WO2018066044A1 - 電力制御装置およびその制御方法 - Google Patents
電力制御装置およびその制御方法 Download PDFInfo
- Publication number
- WO2018066044A1 WO2018066044A1 PCT/JP2016/079371 JP2016079371W WO2018066044A1 WO 2018066044 A1 WO2018066044 A1 WO 2018066044A1 JP 2016079371 W JP2016079371 W JP 2016079371W WO 2018066044 A1 WO2018066044 A1 WO 2018066044A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- output
- solar cell
- storage battery
- conditioner
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 41
- 238000010248 power generation Methods 0.000 claims abstract description 28
- 230000001629 suppression Effects 0.000 claims description 24
- 230000003111 delayed effect Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 3
- 229910001416 lithium ion Inorganic materials 0.000 description 3
- 101000835998 Homo sapiens SRA stem-loop-interacting RNA-binding protein, mitochondrial Proteins 0.000 description 2
- 102100025491 SRA stem-loop-interacting RNA-binding protein, mitochondrial Human genes 0.000 description 2
- 238000007599 discharging Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Definitions
- the present invention relates to a power control apparatus and a control method thereof.
- a solar power generation system that generates electricity from sunlight is known.
- the photovoltaic power generation system has a solar cell, converts a direct current (DC) output from the solar cell into an alternating voltage (AC) of the system, and integrates a plurality of solar cells to connect to the grid. It further has a conditioner (PCS).
- DC direct current
- AC alternating voltage
- PCS conditioner
- the power conditioner is provided with a function of controlling the maximum power point tracking (MPPT: Maximum Power Point Tracking) of the power generated by the solar cell (Patent Document 1).
- MPPT Maximum Power Point Tracking
- Patent Document 2 In order not to reduce the power generation amount of solar power generation due to output suppression, an apparatus is disclosed in which a storage battery is provided after the PCS (Patent Document 2).
- Patent Document 3 a lithium ion battery is provided between a solar cell module and a DC / AC converter, but the DC / AC converter is not controlled by the maximum power amount by MPPT control (paragraph).
- the photovoltaic power generation is charged to the lithium ion battery.
- JP 2010-066916 A Japanese Patent Laying-Open No. 2015-073433 JP 2007-201257 A
- Patent Document 1 is a technical explanation regarding MPPT of PCS, and there is no description or suggestion regarding battery control.
- Patent Document 2 is a technology in which a hot water storage type water heater and a storage battery are provided after the PCS.
- Patent document 3 is a structure which provides a storage battery in the front
- a power generation device that maintains the maximum power of solar power generation by arranging a battery in front of the PCS is not disclosed at all.
- the solar power generator is Solar cells, MPPT (Maximum Power Point Tracking) control for the solar cell, and having a power conditioner that converts DC power generated by the solar cell into AC.
- the power control device A storage battery connected between the solar cell and the power conditioner; A converter that is disposed between the storage battery and the solar battery, and that charges output power of the solar battery to the storage battery; When it is determined that the output of the solar cell is larger than the power that can be output from the power conditioner, the converter charges the storage battery with the differential power between the output power of the solar cell and the output power of the power conditioner.
- a control unit for controlling the converter A power control apparatus comprising:
- the control unit controls the uncollected power to be stored in the storage battery based on the output power that the solar battery can originally provide.
- Item 2 Item 1. The control unit, when receiving an output suppression signal that suppresses the output of the power conditioner, sets the suppression output indicated by the output suppression signal to power that can be output by the power conditioner. Equipment.
- [Item 3] Comprising a power meter for measuring the power of the inverter;
- the control unit determines that when the power measured by the power meter reaches the power that can be output from the power conditioner, the output of the solar cell is larger than the power that can be output from the power conditioner.
- the apparatus according to 1 or 2.
- [Item 4] 4. The control unit according to any one of Items 1 to 3, wherein the control unit controls charging of the storage battery using the converter so as not to deviate from MPP (Maximum Power Point) in the MPPT control. Equipment.
- MPP Maximum Power Point
- the control unit holds current-voltage characteristic data of the solar cell according to an incident amount obtained from the illuminance meter, With reference to the current-voltage characteristic data, calculate the power of the solar cell corresponding to the incident data obtained from the illuminometer, When the calculated power is greater than the power that can be output from the power conditioner, subtract the power that can be output from the power conditioner from the calculated power, to calculate the charging power,
- the apparatus according to any one of items 1 to 6, wherein the converter is controlled to charge the storage battery with the charging power.
- the controller is Calculate the MPP (Maximum Power Point) of the solar cell corresponding to the incident data obtained from the illuminometer, Calculate the charging power obtained by subtracting the power that can be output from the power conditioner from the power in the MPP of the solar cell, Item 1-7, wherein the converter is controlled so that the bus connecting the solar cell and the power conditioner maintains the voltage at the MPP so that the calculated charging power is charged to the storage battery.
- the apparatus of any one.
- the controller is Referring to the current-voltage characteristic data, calculate the MPP of the solar cell corresponding to the incident data obtained from the illuminometer, When it is determined that the power measured by the power meter is lower than the calculated power, the bus that controls the converter and connects the solar cell and the power conditioner is in the MPP calculated by the solar cell. 10. The apparatus according to any one of items 1 to 9, wherein electric power is discharged from the storage battery so as to maintain a voltage.
