影组件,被配置为:在所述多个显示驱动电路的控制下,投影所述多个第一子投影图像,以形成所述第一图像。
- 根据权利要求9所述的投影设备,还包括:所述光投影组件,包括所述光阀,所述光阀包括与所述多个显示驱动电路一一对应的多个光阀区域;每个所述光阀区域与对应的显示驱动电路耦接,且被配置为投影所述对应的显示驱动电路获取的所述第一子投影图像。
- 根据权利要求10所述的投影设备,其中,所述主控制电路还被配置为:将每一个第一子投影图像分解为多帧第二子图像;每帧所述第二子图像的分辨率小于或等于待接收所述第二子图像的所述显示驱动电路所对应的光阀区域的分辨率;所述每个显示驱动电路还被配置为:根据所述多帧第二子图像的显示顺序,控制对应的所述光阀区域依次投影所述多帧第二子图像。
- 一种投影图像数据传输方法,包括:对待投影图像进行信号转换得到第一图像信号,所述第一图像信号为三色差分信号;将所述第一图像信号对应的第一图像分解为多帧第一子图像,所述第一图像的分辨率大于光阀的分辨率,且每个所述第一子图像的分辨率小于或等于所述光阀的分辨率;基于所述多帧第一子图像的显示顺序,依次向显示驱动电路传输所述多帧第一子图像的图像信号,其中,每一次向所述显示驱动电路传输至少两帧第一子图像的图像信号,且所述至少两帧第一子图像的图像信号包括一帧第一子图像的三基色信号,以及其他帧第一子图像中除目标基色信号之外的其他基色信号。
- 根据权利要求12所述的方法,其中,所述目标基色为蓝色基色。
- 根据权利要求12所述的方法,还包括,确定三基色中的每个基色在所述第一图像中的占比;根据所述三基色中每个基色在所述第一图像中的占比,确定所述目标基色。
- 根据权利要求14所述的方法,其中,确定三基色中的每个基色在所述第一图像中的占比,包括:根据所述第一图像的像素个数以及每个像素中的三基色值,确定三基色中的每个基色在所述第一图像中的占比。
- 根据权利要求14所述的方法,其中,根据所述三基色中每个基色在所述第一图像 中的占比,确定所述目标基色,包括:在存在占比小于第一阈值的基色的情况下,则将所述三基色中占比最小的基色确定为所述目标基色;在不存在占比小于第一阈值的基色的情况下,则确定蓝色为所述目标基色。
- 根据权利要求14所述的方法,其中,根据所述三基色中每个基色在所述第一图像中的占比,确定所述目标基色,包括:将所述三基色中占比最小的基色确定为所述目标基色。
- 根据权利要求14所述的方法,其中,根据所述三基色中每个基色在所述第一图像中的占比,确定所述目标基色,包括:在存在占比小于第一阈值的基色的情况下,将所述三基色中占比最小的基色确定为所述目标基色;在不存在占比小于第一阈值的基色的情况下,根据所述第一图像中目标像素的三基色的基色值确定所述目标基色;所述目标像素为基色值大于基色阈值的像素。
- 根据权利要求18所述的方法,其中,根据所述第一图像中目标像素的三基色的基色值确定所述目标基色,包括:获取所述第一图像中目标像素的每个基色的基色值总和与所述第一图像中所有像素的所述基色的基色值总和的比值;将所述比值小于或等于第二阈值的基色确定为所述目标基色。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110732720.7 | 2021-06-29 | ||
CN202110732720.7A CN115550618A (zh) | 2021-06-29 | 2021-06-29 | 控制传输电路、激光投影方法和装置 |
CN202110739855.6A CN113422944B (zh) | 2021-06-30 | 2021-06-30 | 信号传输方法及投影设备 |
CN202110739855.6 | 2021-06-30 | ||
CN202110915610.4 | 2021-08-10 | ||
CN202110915610.4A CN115706787A (zh) | 2021-08-10 | 2021-08-10 | 激光投影设备及数据传输方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023274331A1 true WO2023274331A1 (zh) | 2023-01-05 |
Family
ID=84691504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/102553 WO2023274331A1 (zh) | 2021-06-29 | 2022-06-29 | 投影设备及投影图像数据传输方法 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023274331A1 (zh) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1841178A (zh) * | 2005-03-29 | 2006-10-04 | 精工爱普生株式会社 | 图像显示装置 |
US20170269465A1 (en) * | 2013-05-23 | 2017-09-21 | Texas Instruments Incorporated | Light modulator image display projector architectures |
CN108074512A (zh) * | 2016-11-18 | 2018-05-25 | 中兴通讯股份有限公司 | 投影方法及装置 |
CN108271009A (zh) * | 2018-01-25 | 2018-07-10 | 深圳市智控王科技有限公司 | 超高亮度和超高分辨率投影的装置及其投影方法 |
CN108965841A (zh) * | 2018-08-31 | 2018-12-07 | 青岛海信激光显示股份有限公司 | 一种投影光学系统及投影显示方法 |
CN110602470A (zh) * | 2019-09-20 | 2019-12-20 | 青岛海信激光显示股份有限公司 | 投影显示系统及其控制方法 |