- the solar power generator is Solar cells, MPPT (Maximum Power Point Tracking) control for the solar cell, and having a power conditioner that converts DC power generated by the solar cell into AC.
- the power control device is disposed between the solar battery, a storage battery connected between the power conditioner, the storage battery, and the solar battery, and outputs the output power of the solar battery to the storage battery.
- a converter for charging and a control unit The controller is When it is determined that the output of the solar cell is larger than the power that can be output from the power conditioner, the converter charges the storage battery with the differential power between the output power of the solar cell and the output power of the power conditioner.
- [Item 12] Item 11.
- the control unit when receiving an output suppression signal that suppresses the output of the power conditioner, sets the suppression output indicated by the output suppression signal to electric power that can be output by the power conditioner. the method of.
- [Item 13] Comprising a power meter for measuring the power of the inverter;
- the control unit determines that when the power measured by the power meter reaches the power that can be output from the power conditioner, the output of the solar cell is larger than the power that can be output from the power conditioner.
- [Item 14] 14 14.
- the control unit according to any one of items 11 to 13, wherein the controller controls charging of the storage battery using the converter so as not to deviate from MPP (Maximum Power Point) in the MPPT control. the method of.
- the control unit holds current-voltage characteristic data of the solar cell according to an incident amount obtained from the illuminance meter, With reference to the current-voltage characteristic data, calculate the power of the solar cell corresponding to the incident data obtained from the illuminometer, When the calculated power is greater than the power that can be output from the power conditioner, subtract the power that can be output from the power conditioner from the calculated power, to calculate the charging power, The method according to any one of items 11 to 16, wherein the converter is controlled to charge the storage battery with the charging power.
- the controller is Calculate the MPP (Maximum Power Point) of the solar cell corresponding to the incident data obtained from the illuminometer, Calculate the charging power obtained by subtracting the power that can be output from the power conditioner from the power in the MPP of the solar cell, Items 11 to 17, wherein the converter is controlled so that the bus connecting the solar cell and the power conditioner maintains the voltage at the MPP and charges the calculated charging power to the storage battery.
- the method according to any one of the above.
- the control unit according to any one of Items 11 to 18, wherein the control unit controls the converter to discharge from the storage battery when the control unit determines that the power that can be output from the power conditioner is smaller than the power. The method described.
- the controller is Referring to the current-voltage characteristic data, calculate the MPP of the solar cell corresponding to the incident data obtained from the illuminometer, When it is determined that the power measured by the power meter is lower than the calculated power, the bus that controls the converter and connects the solar cell and the power conditioner is in the MPP calculated by the solar cell. 20. The method according to any one of items 11 to 19, wherein electric power is discharged from the storage battery so as to maintain a voltage.
- the power control apparatus can increase the amount of power generated by solar power generation by collecting the power that can be generated by the solar battery with the battery.
- FIG. 1 is a diagram illustrating an example of a power control device.
- the power control device 100 is connected to the solar power generation device 10 and controls the power generated by the solar power generation device 10.
- the solar power generation device 10 includes a solar battery (PV: photovoltaic) 200 including a plurality of solar cells and a power conditioner (PCS) 300.
- the solar cell 200 may be a solar cell array including a large number of solar cells.
- the PCS 300 performs MPPT (Maximum Power Point Tracking) control on the solar cell 200, and converts DC power generated by the solar cell into AC.
- the rated output of the solar cell is larger than the rated output of the power conditioner.
- the power control apparatus 100 includes a storage battery 20, a control unit 30, and a DC / DC (DC / DC converter) 50.
- the storage battery 20 is connected between the solar battery 200 and the PCS 300 via the DC / DC 50.
- the DC / DC 50 is disposed on a DC bus between the storage battery 20 and the solar battery 200, and charges the storage battery 200 with the output power of the solar battery 200 and also discharges from the storage battery 20.
- the DC / DC 50 is provided to match the voltage condition of the bus bar with the voltage and current conditions (battery output) of the storage battery 200.
- the power control apparatus 100 further includes current voltmeters 94 and 96 that measure the amount of charge / discharge to the storage battery 20.
- the ampere meter 96 is used to operate the DC / DC 50 so as to maintain the voltage of the solar cell 200 at a predetermined voltage of MPPT.
- the ampere meter 94 is used to control the DC / DC 50 so that the charge / discharge voltage of the storage battery 20 becomes a predetermined value.
- the power control apparatus 100 further includes a panel illuminance meter 91 and a panel thermometer 92. With this instrument, the illuminance directed to the solar cell and its temperature are known.
- the DC / DC 50 charges the storage battery 20 with the differential power between the output power of the solar cell 200 and the output power of the PCS 300.
- the DC / DC 50 is controlled.
- the control unit 30 performs control so that unrecovered power is stored in the storage battery 20 based on output power that the solar battery 200 can originally provide.
- PCS300 will set electric power to output suppression electric power, if the output suppression signal which suppresses the output of photovoltaic power generation is received from a system provider.
- Solar cells have the property that the current that can be taken out is determined by the voltage of the connected load. Since power is voltage ⁇ current, the point where V ⁇ I is maximum is the maximum output point.
- the PCS 300 starts from a desired operating point, and when the output current of the solar panel 200 is gradually increased by current control, if the power passing through the PCS 300 is increased, the current is further increased, and conversely, the current is increased if the power is decreased.
- the maximum power point is reached by the method of reducing.
- the control unit 30 further uses the illuminance meter 91 to hold current-voltage characteristic data corresponding to the incident amount of the solar cell 200. And the control part 30 calculates the voltage, electric current, and electric power corresponding to the incident data obtained from an illuminometer with reference to current-voltage characteristic data. In this way, when the calculated power becomes larger than the power that can be output by the PCS 300, the charging power is calculated by subtracting the power that can be output by the PCS 300 from the calculated power. The control unit 30 controls the DC / DC 50 to charge the storage battery 20 with charging power.
- the control unit calculates the MPP (maximum power point) of the solar cell 200 corresponding to the incident data obtained from the illuminometer with reference to the current-voltage characteristic data, and the MPP of the solar cell 200.
- the charging power is calculated by subtracting the power that can be output from the PCS 300 from the power at.
- DC / DC50 is controlled and the charging power calculated in the voltage in MPP is charged to the storage battery 20.
- the solar power generation device 10 is controlled so as to maintain a power supply / demand balance in the system in order to at least partially suppress the amount of power generation and protect the power infrastructure when output suppression is received from the system operator or the like.
- the control unit 30 monitors the output of the PCS 300 using the wattmeter 97.
- the voltage / current flowing through the power bus from the photovoltaic power generation to the power conditioner is determined by the output suppression setting. Therefore, when the photovoltaic power generation apparatus 10 is generating power exceeding the suppression output, the potential output of photovoltaic power generation cannot be detected even if the voltage / current of the bus is detected. Therefore, a certain amount of power is charged from the DC / DC 50 to the storage battery 20, the sum of the value of the power meter 97 and the charging power is calculated, and control is performed so that the MPPT function of the PCS 300 operates normally and the maximum power is output. Control is performed by the unit 30. There is also a method of calculating the latent output of the photovoltaic power generator from the illuminometer using an illuminometer.
- FIG. 2 is a flowchart showing a charging process for the storage battery when overloading.
- Overloading indicates a state in which the output of the solar cell 200 is higher than that of the PCS 300. Note that overloading includes a case where the output of the solar cell is larger than the power suppressed from the PCS rating due to the output suppression.
- the control unit 30 calculates the sum of the output power of the PCS 300 and the charging power to the storage battery 20, and adjusts the charging power so that the output power of the solar battery 200 reaches a peak while the wattmeter 97 maintains the maximum power. To do.
- control unit 30 determines whether or not there is an output suppression signal (S101). When there is output suppression (S101 Yes), the PCS output possible power is set as the suppression power.
- the control unit 30 refers to the wattmeter 97 to determine whether the output power of the PCS 300 has been reached (S102).
- the power that can be output is the rated output of the PCS 300 when there is no output suppression, and the suppressed output when there is output suppression. If the output possible power has not been reached (NO in S102), the process proceeds to S121, charging control is not performed, and the process returns to S101. If the output power has been reached (S102: YES), the process proceeds to step S111.
- the determination of the power that can be output is based on the MPP (maximum power) of the solar cell 200 corresponding to the temperature and illuminance obtained from the illuminance meter 91 and the thermometer 92 with reference to the current-voltage characteristic data.
- Point: Maximum Power Point may be calculated, and determination may be made based on whether the calculated MPP exceeds the power that can be output.
- charge power (kw) is calculated. If the charging power is made larger than the power change performed by the MPPT control of the PCS 300, the PCS 300 cannot maintain the MPP. Therefore, referring to the wattmeter 97, while monitoring whether or not the outputable power to be the MPP is maintained, the charging power is set to an appropriate amount that does not shift the MPP.
- FIG. 3A is a diagram illustrating PV generated power. An MPP exceeding the maximum value of PCS is calculated. The control unit 30 maintains the PCS inlet voltage and the bus side voltage of the DCDC 50 at the voltage (V peak) at the MPP.
- FIG. 3B is a diagram illustrating the output power of the PCS. The PCS side controls to discharge with MPPT at V peak.
- 5% of the output of the PCS 300 is a rate for charging the storage battery in about 10 seconds.
- the rate is about 15 kw, which is 30%.
- the control unit 30 charges the storage battery 20 with the charging power calculated in S111 unless the SOC (state of charge: State of Charge) of the battery reaches the upper limit (S112) (S112).
- FIG. 3C is a diagram showing charging power to the storage battery. Charging power is supplied to the storage battery so as to maintain the PV MPP.
- FIG. 4 is a flowchart showing a storage battery discharge process in a case where the solar cell output is lower than PCS output capable power.
- FIG. 5B is a diagram for explaining the discharge of the storage battery
- FIG. 5C is a diagram for explaining the output power of the PCS.
- the discharge voltage and the input voltage of the PCS are the MPP voltage (V peak).
- FIG. 6 is a flowchart showing a storage battery discharge process in a case of no solar cell output.
- the output from the PCS 300 is performed by setting the output power from the storage battery to the same voltage and current as the PV power generation.
- the control unit 30 determines whether or not the solar cell 200 is generating electricity based on the amount of solar radiation obtained from the illuminometer 91 (S301). When it is determined that there is no solar radiation, the output power from the storage battery 20 is calculated with the same voltage and current as the PV power generation (S302) and discharged (S203).
- FIG. 7 is a diagram illustrating an example of the amount of discharge from the storage battery 20. In consideration of the improvement of the operating rate of the storage battery, it is preferable that the storage battery 20 has a low SOC so that it can be charged at any time. Therefore, the discharge power is preferably set to the rated power of PCS300.