CN111108546A (zh) * | 2017-09-29 | 2020-05-05 | 索尼公司 | 显示设备 |
CN113422944A (zh) * | 2021-06-30 | 2021-09-21 | 青岛海信激光显示股份有限公司 | 信号传输方法及投影设备 |
CN113542701A (zh) * | 2020-04-20 | 2021-10-22 | 青岛海信激光显示股份有限公司 | 投影显示方法及投影设备 |
-
2022
- 2022-06-29 WO PCT/CN2022/102553 patent/WO2023274331A1/zh active Application Filing
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1841178A (zh) * | 2005-03-29 | 2006-10-04 | 精工爱普生株式会社 | 图像显示装置 |
US20170269465A1 (en) * | 2013-05-23 | 2017-09-21 | Texas Instruments Incorporated | Light modulator image display projector architectures |
CN108074512A (zh) * | 2016-11-18 | 2018-05-25 | 中兴通讯股份有限公司 | 投影方法及装置 |
CN111108546A (zh) * | 2017-09-29 | 2020-05-05 | 索尼公司 | 显示设备 |
CN108271009A (zh) * | 2018-01-25 | 2018-07-10 | 深圳市智控王科技有限公司 | 超高亮度和超高分辨率投影的装置及其投影方法 |
CN108965841A (zh) * | 2018-08-31 | 2018-12-07 | 青岛海信激光显示股份有限公司 | 一种投影光学系统及投影显示方法 |
CN110602470A (zh) * | 2019-09-20 | 2019-12-20 | 青岛海信激光显示股份有限公司 | 投影显示系统及其控制方法 |
CN113542701A (zh) * | 2020-04-20 | 2021-10-22 | 青岛海信激光显示股份有限公司 | 投影显示方法及投影设备 |
CN113422944A (zh) * | 2021-06-30 | 2021-09-21 | 青岛海信激光显示股份有限公司 | 信号传输方法及投影设备 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109844850A (zh) | 早期子像素渲染 | |
US20170214885A1 (en) | Image processing method, system for laser tv and the laser tv set thereof | |
US10281805B2 (en) | Image display device and image display method | |
TW201229990A (en) | Display device | |
JP6566496B2 (ja) | 画像表示装置及び画像表示方法 | |
US10580349B2 (en) | Backplane for eye-mounted display | |
US12087245B2 (en) | Display apparatus and driving method therefor | |
CN101984487A (zh) | 主动式矩阵有机发光二极管显示面板的驱动方法 | |
JP2003172900A (ja) | 画像投影表示装置、画像投影表示システム並びに画像投影表示方法 | |
KR20160087879A (ko) | 데이터 송신 방법, 프로세서 및 단말 | |
WO2021102765A1 (zh) | 一种光学投影成像系统及方法 | |
US8421815B2 (en) | Imaging bit plane sequencing using pixel value repetition | |
WO2023274331A1 (zh) | 投影设备及投影图像数据传输方法 | |
CN112394564A (zh) | 全息显示设备 | |
CN205983393U (zh) | 一种近眼显示系统、虚拟现实设备和增强现实设备 | |
EP3249464A1 (en) | Display device | |
CN114690399B (zh) | 一种光源参数初始化方法及光纤扫描成像系统 | |
JP2009229553A (ja) | 表示装置、駆動方法および電子機器 | |
JP5884385B2 (ja) | 画像処理装置、表示装置及び画像処理方法 | |
WO2023050940A1 (zh) | 激光投影设备、投影显示系统及投影显示方法 | |
US20020145573A1 (en) | Compact portable virtual image display | |
CN111240144B (zh) | 实现投影成像中数字微反射镜片驱动控制的方法 | |
CN211089822U (zh) | 一种色彩转换装置 | |
US20250157438A1 (en) | Display device and imaging control method of display device | |
CN113888565B (zh) | 视频信号处理系统、方法、投影系统以及投影方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22832143 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22832143 Country of ref document: EP Kind code of ref document: A1 |