- Solar power generation device 10 Power control device 100 PCS300 Solar cell 200 Storage battery 20 Control unit 30 DC / DC50 Panel illuminance meter 91 Panel thermometer 92 Current voltmeter 94, 96 Power meter 97
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Electromagnetism (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Supply And Distribution Of Alternating Current (AREA)
- Control Of Electrical Variables (AREA)
- Inverter Devices (AREA)
Abstract
Description
太陽光発電装置が発電する電力を制御する電力制御装置において、
前記太陽光発電装置は、
太陽電池と、
前記太陽電池に対するMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、前記太陽電池が発電する直流電力を、交流に変換するパワーコンディショナとを有するものであって、
前記電力制御装置は、
前記太陽電池と、前記パワーコンディショナとの間に接続される蓄電池と、
前記蓄電池と、前記太陽電池との間に配置され、前記太陽電池の出力電力を、前記蓄電池に充電するコンバータと、
前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する場合、前記コンバータが、前記太陽電池の出力電力と前記パワーコンディショナの出力電力との差分電力を前記蓄電池へ充電するように、前記コンバータを制御する制御部と、
を備える電力制御装置。
前記制御部が、前記パワーコンディショナの出力を抑制する出力抑制信号を受信した場合、前記出力抑制信号に示される抑制出力を、前記パワーコンディショナの出力可能な電力に設定する、項目1に記載の装置。
前記パワーコンディショナの電力を測定する電力計を備え、
前記制御部は、前記電力計で測定される電力が前記パワーコンディショナの出力可能な電力に達すると、前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する、項目1又は2に記載の装置。
前記制御部は、前記MPPT制御におけるMPP(最大電力点:Maximum Power Point)から外れないように、前記コンバータを用いて前記蓄電池への充電を制御する、項目1~3の何れか1項に記載の装置。
前記制御部は、前記パワーコンディショナのMPPの時定数より長い時定数で、前記コンバータを用いて、前記蓄電池への充電を制御する、項目1~4の何れか1項に記載の装置。
前記パワーコンディショナの出力電力が、前記出力可能電力より下回ると判断する場合、前記充電の速度を遅らせる、項目1~5の何れか1項に記載の装置。
照度計をさらに備え、
前記制御部は、前記照度計から得られる入射量に応じた前記太陽電池の電流電圧特性データを保持し、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池の電力を算出し、
前記算出した電力が、前記パワーコンディショナの出力可能な電力より大きくなる場合、前記算出電力から前記パワーコンディショナの出力可能な電力を減算して、充電電力を算出し、
前記コンバータを制御して、前記充電電力を、前記蓄電池に充電する、項目1~6の何れか1項に記載の装置。
前記制御部は、
前記照度計から得られる入射データに対応する前記太陽電池のMPP(最大電力点:Maximum Power Point)を算出し、
前記太陽電池のMPPにおける電力から、前記パワーコンディショナの出力可能な電力を減算して得られる充電電力を算出し、
前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記MPPにおける電圧を維持するようにして、前記算出した充電電力を前記蓄電池に充電する、項目1~7の何れか1項に記載の装置。
前記制御部は、前記パワーコンディショナの出力可能な電力より小さくなると判断する場合、前記制御部は、前記蓄電池から放電するように、前記コンバータを制御する、項目1~8の何れか1項に記載の装置。
前記制御部は、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池のMPPを算出し、
前記電力計で測定される電力が、前記算出した電力より低いと判断すると、前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記太陽電池の算出したMPPにおける電圧を維持するようにして、前記蓄電池から電力を放電する、項目1~9の何れか1項に記載の装置。
太陽光発電装置が発電する電力を制御する電力制御装置の制御方法において、
前記太陽光発電装置は、
太陽電池と、
前記太陽電池に対するMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、前記太陽電池が発電する直流電力を、交流に変換するパワーコンディショナとを有するものであって、
前記電力制御装置は、前記太陽電池と、前記パワーコンディショナとの間に接続される蓄電池と、前記蓄電池と、前記太陽電池との間に配置され、前記太陽電池の出力電力を、前記蓄電池に充電するコンバータと、制御部を備え、
前記制御部は、
前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する場合、前記コンバータが、前記太陽電池の出力電力と前記パワーコンディショナの出力電力との差分電力を前記蓄電池へ充電するように、前記コンバータを制御する、制御方法。
[項目12]
前記制御部が、前記パワーコンディショナの出力を抑制する出力抑制信号を受信した場合、前記出力抑制信号に示される抑制出力を、前記パワーコンディショナの出力可能な電力に設定する、項目11に記載の方法。
[項目13]
前記パワーコンディショナの電力を測定する電力計を備え、
前記制御部は、前記電力計で測定される電力が前記パワーコンディショナの出力可能な電力に達すると、前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する、項目11又は12に記載の方法。
[項目14]
前記制御部は、前記MPPT制御におけるMPP(最大電力点:Maximum Power Point)から外れないように、前記コンバータを用いて前記蓄電池への充電を制御する、項目11~13の何れか1項に記載の方法。
[項目15]
前記制御部は、前記パワーコンディショナのMPPの時定数より長い時定数で、前記コンバータを用いて、前記蓄電池への充電を制御する、項目11~14の何れか1項に記載の方法。
[項目16]
前記パワーコンディショナの出力電力が、前記出力可能電力より下回ると判断する場合、前記充電の速度を遅らせる、項目11~15の何れか1項に記載の方法。
[項目17]
照度計をさらに備え、
前記制御部は、前記照度計から得られる入射量に応じた前記太陽電池の電流電圧特性データを保持し、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池の電力を算出し、
前記算出した電力が、前記パワーコンディショナの出力可能な電力より大きくなる場合、前記算出電力から前記パワーコンディショナの出力可能な電力を減算して、充電電力を算出し、
前記コンバータを制御して、前記充電電力を、前記蓄電池に充電する、項目11~16の何れか1項に記載の方法。
[項目18]
前記制御部は、
前記照度計から得られる入射データに対応する前記太陽電池のMPP(最大電力点:Maximum Power Point)を算出し、
前記太陽電池のMPPにおける電力から、前記パワーコンディショナの出力可能な電力を減算して得られる充電電力を算出し、
前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記MPPにおける電圧を維持するようにして、前記算出した充電電力を前記蓄電池に充電する、項目11~17の何れか1項に記載の方法。
[項目19]
前記制御部は、前記パワーコンディショナの出力可能な電力より小さくなると判断する場合、前記制御部は、前記蓄電池から放電するように、前記コンバータを制御する、項目11~18の何れか1項に記載の方法。
[項目20]
前記制御部は、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池のMPPを算出し、
前記電力計で測定される電力が、前記算出した電力より低いと判断すると、前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記太陽電池の算出したMPPにおける電圧を維持するようにして、前記蓄電池から電力を放電する、項目11~19の何れか1項に記載の方法。
図1は、電力制御装置の一例を示す図である。
電力制御装置100は、太陽光発電装置10に接続し、太陽光発電装置10が発電する電力を制御する。太陽光発電装置10は、複数の太陽電池から構成される太陽電池(PV:photovoltaic)200と、パワーコンディショナ(PCS)300から構成される。なお、太陽電池200は、多数の太陽電池からなる太陽電池アレイであってもよい。PCS300は、太陽電池200に対するMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、太陽電池が発電する直流電力を、交流に変換する。太陽電池の定格出力は、前記パワーコンディショナの定格出力より大きい。
2.1 過剰積載時の蓄電池への充電処理
図2は、過剰積載時の蓄電池への充電処理を示すフローチャートである。過剰積載とは、太陽電池200の出力が、PCS300より出力が大きい状態を示す。なお、過剰積載には、出力抑制によって、PCS定格より抑制された電力より、太陽電池出力が大きくなった場合も含む。制御部30は、PCS300の出力電力と、蓄電池20への充電電力の総和を計算し、電力計97が最大電力を維持しつつ、太陽電池200の出力電力がピークになるように充電電力を調整する。
(充電電力)=(PVの計算MPP)-(PCSの出力可能電力)
図4は、太陽電池出力がPCS出力可能電力より低いケースにおける蓄電池放電処理を示すフローチャートである。
放電する場合、PCS300が出力可能電力に至っていない場合(S102 No)、蓄電池からの放電を行う。蓄電池の稼働率の向上を考えると、蓄電池は可能な限り、SOCを低めの状態にして、いつでも充電可能な状態にすることが好ましい。そのため、S201では、可能な限り放電量を最大にするため、PCSの出力可能電力から、計算された太陽電池200のMPPの電力を減算して得られる電力を、蓄電池から放電する。この時、放電電力は、以下の式で示される。
(放電電力)=(PCSの出力可能電力)-(PVの計算MPP)
図6は、太陽電池出力がないケースにおける蓄電池放電処理を示すフローチャートである。
曇り・雨・夜間など、PV発電がない場合、蓄電池からの出力電力を、PV発電と同じような電圧および電流に設定することでPCS300からの出力を行う。
電力制御装置100
PCS300
太陽電池200
蓄電池20
制御部30
DC/DC50
パネル照度計91
パネル温度計92
電流電圧計94、96
電力計97
Claims (20)
- 太陽光発電装置が発電する電力を制御する電力制御装置において、
前記太陽光発電装置は、
太陽電池と、
前記太陽電池に対するMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、前記太陽電池が発電する直流電力を、交流に変換するパワーコンディショナとを有するものであって、
前記電力制御装置は、
前記太陽電池と、前記パワーコンディショナとの間に接続される蓄電池と、
前記蓄電池と、前記太陽電池との間に配置され、前記太陽電池の出力電力を、前記蓄電池に充電するコンバータと、
前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する場合、前記コンバータが、前記太陽電池の出力電力と前記パワーコンディショナの出力電力との差分電力を前記蓄電池へ充電するように、前記コンバータを制御する制御部と、を備える電力制御装置。 - 前記制御部が、前記パワーコンディショナの出力を抑制する出力抑制信号を受信した場合、前記出力抑制信号に示される抑制出力を、前記パワーコンディショナの出力可能な電力に設定する、請求項1に記載の装置。
- 前記パワーコンディショナの電力を測定する電力計を備え、
前記制御部は、前記電力計で測定される電力が前記パワーコンディショナの出力可能な電力に達すると、前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する、請求項1又は2に記載の装置。 - 前記制御部は、前記MPPT制御におけるMPP(最大電力点:Maximum Power Point)から外れないように、前記コンバータを用いて前記蓄電池への充電を制御する、請求項1~3の何れか1項に記載の装置。
- 前記制御部は、前記パワーコンディショナのMPPの時定数より長い時定数で、前記コンバータを用いて、前記蓄電池への充電を制御する、請求項1~4の何れか1項に記載の装置。
- 前記パワーコンディショナの出力電力が、前記出力可能電力より下回ると判断する場合、前記充電の速度を遅らせる、請求項1~5の何れか1項に記載の装置。
- 照度計をさらに備え、
前記制御部は、前記照度計から得られる入射量に応じた前記太陽電池の電流電圧特性データを保持し、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池の電力を算出し、
前記算出した電力が、前記パワーコンディショナの出力可能な電力より大きくなる場合、前記算出電力から前記パワーコンディショナの出力可能な電力を減算して、充電電力を算出し、
前記コンバータを制御して、前記充電電力を、前記蓄電池に充電する、請求項1~6の何れか1項に記載の電力制御装置。 - 前記制御部は、
前記照度計から得られる入射データに対応する前記太陽電池のMPP(最大電力点:Maximum Power Point)を算出し、
前記太陽電池のMPPにおける電力から、前記パワーコンディショナの出力可能な電力を減算して得られる充電電力を算出し、
前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記MPPにおける電圧を維持するようにして、前記算出した充電電力を前記蓄電池に充電する、請求項1~7の何れか1項に記載の電力制御装置。 - 前記制御部は、前記パワーコンディショナの出力可能な電力より小さくなると判断する場合、前記制御部は、前記蓄電池から放電するように、前記コンバータを制御する、請求項1~8の何れか1項に記載の電力制御装置。
- 前記制御部は、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池のMPPを算出し、
前記電力計で測定される電力が、前記算出した電力より低いと判断すると、前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記太陽電池の算出したMPPにおける電圧を維持するようにして、前記蓄電池から電力を放電する、請求項1~9の何れか1項に記載の電力制御装置。 - 太陽光発電装置が発電する電力を制御する電力制御装置の制御方法において、
前記太陽光発電装置は、
太陽電池と、
前記太陽電池に対するMPPT(最大電力点追従:Maximum Power Point Tracking)制御を行い、前記太陽電池が発電する直流電力を、交流に変換するパワーコンディショナとを有するものであって、
前記電力制御装置は、前記太陽電池と、前記パワーコンディショナとの間に接続される蓄電池と、前記蓄電池と、前記太陽電池との間に配置され、前記太陽電池の出力電力を、前記蓄電池に充電するコンバータと、制御部を備え、
前記制御部は、
前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する場合、前記コンバータが、前記太陽電池の出力電力と前記パワーコンディショナの出力電力との差分電力を前記蓄電池へ充電するように、前記コンバータを制御する、制御方法。 - 前記制御部が、前記パワーコンディショナの出力を抑制する出力抑制信号を受信した場合、前記出力抑制信号に示される抑制出力を、前記パワーコンディショナの出力可能な電力に設定する、請求項11に記載の方法。
- 前記パワーコンディショナの電力を測定する電力計を備え、
前記制御部は、前記電力計で測定される電力が前記パワーコンディショナの出力可能な電力に達すると、前記太陽電池の出力が、前記パワーコンディショナの出力可能な電力より大きくなると判断する、請求項11又は12に記載の方法。 - 前記制御部は、前記MPPT制御におけるMPP(最大電力点:Maximum Power Point)から外れないように、前記コンバータを用いて前記蓄電池への充電を制御する、請求項11~13の何れか1項に記載の方法。
- 前記制御部は、前記パワーコンディショナのMPPの時定数より長い時定数で、前記コンバータを用いて、前記蓄電池への充電を制御する、請求項11~14の何れか1項に記載の方法。
- 前記パワーコンディショナの出力電力が、前記出力可能電力より下回ると判断する場合、前記充電の速度を遅らせる、請求項11~15の何れか1項に記載の方法。
- 照度計をさらに備え、
前記制御部は、前記照度計から得られる入射量に応じた前記太陽電池の電流電圧特性データを保持し、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池の電力を算出し、
前記算出した電力が、前記パワーコンディショナの出力可能な電力より大きくなる場合、前記算出電力から前記パワーコンディショナの出力可能な電力を減算して、充電電力を算出し、
前記コンバータを制御して、前記充電電力を、前記蓄電池に充電する、請求項11~16の何れか1項に記載の方法。 - 前記制御部は、
前記照度計から得られる入射データに対応する前記太陽電池のMPP(最大電力点:Maximum Power Point)を算出し、
前記太陽電池のMPPにおける電力から、前記パワーコンディショナの出力可能な電力を減算して得られる充電電力を算出し、
前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記MPPにおける電圧を維持するようにして、前記算出した充電電力を前記蓄電池に充電する、請求項11~17の何れか1項に記載の方法。 - 前記制御部は、前記パワーコンディショナの出力可能な電力より小さくなると判断する場合、前記制御部は、前記蓄電池から放電するように、前記コンバータを制御する、請求項11~18の何れか1項に記載の方法。
- 前記制御部は、
前記電流電圧特性データを参照して、前記照度計から得られる入射データに対応する前記太陽電池のMPPを算出し、
前記電力計で測定される電力が、前記算出した電力より低いと判断すると、前記コンバータを制御して、前記太陽電池と前記パワーコンディショナとを接続する母線が、前記太陽電池の算出したMPPにおける電圧を維持するようにして、前記蓄電池から電力を放電する、請求項11~19の何れか1項に記載の方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/338,702 US11249502B2 (en) | 2016-10-03 | 2016-10-03 | Power control device and control method employed therein |
JP2017568355A JP6463519B2 (ja) | 2016-10-03 | 2016-10-03 | 電力制御装置およびその制御方法 |
CN201680089802.1A CN109791418B (zh) | 2016-10-03 | 2016-10-03 | 电力控制装置及其控制方法 |
CA3039142A CA3039142C (en) | 2016-10-03 | 2016-10-03 | Power control device and control method employed therein |
PCT/JP2016/079371 WO2018066044A1 (ja) | 2016-10-03 | 2016-10-03 | 電力制御装置およびその制御方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2016/079371 WO2018066044A1 (ja) | 2016-10-03 | 2016-10-03 | 電力制御装置およびその制御方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2018066044A1 true WO2018066044A1 (ja) | 2018-04-12 |
Family
ID=61832071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2016/079371 WO2018066044A1 (ja) | 2016-10-03 | 2016-10-03 | 電力制御装置およびその制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11249502B2 (ja) |
JP (1) | JP6463519B2 (ja) |
CN (1) | CN109791418B (ja) |
CA (1) | CA3039142C (ja) |
WO (1) | WO2018066044A1 (ja) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019201509A (ja) * | 2018-05-18 | 2019-11-21 | 東芝三菱電機産業システム株式会社 | 電力変換システム |
JP2020014324A (ja) * | 2018-07-18 | 2020-01-23 | ニチコン株式会社 | 蓄電システム |
JP2020018114A (ja) * | 2018-07-26 | 2020-01-30 | 住友電気工業株式会社 | 蓄電池システム、電力変換システム、及び放電制御方法 |
WO2021192107A1 (ja) * | 2020-03-25 | 2021-09-30 | Tdk株式会社 | 給電システム、及び電力管理装置 |
JP2022050656A (ja) * | 2018-03-22 | 2022-03-30 | 住友電気工業株式会社 | 電力変換装置及び方法、並びに電力変換システム |
JP2023012086A (ja) * | 2021-07-13 | 2023-01-25 | 富士電機株式会社 | インバータ装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256824A (ja) * | 1984-06-01 | 1985-12-18 | Shikoku Electric Power Co Inc | 太陽光発電システムの制御装置 |
JPS63181015A (ja) * | 1987-01-23 | 1988-07-26 | Kyocera Corp | 太陽光発電装置の最大出力制御方式 |
JPH06266458A (ja) * | 1993-03-16 | 1994-09-22 | Kansai Electric Power Co Inc:The | バッテリ併用型太陽光発電設備 |
JP2016158412A (ja) * | 2015-02-25 | 2016-09-01 | 京セラ株式会社 | 電力変換装置及び電力管理システム |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5401003B2 (ja) | 2006-01-27 | 2014-01-29 | シャープ株式会社 | 太陽光発電システム |
JP2010066916A (ja) | 2008-09-09 | 2010-03-25 | Nec Personal Products Co Ltd | 情報処理装置およびその制御方法 |
US20100282289A1 (en) * | 2009-05-07 | 2010-11-11 | Tsai-Fu Wu | Solar generator capable of power tracking and electric characteristic curve measurement and method for realizing the same |
JP5479182B2 (ja) | 2009-09-30 | 2014-04-23 | 三洋電機株式会社 | 発電システムおよび充放電制御装置 |
KR101084215B1 (ko) * | 2009-12-16 | 2011-11-17 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101084216B1 (ko) * | 2009-12-23 | 2011-11-17 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101156533B1 (ko) * | 2009-12-23 | 2012-07-03 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 및 이의 제어 방법 |
KR101156536B1 (ko) * | 2010-01-21 | 2012-06-20 | 삼성에스디아이 주식회사 | 에너지 저장 시스템, 및 에너지 저장 시스템 제어 방법 |
KR101166020B1 (ko) * | 2010-05-31 | 2012-07-19 | 삼성에스디아이 주식회사 | 비접촉 충전 시스템 및 이를 포함한 에너지 저장 시스템 |
KR101173856B1 (ko) * | 2010-09-13 | 2012-08-14 | 삼성에스디아이 주식회사 | 최대 전력점 추종 장치 및 방법, 이를 이용한 계통 연계형 전력 저장 시스템의 운전 방법 |
JP5681448B2 (ja) | 2010-10-29 | 2015-03-11 | 株式会社東芝 | 家庭用エネルギー管理システム |
KR101243909B1 (ko) * | 2010-12-16 | 2013-03-14 | 삼성에스디아이 주식회사 | 전력 저장 시스템 및 그 제어 방법 |
US20120173031A1 (en) * | 2010-12-29 | 2012-07-05 | Redwood Systems, Inc. | Real-time power point calibration |
JP5083425B2 (ja) * | 2011-03-04 | 2012-11-28 | ダイキン工業株式会社 | 太陽電力変換部の制御装置、及びその制御方法、及び太陽光発電装置 |
US9787170B2 (en) * | 2012-02-13 | 2017-10-10 | Mitsubishi Electric Corporation | Power conversion device |
KR20130138611A (ko) * | 2012-06-11 | 2013-12-19 | 삼성에스디아이 주식회사 | 에너지 저장 시스템 |
JP5600146B2 (ja) * | 2012-07-26 | 2014-10-01 | オリジン電気株式会社 | 分散電源システム及び運転方法 |
KR101677832B1 (ko) * | 2015-02-11 | 2016-11-18 | 엘에스산전 주식회사 | 에너지 저장 시스템의 제어 장치 및 그 제어 방법 |
-
2016
- 2016-10-03 CA CA3039142A patent/CA3039142C/en active Active
- 2016-10-03 JP JP2017568355A patent/JP6463519B2/ja not_active Expired - Fee Related
- 2016-10-03 WO PCT/JP2016/079371 patent/WO2018066044A1/ja active Application Filing
- 2016-10-03 US US16/338,702 patent/US11249502B2/en active Active
- 2016-10-03 CN CN201680089802.1A patent/CN109791418B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60256824A (ja) * | 1984-06-01 | 1985-12-18 | Shikoku Electric Power Co Inc | 太陽光発電システムの制御装置 |
JPS63181015A (ja) * | 1987-01-23 | 1988-07-26 | Kyocera Corp | 太陽光発電装置の最大出力制御方式 |
JPH06266458A (ja) * | 1993-03-16 | 1994-09-22 | Kansai Electric Power Co Inc:The | バッテリ併用型太陽光発電設備 |
JP2016158412A (ja) * | 2015-02-25 | 2016-09-01 | 京セラ株式会社 | 電力変換装置及び電力管理システム |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2022050656A (ja) * | 2018-03-22 | 2022-03-30 | 住友電気工業株式会社 | 電力変換装置及び方法、並びに電力変換システム |
JP7283587B2 (ja) | 2018-03-22 | 2023-05-30 | 住友電気工業株式会社 | 電力変換装置及び方法、並びに電力変換システム |
JP2019201509A (ja) * | 2018-05-18 | 2019-11-21 | 東芝三菱電機産業システム株式会社 | 電力変換システム |
JP2020014324A (ja) * | 2018-07-18 | 2020-01-23 | ニチコン株式会社 | 蓄電システム |
JP6993300B2 (ja) | 2018-07-18 | 2022-02-04 | ニチコン株式会社 | 蓄電システム |
JP2020018114A (ja) * | 2018-07-26 | 2020-01-30 | 住友電気工業株式会社 | 蓄電池システム、電力変換システム、及び放電制御方法 |
JP7067340B2 (ja) | 2018-07-26 | 2022-05-16 | 住友電気工業株式会社 | 蓄電池システム、電力変換システム、及び放電制御方法 |
WO2021192107A1 (ja) * | 2020-03-25 | 2021-09-30 | Tdk株式会社 | 給電システム、及び電力管理装置 |
JPWO2021192107A1 (ja) * | 2020-03-25 | 2021-09-30 | ||
JP7414122B2 (ja) | 2020-03-25 | 2024-01-16 | Tdk株式会社 | 給電システム、及び電力管理装置 |
JP2023012086A (ja) * | 2021-07-13 | 2023-01-25 | 富士電機株式会社 | インバータ装置 |
Also Published As
Publication number | Publication date |
---|---|
US11249502B2 (en) | 2022-02-15 |
CA3039142A1 (en) | 2018-04-12 |
JP6463519B2 (ja) | 2019-02-06 |
CA3039142C (en) | 2022-09-20 |
CN109791418A (zh) | 2019-05-21 |
JPWO2018066044A1 (ja) | 2018-10-04 |
CN109791418B (zh) | 2021-02-09 |
US20200301461A1 (en) | 2020-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6463519B2 (ja) | 電力制御装置およびその制御方法 | |
JP6163558B2 (ja) | 太陽光発電システム | |
US8352084B2 (en) | Renewable electricity generation system, electric power measurement device and method | |
JP6304392B2 (ja) | 充放電管理装置 | |
US8806240B2 (en) | Battery management system, method of controlling the same, and energy storage system including the battery management system | |
JP5896096B1 (ja) | 発電設備および発電制御装置 | |
JP6430775B2 (ja) | 蓄電池装置 | |
CN112751357B (zh) | 一种光伏储能系统及其控制方法 | |
JP2017169253A (ja) | 力率改善装置、及びそれを備えた蓄電装置 | |
JP2013172514A (ja) | 電力貯蔵型の発電システム | |
KR101337576B1 (ko) | Soc 관리를 위한 방법 및 시스템 | |
JP2017051083A (ja) | 発電システム、発電方法およびプログラム | |
JP6149275B2 (ja) | 複数蓄電デバイスを用いた電力変動抑制装置 | |
KR20170021606A (ko) | 배터리 에너지 저장 시스템 및 이를 이용한 무효 전력 보상 방법 | |
JP6768571B2 (ja) | 電力制御装置、方法及び発電システム | |
JP6546501B2 (ja) | 蓄電装置 | |
JP6895145B2 (ja) | 電力制御装置およびその制御方法 | |
JP6503155B2 (ja) | 分散電源の出力変動抑制システム | |
JP2019165552A (ja) | 集中管理装置 | |
JP6055968B2 (ja) | 電源システム | |
US11901807B2 (en) | Bypass circuit, power system control method, and non-transitory computer readable medium | |
US20250167551A1 (en) | Frequency stabilization system and frequency stabilization method | |
JP2019122194A (ja) | 充電制御装置及び充電制御方法 | |
HK1252944B (zh) | 電源裝置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2017568355 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16918245 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3039142 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 16918245 Country of ref document: EP Kind code of ref document: A1 |